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Abstract

Background: Psoriasis is a chronic inflammatory disease involving both immune
dysregulation and environmental factors, with a global prevalence of 2-3%. The
introduction of TNF-alpha inhibitors previously used for other immune-mediated
conditions like rheumatoid arthritis marked a transformative shift in psoriasis
treatment. However, despite their efficacy, 30-40% of psoriasis patients fail to
respond to anti-TNF-alpha therapy. This underscores the critical need for reliable
predictive tools to assess individual treatment responses, enabling personalized
therapeutic decisions.

Aim: This study aims to develop a machine learning model based on DNA
methylation profiles to predict Anti-TNF-o response in psoriasis patients,
distinguishing responders from non-responders.

Materials and Methods: Using Google Colab, five machine learning models
Random Forest (RF), Logistic Regression (LR), Decision Tree (DT), Support
Vector Machine (SVM), and Multi-Layer Perceptron Classifier (MLPClassifier)
were trained on DNA methylation data from 70 psoriasis patients. The cohort was
stratified into:

o 49Anti-TNF-a responders (PASI improvement >90%)
o 21Anti-TNF-a non-responders (PASI improvement <70%)

The methylation dataset was sourced from the NCBI’s GEO
database (Accession:[GSE151278]).

Results: Among the evaluated models, Random Forest (RF) exhibited the highest
predictive performance, with a (CV accuracy of 0.750 and test-accuracy: 0.785,
precision: 0.835, recall: 0.785, F1: 0.735).Notably, the three most influential
variables in our model mapped to genomic loci where differential methylation
patterns could potentially regulate the expression of genes encoding proteins
directly implicated in psoriasis pathogenesis .

Conclusions: Our machine learning analysis of DNA methylation data identified
Random Forest as the optimal predictor of anti-TNF-a response in psoriasis patients
(79% accuracy). The top predictive loci were biologically relevant to psoriatic
pathways, suggesting clinical potential for treatment stratification. Further
validation in larger cohorts could enhance predictive utility.

Keywords: Psoriasis- DNA Methylation- Machine Learning
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CHAPTER 1
PREFACE

1.1. Introduction

Psoriasis is a chronic immune related skin disorder .This disorder is observed in
roughly (2-3)% of individuals globally. Studies indicate that 30% of psoriasis
patients suffer from psoriatic arthritis, and nail lesions occur in 50% of cases (1).
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Figure 1.1. Types of Psoriasis

Psoriasis results from a combination of immunological genetic and environmental
triggers: (1)

Genetic and environmental triggers: current genomic research has uncovered
more than 63 genetic loci that show significant association with psoriasis
pathogenesis. Key environmental triggers of psoriasis encompass metabolic factors
(obesity, diet), lifestyle habits (smoking, alcohol), physical trauma, medication
reactions, and infectious agents

Immunological triggers: Psoriasis manifests through cellular and molecular
mechanisms: epidermal keratinocytes exhibit dysregulated proliferation and
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aberrant differentiation, while immune cells (particularly T-cells and dendritic cells)
infiltrate the dermis. At the molecular level, these cells generate excessive pro-
inflammatory cytokines (e.g., IL-17, IL-23, TNF-a), creating a self-sustaining
inflammatory microenvironment within psoriatic lesions. While epidermal
keratinocytes normally function as the primary physical and immunological barrier,
psoriatic keratinocytes exhibit profound dysregulation. Their accelerated
proliferation stems resulting in immature cells with deficient lipid and keratohyalin
production. Crucially, these dysfunctional keratinocytes engage in pathological
crosstalk with innate and adaptive immune cells - particularly dendritic cells,
monocyte-derived macrophages, and tissue-resident memory T cells - establishing a
self-perpetuating inflammatory circuit. Psoriasis pathogenesis involves complex
immunomodulatory networks converging on key signaling cascades. Critical
pathways including NF-xB, JAK-STAT, and interferon regulatory factor (IRF)
systems become activated, driving inflammatory gene transcription in keratinocytes
and immune cells. (1)
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Figure 1.2 Aberrant interplay of keratinocytes and immune cells in
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Advances in the understanding of psoriasis pathogenesis have led to the discovery
and development of an expanding array of targeted molecules, which demonstrate
improved clinical outcomes and better quality of life for patients.

A major breakthrough in psoriasis treatment was first achieved with the use of
tumor necrosis factor (TNF) inhibitors, which had already been approved for other
inflammatory conditions, such as rheumatic diseases. (3)

Etanercept Etanercept is a bioengineered fusion protein that combines
two key components:

Two soluble TNF receptor domains These bind to both free-
floating (soluble) and cell-surface (membrane-bound) TNF-
a, blocking its activity.

An 1gG1 Fc fragment This stabilizes the molecule and
extends its lifespan in the bloodstream.

As a dimer, Etanercept can neutralize two TNF-a molecules
simultaneously, effectively competing with natural TNF
receptors and reducing inflammation. TNF-a itself is
produced by immune cells such as dendritic cells,
Th1/Th17/Th22 lymphocytes, macrophages, and even skin
cells (keratinocytes), playing a major role in psoriasis
pathogenesis (3)

Infliximab Infliximab is a chimeric monoclonal antibody composed of:
Murine-derived variable regions (for precise TNF-a binding)
Human-derived 1gG1 constant regions (to reduce immune
rejection)

It works by binding and neutralizing both soluble and
membrane-bound TNF-a, blocking its inflammatory effects.
)

Adalimumab | Adalimumab is a fully human 1gG1 monoclonal

antibody that specifically targets and neutralizes both soluble
and membrane-bound TNF-a, similar to infliximab.

Fully human structure (reduces immunogenicity compared to
chimeric antibodies like infliximab). (3)

Tablel.1. TNF-a inhibitors
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Infliximab Adalimumab Etanercept

Anti-TNF-a agents (4)

Although Anti-TNF-a agents (e.g., adalimumab, infliximab, etanercept) are
effective in treating psoriasis and psoriatic arthritis. However, 30-40% of patients
exhibit either primary non-response(PNR) or secondary non-response (SNR),
limiting treatment efficacy.

Personalized medicine represents a transformative approach in psoriasis
management, enabling tailored therapeutic strategies that optimize treatment
efficacy while minimizing adverse effects and reducing healthcare costs. (5)

Despite considerable progress in elucidating the pathogenesis of psoriasis, the
implementation of individualized genetic profiling remains constrained by
prohibitive costs, time limitations, and the scarcity of highly specific biomarkers
capable of predicting treatment response. Consequently, a standardized biomarker
panel would likely prove more reliable than single-target gene analysis.
Furthermore, the development of a comprehensive algorithm integrating both
genotypic and phenotypic patient data could significantly enhance diagnostic and
therapeutic (5).

The global proliferation of data derived from medical devices and electronic health
records has facilitated the advancement of machine learning (ML) technologies.
These innovations are poised to play a pivotal role in developing personalized
psoriasis bio panels. Such ML-driven approaches aim to integrate multidimensional
patient data, including genetic profiles, phenotypic characteristics, comorbid
conditions (which may contraindicate certain therapies), and histories of treatment
failure (which may help delineate distinct psoriasis endotypes). This integrated
framework promises to enhance clinical decision-making by enabling physicians to
select optimal, patient-specific therapeutic strategies (5) .

To date, despite numerous studies investigating biomarkers predictive of response
to biologic therapies, no consensus has been established regarding a standardized
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panel suitable for routine clinical implementation. The integration of artificial
intelligence (Al) to develop algorithms that synthesize individual genotypic and
phenotypic data represents a transformative approach to holistic patient
management, enabling truly personalized therapeutic strategies. However, further
research is required to validate and optimize this paradigm (5).

Historically, the majority of research on inter-individual variability in drug response
has centered on genetic polymorphisms that alter transcription factor binding sites.
However, emerging evidence highlights the role of heritable, epigenetic
modifications such as DNA methylation, his tone modifications, and non-coding
RNA regulation in modulating gene expression and pharmacodynamic outcomes
independently of DNA sequence variation. These mechanisms contribute
significantly to phenotypic diversity in drug metabolism, efficacy, and toxicity,
underscoring the need for integrative genomic and epigenomic approaches in
precision medicine. (6)

DNA methylation stands as one of the most extensively studied epigenetic
modifications governing gene expression regulation. Notably, this heritable
molecular marker frequently occurs in genomic regions encoding
pharmacologically relevant proteins, including:

(1) Drug-metabolizing enzymes (e.g., cytochrome P450 superfamily)
(2) Membrane transport proteins (e.g., ABC transporters)
(3) Molecular drug targets (e.g., receptor proteins)

DNA methylation, primarily occurring as 5-methylcytosine (5-mC), serves as a key
epigenetic regulator of gene silencing, which can be reversed through active or
passive demethylation processes. While 5-mC dominates eukaryotic DNA
methylation, minor modifications such as N6-methyladenine (N6-mA) and 7-
methylguanine (7-mG) also contribute to epigenetic regulation, though their roles
remain less understood. Methylation-induced transcriptional suppression can be
dynamically modulated, influencing critical biological processes, including drug
metabolism, cellular differentiation, and disease pathogenesis. (6)

The HHlumina DNA methylation microarray platforms, such as the
HumanMethylation450 BeadChip (450K array) and the Infinium Methylation
EPICBeadChip (850K array), along with whole-genome bisulfite sequencing
(WGBS) and reduced representation bisulfite sequencing (RRBS), represent the
most widely utilized high-throughput technologies for genome-wide DNA
methylation profiling at single-nucleotide resolution. (7)
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1.2. Problem Statement:

High Non-Response Rates to Anti-TNF-a Therapy: Although Anti-TNF-a
agents (e.g., adalimumab, infliximab, etanercept) are effective in treating
psoriasis and psoriatic arthritis, 30-40% of patients exhibit either partial non-
response (PNR) or total non-response. This limits treatment efficacy, leading
to prolonged disease activity, reduced quality of life, and increased
healthcare burdens.

Limitations of Current Predictive Approaches: Existing studies primarily
rely on clinical or serum biomarkers (e.g., CRP, PASI scores) and statistical
models to predict treatment response. However, these methods lack sufficient
accuracy for individualized predictions, as they fail to fully capture the
complex genetic and epigenetic mechanisms underlying non-response.
Underexplored Role of DNA Methylation in Treatment Response:
Recent evidence suggests that DNA methylation patterns may influence Anti-
TNF-a responsiveness, but most studies have analyzed these genetic factors
using traditional statistical methods (e.g., regression models). This approach
overlooks the potential of machine learning (ML) to detect non-linear
interactions and improve predictive performance.

1.3. Objectives:

The primary goal of this study is to construct a predictive machine learning model
utilizing DNA methylation signatures to stratify Anti-TNF-o responders and non-
responders among psoriasis patients. More precisely:

Identify Differential Methylation Patterns: Investigate and compare DNA
methylation profiles in psoriasis patients who respond to Anti-TNF-a therapy
versus non-responders (PNR/SNR) to pinpoint epigenetically significant loci.

Develop Machine Learning Predictive Model: Design and train an
interpretable ML model using methylation data to classify patients into
responders and non-responders with high accuracy.

Translate Findings into Potential Biomarkers: Extract and prioritize top
predictive methylation markers to propose a minimal epigenetic signature for
future clinical use in personalized treatment selection.
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CHAPTER 2

Theoretical Background

2.1. Introduction

Psoriasis is a persistent inflammatory dermatological condition, has a worldwide
prevalence of 2-3%. This disease is often linked to several comorbid conditions,
such as psoriatic arthritis (PsA), cardiovascular disorders, and depressive illness.

MOLECULARY TARGETED THERAPY
OF PSORIASIS AND PSORIATIC ARTHRITIS

/NN
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Figure 2.1. molecularly targeted therapy of psoriasis

In mild-to-moderate psoriasis, symptoms are frequently controlled with topical
therapies and/or phototherapy. However, patients with severe disease typically
require systemic treatments, including biologic agents.

The advent of biologic therapies has revolutionized the treatment paradigm for
psoriasis. Before their introduction, achieving disease remission often entailed
prolonged trials of topical and systemic agents, accompanied by considerable risks
of drug-related toxicity. In contrast, contemporary biologic agents including tumor
necrosis factor (TNF) inhibitors, interleukin (IL)-17A inhibitors, and IL-23/IL-
12/23 inhibitors demonstrate markedly superior efficacy, with up to 80% of patients
attaining PASI 90 responses and up to 90% achieving PASI 75 responses.
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Optimal treatment selection for psoriasis patients often involves trial and error, with
some requiring several drug switches before achieving long-term efficacy.
However, each unsuccessful attempt raises the risk of discontinuation due to
inefficacy.

2.2. Review of literature

1) Ancor SG, Reolid A, Fisas LH, Munoz-Aceituno E, Llamas-Velasco M,
Sahuquillo-Torralba A, Botella-Estrada R, Garcia-Martinez J, Navarro R,
Dauden E, Francisco AS. DNA copy number variation associated with anti-
tumour necrosis factor drug response and paradoxical psoriasiform
reactions in patients with moderate-to-severe psoriasis. Actadermato-
venereologica. 2021 May 4;101(5):689.

Although biologic agents targeting tumor necrosis factor (TNF) demonstrate
efficacy in psoriasis treatment, 30-50% of patients exhibit either non-response or
paradoxical psoriasiform reactions. This study investigates potential DNA copy
number variations (CNVs) as predictive biomarkers for anti-TNF therapeutic
response or the development of TNF inhibitor-induced psoriasiform eruptions.
CNVs are structural genomic variants characterized by reduced (deletion) or
elevated (duplication/insertion) copies of specific DNA sequences, which may alter
gene dosage and regulatory landscapes.

Blood samples were collected from 70 patients with moderate-to-severe psoriasis
who were treated with anti-TNF agents (adalimumab, infliximab, or etanercept).
Treatment response was clinically evaluated, and patients were stratified into two
groups based on therapeutic outcomes:

e Excellent responders (ER, n=49): Patients demonstrating optimal clinical
improvement.

o Partial responders (PR, n=21): Patients exhibiting suboptimal or limited
therapeutic response.

DNA was extracted from blood samples, followed by genome-wide DNA
methylation profiling using the high-density Infinium HumanMethylation450
BeadChip array. Methylation data were recorded as IDAT files for downstream
analysis.

15
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Figure 2.2. Workflow performed in this study.

Raw IDAT files were processed using two specialized R packages: conumee and
the Chip Analysis Methylation Pipeline (ChAMP). These tools were employed to
detect copy number variations (CNVs) based on methylation array output.
Specifically, CNVs were derived from ChAMP using the 'myCAN' function. The
ChAMP pipeline integrates methylated and unmethylated probe intensity values for
each cytosine-phosphate-guanine (CpG) site, followed by intensity normalization
using a series of controls obtained from the minfi package (healthy reference
genomes). (minfiData: Example data for the Illumina Methylation 450k array. R
package version 0.36.0)

Following initial data processing, the conumee package performs two distinct DNA
partitioning operations: bins and segments. Bins represent contiguous 15-CpG
genomic regions, with a fixed count of 15,820 bins per patient. Segments are larger
homogeneous regions of consistent copy number variation, identified through the
Circular Binary Segmentation (CBS) algorithm. These segments range from
100,000 to 6,000,000 base pairs in size, with the number varying across patients.

Following CNV identification, significant bins and segments have been mapped to
genomic coordinates using the R bedr package to identify overlapping genes. These
genes have been subsequently analyzed for pathway enrichment using EnrichR to
determine relevant signaling pathways.

For comparative analysis:

1. A custom scripts to cross-validate CNVs have been developed and called by
different packages and identify representative CNV regions.

2. Methylation intensity values per bin have been compared between patient
groups (ER vs PR) using Student's t-tests.

3. Segment comparisons have been restricted to:
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¢ Identical genomic coordinates (same start/end positions)
e Minimum recurrence (>2 patients per group)
e Length-matched regions

To address multiple testing:

e Bonferroni correction has been applied

e This conservative approach has minimized false discovery while maintaining
detection power.

This study demonstrates that:

1. Therapeutic Response: Clinical response to adalimumab correlates
significantly with specific CNV patterns (p<0.05).

2. Adverse Effects: Development of cutaneous complications shows a strong
association with distinct CNV profiles.

3. Predictive Biomarkers: Statistically significant CNVs (p<0.05) were
identified as potential biomarkers for:

e Predicting adalimumab treatment efficacy

e Anticipating adverse drug reactions

2) Ovejero-Benito MC, Cabaleiro T, Sanz-Garcia A, Llamas-Velasco M et al.
Epigenetic biomarkers associated with antitumour necrosis factor drug
response in  moderate-to-severe  psoriasis.2018 Mar;178(3):798-800.
PMID: 28369750

Recent studies have revealed that epigenetic changes, particularly DNA
methylation, play a role in the development of psoriasis. DNA methylation is a
heritable and dynamic covalent modification that occurs at cytosine-phosphate-
guanine (CpG) sites and can influence gene expression. While anti-tumor necrosis
factor-alpha (anti-TNF-a) therapies such as( adalimumab, etanercept, and
infliximab) are effective treatments for moderate-to-severe psoriasis, approximately
30-50% of patients show an insufficient response. This study is the first to
investigate potential epigenetic biomarkers that may predict patient response to anti-
TNF therapy.
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This study included 70 White patients with moderate-to-severe plaque psoriasis
who were treated with anti-TNF therapy. Patients were selected and divided into
two groups:

o excellent responders (ER) : whose achieved >=90% improvement
e partial responders (PR) : whose achieved <70% improvement

DNA methylation profiling was performed using the Illumina Infinium
HumanMethylation450 BeadChip array. The ChAMP pipeline was employed for
methylation data analysis. All analyses were performed in R. Differential
methylation was assessed using a moderated t-test, adjusted for batch effects. The
test statistic was computed as the ratio of the methylation 3-value (or M-value) to its
standard error.

For categorical variables, the study applied the moderated t-test, while linear
regression models were used to evaluate associations between methylation levels
(M-values) and continuous variables, such as PASI scores at 3- and 6-month
follow-ups.

Results:

No differentially methylated sites (DMSs) were identified between patients
exhibiting an excellent response and those with a partial response to anti-TNF
therapy. Similarly, no significant DMSs were observed when comparing excellent
and partial responders to either infliximab or etanercept. However, three CpG sites
were found to be hypermethylated in partial responders (n = 4) compared to
excellent responders (n = 21) to adalimumab treatment.

Linear regression analysis revealed no significant association between baseline
PASI or PASI at 3 months and the methylation levels (m-values) of any analyzed
CpG sites. However, a positive correlation was observed between PASI at 6 months
and the m-values of ¢g09141835, suggesting that hypermethylation at this site may
be associated with a poorer response to anti-TNF therapy.
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Figure 2.3. Results from Ovejero et al 2018

3) Amy X. Du, Zarga Ali , Kawa K. Ajgeiy, Maiken G. Dalager, Tomas N. Dam,
Alexander Egebjerg, Christoffer V. S. Nissen, Lone Skov, Simon Francis Thomsen,
Sepideh Emam, Robert Gniadeckil. Machine Learning Model for Predicting
Outcomes of Biologic Therapy in Psoriasis.Journal of the American Academy
ofDermatology doi: 10.1016/j.jaad.2022.12.046

Objective: To evaluate and compare the predictive accuracy of a conventional risk
factor-based frequentist statistical model versus machine learning algorithms in
estimating the 5-year probability of biologic therapy discontinuation.

Methodology: Data were extracted from the Danish national psoriasis registry
(DermBio), which included 6,172 treatment courses involving anti-TNF agents
(etanercept, infliximab, adalimumab), ustekinumab, guselkumab, and anti-IL-17
therapies (secukinumab, ixekizumab) across 3,388 unique patients. Cox
proportional hazards regression was employed to calculate hazard ratios (HRs) for
all available predictive factors. For machine learning (ML) approaches, multiple
models were trained to predict 5-year drug discontinuation risk using 10 routinely
collected clinical features. Model training incorporated a 5-fold cross-validation
framework. Predictive performance was evaluated using the area under the receiver
curve (AUC).

Results: Ustekinumab and ixekizumab demonstrated the lowest 5-year
discontinuation rates among the evaluated biologics. Additional predictors of
treatment persistence included male sex and biologic-naive status. The conventional
risk factor-based predictive model achieved modest discrimination (AUC = 0.61).
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In contrast, the optimal machine learning approach (gradient boosted trees) showed
superior predictive performance (AUC = 0.85).
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000 0.05 010 035 020 025 030 0.35 0.40 045 050 055 060 065 0.70 0.75 OEOD 0.85 090 D.85 1,00 105

Figure 2.4. AUC Curve

Conclusion:

In this study, two distinct approaches for predicting biologic therapy
discontinuation are developed and validated: a conventional risk factor-based
statistical model and a machine learning (ML)-based predictive tool. Our findings
demonstrate the superior performance of the ML algorithm, which shows promising
potential as a clinical decision-support tool for personalized treatment selection in
psoriasis. This advanced predictive model may enhance therapeutic decision-
making by enabling dermatologists to optimize biologic selection and improve
patient counseling through individualized risk assessment.

4) (8), Multivariable Predictive Models to lIdentify the Optimal Biologic
Therapy for Treatment of Patients with Psoriasis at the Individual Level.
JAMA Dermatol, August 17, 2022;158;(10):1149-
1156. doi:10.1001/jamadermatol.2022.3171

Objective: To determine the most effective biologic therapy for psoriasis patients
using predictive statistical modeling and machine learning approaches.

Methodology: This nationwide cohort study utilized data from Danish national
registries, with DERMBIO serving as the primary data source. The study population
comprised adult patients receiving biologic therapy for moderate-to-severe
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psoriasis. Data processing and analyses were conducted from spring 2021 through
spring 2022.

This study employed unsupervised learning to identify clinically meaningful patient
clusters using routinely collected registry data. Statistical methods and supervised
machine learning algorithms were subsequently applied to:

1. predict treatment discontinuation (binary outcome) within 1-3 years,
2. classify patients according to their optimal biologic therapy (multiclass
outcome) based on treatment persistence.

Results: Using a success criterion of 3 years of sustained treatment, this study
analyzed 2034 patients with a total of 3452 treatment series. The majority of
treatment series involved male patients (2147, 62.2%), with most originating
from Denmark (3190, 92.4%). Additionally, 2414 (69.9%) of the patients had
completed education beyond primary school. The average age at psoriasis
diagnosis was 24.9 years, while the average age at the start of biologic
therapy was 45.5 years.

In predicting the most effective cytokine target (e.g., interleukin-17 inhibition),
gradient-boosted decision trees achieved an accuracy of 63.6%, while logistic
regression reached 59.2%. The top 2accuracy improved to 95.9% and 93.9%,
respectively.

For predicting specific successful drugs, gradient boosting showed an accuracy

of 48.5%, compared to 44.4% for logistic regression. The top 2

accuracy was 77.6% (gradient boost) and 75.9% (logistic regression), while the top
3 accuracy reached 89.9% and 89.0%, respectively.

5) April W. ARMSTRONG, Elisabeth RIEDL, Patrick M. BRUNNER, Stefano
PIASERICO, Willie I. VISSER, Natalie HAUSTRUP, Bruce W. KONICEK,
Zbigniew KADZIOLA, Mercedes NUNEZ, Alan BRNABIC and Christopher
SCHUSTER. 9). 9). ActaDermato-Venereologica, 2024.DOl:
10.2340/actadv.v104.40556

Objective: Despite the availability of extensive clinical data, the selection of
biologic therapies for patients with moderate-to-severe psoriasis (PsO) remains
largely based on a trial-and-error approach. While modern biologics achieve high
rates of skin clearance (PASI90/100) in many patients, suboptimal initial therapy
can delay effective disease control and impact long-term outcomes. This study
evaluated predictors of complete skin clearance (PASI100) at the following time
points:
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1. Week 12 (short-term response)
2. Month 12 (long-term response)
3. Week 12 with durability through Months 6 and 12 (sustained response)

A secondary objective was to analyze predictor variables (e.g., demographic,
clinical, or molecular biomarkers) to:

e Quantify their association with PASI100 likelihood

e Compare differences in efficacy across biologic classes (e.g., anti-TNF, IL-
17/23 inhibitors)

Methodology and Results: Using machine learning and advanced statistical
methods, this study analyzed a sub-population of 1,917 patients with moderate-to-
severe psoriasis (PsO) from the PSoHO dataset who were treated with biologics.
Researchers identified 14 novel predictor variables, which were combined with 12
additional variables previously linked to treatment response in the literature,
resulting in a total of 26 potential predictors.

A subsequent logistic regression analysis revealed three significant predictors
associated with achieving at least one of the three PASI100 outcomes (complete
skin clearance at Week 12, Month 12, or sustained response):

1. Nail Psoriasis: The absence of nail involvement emerged as a strong
predictor for two different PASI100 outcomes, underscoring its clinical
relevance.

2. Hypertension
3. Body Surface Area (BSA) involvement

This study underscores the persistent difficulty in defining reliable clinical
predictors of treatment response in moderate-to-severe psoriasis. Despite this
challenge, the absence of nail involvement emerged as the most robust and
clinically actionable marker from real-world evidence to predict optimal biologic
therapy outcomes.

Critical Takeaways for Practice:

1. Nail PsO Assessment as a Decision Tool

¢ Routine screening for psoriatic nail disease should be prioritized during
clinical evaluations

e Its absence serves as a practical indicator for higher likelihood of PASI100-
level responses

2. Therapeutic Strategy Implications
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e Findings advocate for tailored biologic selection based on nail involvement
status

e Reinforces need for comprehensive baseline assessments beyond skin
severity alone

This evidence transforms a simple bedside observation (nail examination) into
a stratification tool for precision medicine in psoriasis management.

2.3. Research gap

Despite advances in ML applications for precision medicine, no study has yet
developed an ML-based predictive framework using methylation profiles to stratify
psoriasis patients by their likelihood of responding to Anti-TNF-a therapy. Bridging
this gap could enable earlier identification of non-responders, reduce trial-and-error
prescribing, and optimize therapeutic outcomes.

While numerous studies have focused on predicting factors influencing treatment
response, most rely on either statistical approach. This study aims to address a
critical gap by leveraging machine learning models topredict treatment response
based on genetic methylation data. By doing so, we propose a more robust and data-
driven approach to personalize psoriasis therapy, overcoming the limitations of
traditional statistical methods and enhancing predictive accuracy for clinical
decision-making.
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CHAPTER 3

Materials and Methods

3.1. The Dataset

Link

https://www.ncbi.nlm.nih.qgov/geo/query/acc.cqi?acc=GSE151278

Title

Genome-wide DNA methylation analysis of peripheral blood
samples of moderate-to-severe psoriasis patients treated with anti-
TNF drugs

Publish Date

May 28, 2020

Summary

Genome wide DNA methylation profiling of peripheral blood
samples of moderate-to-severe psoriasis patients treated with anti-
TNF drugs. Patients were distributed on Excellent Responders
(ER) if they achieved PASI90 (a 90% reduction with respect to
baseline PASI) at 3 and 6 months of treatment with anti-TNF
drugs and Partial responders if they did not achieve a PASI75 (a
75% reduction with respect to baseline PASI) at 3 and 6 months
of treatment. The Illumina Infinium 450k Human DNA
methylation Beadchip v1.2 was used to obtain DNA methylation
profiles across approximately 485,000 CpGs in 49 ER and 21 PR
which were obtained from peripheral blood samples of anti-TNF
drug treated patients. We have searched for pharmaco epigenetic
biomarkers of anti-TNF response in moderate-to-severe psoriasis
patients.

Samples

70

Organization
name

Instituto de Investigacion Sanitaria la Princesa (11S-1P)
MADRID, Spain

Age
Features Age at initiation
(inputs) Gender Male/female
Treatment Type Adalimumab- Etanercept- infliximab
Labels Response to Anti-TNF | Responder (1)
(Targets) Therapy Non-Responder (0)

Table 3.1.The data set
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Blood samples were collected from adult patients diagnosed with moderate-to-
severe plaque psoriasis, as defined by the Spanish Academy of Dermatology and
Venereology Psoriasis Working Group guidelines. These patients were undergoing
treatment with anti-TNF agents (adalimumab, infliximab, or etanercept) and
provided written informed consent. The study protocol and consent forms adhered
to Spanish regulations on biomedical and clinical research and were approved by
the Ethics Committee for Clinical Research of Hospital Universitario de la Princesa.

To enhance the contrast in treatment outcomes, patients with extreme phenotypic
responses to anti-TNF therapy were selected. They were categorized into two
groups:

1. Excellent responders (ER): Patients who achieved a PASI90 response (>90%
improvement from baseline Psoriasis Area and Severity Index score) at both
3 and 6 months.

2. Partial responders (PR): Patients who failed to reach a PASI75 response
(>75% improvement from baseline PASI score).

DNA Extraction and Methylation Analysis: Genomic DNA was isolated from
peripheral blood samples using the MagNA Pure® System (Roche Applied Science,
Penzberg, Germany). DNA integrity was assessed using the 2100

Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Subsequently, 1,000
ng of genomic DNA underwent bisulfite conversion using the EZ DNA Methylation
Kit (Zymo Research, Irvine, CA, USA).

Genome-wide DNA methylation profiling was conducted using the Illumina
Infinium HumanMethylation450 BeadChip (Illumina Inc., San Diego, CA, USA)
following the manufacturer’s protocol. The methylation data generated in this study
have been deposited in NCBI’s Gene Expression Omnibus (GEO) and are publicly
available under the accession

number GSE151278:(https://www.ncbi.nlm.nih.gov/geo/). (10)

3.2. Tools Used
a) Computational Environment:

All machine learning workflows were implemented in Python 3.8+ using Google
Colaboratory (Colab), a cloud-based Jupyter notebook platform.
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b) Libraries & Dependencies:

A powerful data manipulation and analysis library,

pandas offering data structures like Data Frames and Series
for handling structured data.
A fundamental library for numerical computing in
Python, providin rt for large, multi-
numpy ython, providing support for large, mult

dimensional arrays and matrices, along with
mathematical functions

Matplotlib.pyplot

A popular plotting library for creating static,
interactive, and animated visualizations in Python.

gzip

A Python library for compressing and
decompressing files

scikit-learn (sklearn)

A popular machine learning library for Python,
providing simple and efficient tools for data
mining and data analysis

A built-in Python module providing core tools

10 for input/output (1/0O) operations, supporting file
handling, streams, and in-memory buffers.
A built-in Python module (part of 10) that allows
stringlO treating strings as file-like objects in memory,

supporting read/write operations like a file.

sklearn.decomposition

A submodule in scikit-learn for dimensionality
reduction and matrix factorization techniques

PCA (Principal
Component Analysis)

A linear dimensionality reduction technique
in sklearn .decomposition that transforms data
into orthogonal components (ordered by variance)

sklearn.preprocessing

A scikit-learn submodule for data
preprocessing and feature scaling, essential for
preparing data before machine learning modeling

StandardScaler

A preprocessing tool that standardizes features

LabelEncoder

A preprocessing tool that encodes categorical
labels (strings or integers) into numerical values
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sklearn.model_selection

A scikit-learn submodule for model evaluation,
selection, and hyperparameter tuning

train_test_split

A function to split datasets into random training and
testing subsets, commonly used for model
validation.

sklearn.ensemble

A scikit-learn submodule for ensemble learning,
combining multiple base models to improve
predictive performance and robustness

Random Forest
Classifier

An ensemble learning method that constructs
multiple decision trees during training and outputs
the majority vote (classification) or average
prediction (regression).

sklearn.metrics

A scikit-learn submodule for model evaluation,
providing functions to measure performance for
classification, regression, clustering, and more

classification_report

A function that generates a text summary of key
classification metrics, including precision, recall,
F1-score, and support for each class.

accuracy_score

A function that computes the accuracy classification
score, i.e., the fraction of correct predictions out of
all predictions made.

Requests

A popular, user-friendly HTTP library for Python,
designed for making web requests

Table3.2. Libraries & Dependencies

3.3. Workflow and Data Preprocessing

Data has been loaded directly to colab by defining dataset URL and local file
path then using Python’s requests library to fetch the data. Pandas.read_csv has
been used directly with URL for gzipped files.

Metadata parsing: Geo files are characterized by a distinctive format that begins
with metadata lines starting with an exclamation mark (!).A function has been
defined to handle this format, which systematically segregates metadata (denoted by
'I' prefixes) from primary data entries. The implemented pipeline successfully
imported the metadata (marked by '!" prefixes) and expression data matrices,
establishing a complete dataset for processing.
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Expression Data Head (first 5 rows, first 5 columns):

ID_REF  GSMA4570206 GSM4570207 GSM4570208 GSM4570209 GSM4570210

cg00000029 0.449950 0.483412 0.383950 0.499973 0.368064

cg00000108 0.919370 0.889380 0.879016 0.885480 0.884407

cg00000109 0.720833 0.675689 0.682002 0.686516 0.728309

cg00000165 0.285152 0.212334 0.200122 0.184203 0.192691

cg00000236 0.683391 0.650948 0.686666 0.585181 0.701103

Table3.3. Expression Data Head (first 5 rows, first 5 columns)

Initial data visualization: To ensure data integrity, all expression values were
verified to be numeric prior to analysis. Subsequently, two key visualizations were
generated:

Plot 1: Distribution of All Expression Values. A density plot displaying the global
distribution of beta value across the entire dataset.
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Figure 3.1. Data Distribution

28




Plot 2: Distribution of Expression Values for 20 Samples — A (violin plot)
illustrating the variation in expression profiles across a subset of 20 representative
samples.
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Figure 3.2. violin plot
Data Preprocessing:

The machine learning model expects samples as rows and features as columns;
hence, the data matrix has been transposed.

Subsequently, the independent variables (age, gender, age at initiation,drug) and the
dependent variable (response) have been extracted from metadata.

Sample IDs have been extracted from the index (X) to ensure consistent tracking of
observations throughout the analysis.

Label encoder has been applied to transform categorical variables into numerical
representations
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ID_REF Gender | Age Age_at_Initiation | cg00000029 cg00000108
GSM4570206 1 57 42 0.449950 0.919370
GSM4570207 0 38 23 0.483412 0.889380
GSM4570208 0 62 18 0.383950 0.879016
GSM4570209 1 48 29 0.499973 0.885480
GSM4570210 1 66 37 0.368064 0.884407

Table 3.4. Data matrix

All features have been standardized using scikit-learn'sStandardScaler

--- Standardizing Features (X) ---

ID_REF Gender

GSM4570206 0.792406

GSM4570207 -1.261980

GSM4570208 -1.261980

GSM4570209 0.792406

GSM4570210 0.792406

Age_at_Initiation cg00000029 cg00000108

Age
0.685028 1.404207
-0.625889 -0.245612
1.030007 -0.679775

0.064067 0.275383

1.305989 0.970044

0.070306 2.500579
0.761601 0.790761
-1.293154 0.199858
1.103738 0.568417

-1.621342 0.507228

Table3.5. Standardizing Features (X)

= Perform the mean and variance

To ensure robust feature selection, we calculated

the mean and variance of DNA methylation levels (B-values) across all samples for

each CpG site.
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Table3.6.Mean and Variance

variance histogram
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Figure 3.3. Samples with variance values>0.05

3.4. Chapter Closure
In a preliminary analysis of the data, we observe that:

DNA methylation levels are not normally distributed; instead, they tend to cluster
into either high or low values. Generally, low methylation levels (hypomethylation)
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in promoter regions are associated with active gene expression, whereas high
methylation levels (hypermethylation) are linked to gene silencing. However, the
relationship between methylation and gene expression can vary depending on
genomic context, such as enhancers or gene bodies, where methylation may have
different regulatory role.

DNA methylation profiling identified >430,000 CpG sites per patient, annotated
as cg x (where "x" is an 8-digit probe ID).
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Chapter 4

Prediction Using Machine Learning

4.1. Methodology

4.1.1. Predictive Models

Several predictive models have been trained and evaluated, with priority given to
established algorithms demonstrating high potential for performance accuracy.

e logistic regression

e Decision Tree Classifier

e Random Forrest Classifier

e Support Vector Machine — SVM

e Multi-Layer Perceptron Classifier (MLPClassifier)

Logistic Regression

Logistic Regression is a statistical model used for classification that predicts the
probability of an instance belonging to a class. While commonly used for binary
classification (e.g., Yes/No), it can be extended to multiclass problems (3+ classes)
using:

Binary Logistic Regression uses the sigmoid function to output a probability
between 0 and 1. Equation:

|
~(fotf’ X)

Piy=1]|X) E

LI

Multinomial Logistic Regression (Softmax): Generalizes to multiple classes by
assigning probabilities using the softmax function. One-vs-Rest (OvR): Trains
multiple binary classifiers (one per class).

Properties of logistic regression:

¢ Interpretable (coefficients show feature importance).
e Works for both binary and multiclass tasks.
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Limitations:

e Poor performance on non-linear decision boundaries. (11)

Decision Tree Classifier

A Decision Tree splits data into branches based on feature values to classify
instances. It uses rules like Gini impurity or entropy to select optimal splits. Trees
are intuitive (mimic human decision-making) but prone to overfitting without
constraints (e.g., max depth).

For node m, the Gini impurity is:

K

("m ] \._, P

mk»

k=1
where PmK is the proportion of class k in node m.

Key Properties:

e Non-parametric: No assumptions about data distribution.
e Transparency: Rules are human-readable (unlike "black-box™ models).

Limitations:

e High variance; small data changes alter tree structure. (12)

Random Forest Classifier

Random Forest is an ensemble method that builds multiple decision trees on
random subsets of data and features, then aggregates their predictions (majority vote
for classification). It reduces overfitting and improves accuracy compared to single
trees.

A Random Forest is an ensemble of B decision trees trained on bootstrap samples
of the data (bagging). Each split uses a random subset of features (size m~Vp
for p features).

Properties:
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e Variance reduction: Averaging over trees decreases overfitting.
¢ Robustness: Handles noisy data and outliers.

Limitations:

e Computationally expensive for large B. (13)

Support Vector Machine (SVM)

Support Vector Machine (SVM) is a supervised learning algorithm used

for classification and regression. It works by finding the optimal hyperplane that
maximizes the margin between classes in a high-dimensional feature space. SVM

can handle both linear and non-linear decision boundaries using kernel functions.

Linear SVM (Hard Margin): Minimizes12|lwl|? subject to
yi(wix; +b)> 1

where w is the weight vector and b is the bias.

Soft Margin (C-SVM): Introduces slack variables & to handle misclassifications:

min ;Ilwll“ +C ) &
- =]
where C controls the trade-off between margin width and classification error.

Kernel Trick: Maps data to a higher-dimensional space using kernel functions

(e.g., RBF, polynomial):
K(x:.x;) =exp(—7ylx; — x;II°) (RBF kernel)

Advantages:

e Effective in high-dimensional spaces.
e Robust to overfitting, especially with small datasets.
e Versatile (works with linear and non-linear data via kernels).

Limitations:

e Computationally intensive for large datasets.
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e Requires careful tuning of hyperparameters (e.g., C, y).

Multi-Layer Perceptron Classifier (MLPClassifier)

The MLPClassifier (Multi-Layer Perceptron Classifier) is a feedforward artificial
neural network (ANN) used for supervised learning tasks, particularly classification.
It consists of multiple layers of interconnected neurons (nodes) that learn non-linear

decision boundaries through backpropagation and gradient descent optimization.

Components:

Architecture:

e Input Layer: Receives feature vectors.

e Hidden Layers: One or more layers with activation functions .
e Output Layer: Uses Softmax (for multi-class) or Sigmoid (for binary)

activation.
Mathematical Formulation (Forward Pass):

For layer I:
11 / / [
z =Wa "+b, a =az)

where WI =weights, bl =biases, o =activation function.
Loss Function: Cross-entropy (classification).
Optimization: Stochastic Gradient Descent (SGD) or Adam.

Advantages:

e Handles non-linear relationships via hidden layers.
o Flexible architecture (adaptable to various problems).

Limitations:

e Prone to overfitting (requires regularization like dropout or L2 penalty).

e Computationally expensive for large networks.

(14).
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4.1.2. Stratified K-Fold Cross-Validation

Stratified K-Fold is a cross-validation technique that preserves the class
distribution (stratification) in each fold. It partitions the dataset into K subsets
(folds) of approximately equal size, ensuring that each fold maintains the same
percentage of samples for each class as in the original dataset.

Features:

o Preserves Class Balance: Critical for imbalanced datasets.

« Reduces Bias: Provides more reliable performance estimates than standard
K-Fold.

o Model Evaluation: Each fold serves as a validation set once while the
remaining K—1/ folds are used for training.

Advantages:

« More accurate performance estimation for classification tasks.
« Mitigates overfitting in imbalanced scenarios.

Limitations:

« Computationally intensive for large K.
« Not suitable for regression (use standard K-Fold instead)

(15)

4.2. Implementation and Results :

After performing the initial preprocessing, the data has been ready for the training
phase. As mentioned in the previous chapter, we have used the Google Colab
environment. We have split the data into 80% for training and 20% for testing,
increasing the training set size due to the limited original dataset size. Additionally,
we have employed Stratified K-Fold cross-validation (K=5) to handle the class
imbalance, as the number of treatment responders is significantly higer than non-
responders.

To reduce dimensionality and remove low-variance features, Variance Threshold
filtering has been applied. Through repeated model training and statistical
evaluation, the variance threshold range of 0.005-0.8 has been identified as the most
impactful range.
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A subset of previously extracted metadata features (e.g., age, gender, age at
initiation, drug) was identified as non-predictive. These features were excluded
from final models.

Model Performance Evaluation
Following hyperparameter optimization and cross-validation, the trained models
demonstrated the following performance metrics on the held-out test set:

Model CV Mean | Test Test Test Recall | Test F1
Accuracy Accuracy Precision

RForest 0.750 0.785 0.835 0.785 0.735

Logest_Reg | 0.713 0.785 0.835 0785 0.735

NN 0.680 0.785 0.774 0.785 0.775

SVM 0.696 0.714 0.510 0.714 0.595

DTree 0.521 0.642 0.669 0.642 0.653

Table4.1 Model Performance
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Model Performance Comparison

BN Accuracy
I Precision
B PRecall

0.8

0.7 A

0.6

0.5 4

0.4

0.3 A

0.2 1

0.1 A

0.0 -

RForest Logist_Reg NN SVM DTree
Models

Figure4.1 Model performance comparison
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Figure4.2. Model confusion matrix

Random Forest and Logistic Regression achieved the highest cross-validation
(CV) accuracy and identical test accuracy (0.7857). However, Random Forest
demonstrated greater stability (lower standard deviation).

The Neural Network attained the highest F1-score (0.7755) despite its lower CV
accuracy, suggesting a better balance between precision and recall compared to
other models.

SVM struggled with low precision (0.5102), significantly reducing its F1-score,
even though its recall was acceptable.

Decision Tree performed the weakest across most metrics.
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Based on rigorous evaluation (CV accuracy, precision, recall, and F1-score),
Random Forests emerged as the most effective model.

Variable Importance Analysis for the Best Model (Random Forest)

In the Random Forest model, assessing variable importance helps identify which
features have the most significant impact on predictions. The following 25 CpG
sites were identified as the most influential variables in the predictive model, ranked
by their importance scores:

ID_REF variable variance importance
€g19430537 €g19430537 0.005051 0.015181
€g16045423 €g16045423 0.005765 0.011622
€g09969882 €g09969882 0.012825 0.007985
€g26547816 €g26547816 0.005669 0.007942
cg14638919 cg14638919 0.030298 0.007700
€g15935227 €g15935227 0.019368 0.007478
cg10075506 cg10075506 0.024824 0.006818
€g16586594 €g16586594 0.009493 0.006793
€g00169354 €g00169354 0.023266 0.006658
€g17471939 €g17471939 0.008031 0.006549
cg00168694 cg00168694 0.005731 0.006379
€g05645557 €g05645557 0.006956 0.005951
€g21790587 €g21790587 0.007325 0.005869
€g17833169 €g17833169 0.010260 0.005844
€g15519096 cg15519096 0.005003 0.005663
cgl13410614 cg13410614 0.006876 0.005520
cgl12738248 €g12738248 0.030968 0.005513
cg10701640 cg10701640 0.006511 0.005511
€g12728606 €g12728606 0.005570 0.005422
€g03292213 €g03292213 0.010938 0.005385
€g04269043 €g04269043 0.005830 0.005311
cg18584424 cg18584424 0.006924 0.005311
cg03666441 cg03666441 0.005157 0.005300
cg18757828 cg18757828 0.022755 0.005176
€g17906168 €g17906168 0.006565 0.005158

Table 4.2.Top 25 Most Important CpG Sites
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4.3. Improvement

Some trials are made to enhance the results:

o PCA, a linear dimensionality reduction technique, was applied but failed
to enhance performance. This implies that either (1) key predictive features
were correlated with low-variance components, or (2) non-linear feature
interactions dominate the data’s discriminative structure.

o Dimensionality reduction was performed by selecting features with
variance thresholds between 0.005 and 0.08. This optimized feature subset
led to significant performance improvements, suggesting that:

1. Features with very low variance (<0.005) were likely noise-dominated
and their removal enhanced model robustness.

2. Retaining features within this variance range preserved discriminative
patterns while eliminating redundancy.

3. The upper threshold (0.08) effectively prevented high-variance
features from dominating the feature space.

4.4. Discussion

Our findings demonstrate that the Random Forest model outperformed other
approaches in predicting treatment response (CV Mean Accuracy 0.750, test
accuracy 0.785, test prcecision0.835, test recall0785, F1 0.735) highlighting its
efficacy in capturing complex interactions among variables. Key methylation sites
were identified as top predictors. The three most influential DNA methylation sites
were examined to validate that the model's predictions were biologically meaningful
and not due to random noise. Using the UCSC database, the genomic positions of
this methylation sites and the associated genes were identified.

1) First site: ¢cg19430537

The CpG site 919430537 (chrl7:74,128,860-74,128,860) .This site is part of a
robust epigenetic signature specific to CD8*T cells, capable of accurately inferring
cell-type-specific methylation from bulk blood data (16). Consequently, its
association with treatment response in psoriasis likely reflects a direct role in
modulating CD8'T cell biology, a key player in psoriatic inflammation, thereby
providing a compelling biological rationale for its predictive value.
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2) Second site: cg16045423

The CpG site cg16045423 (chr22:39,378,346-39,378,346) is located within

the APOBEC3B gene body. This gene is a member of the cytidine deaminase gene
family. Given the crucial role of the PKC/classical NF-xB pathway in the
transcriptional regulation of, APOBEC3B in cancer cells (17) and considering that
this pathway is hyperactivated in psoriatic plaques, we propose that APOBEC3B
expression may serve as a biomarker for predicting response to anti-TNF therapy.
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Figure 4.5 cg16045423 genomic position

3) Third site:cg09969882

The CpG site cg09969882 (chr2:239346400-239346400) is located within
the ASB1 gene. Unlike typical SOCS box proteins that promote substrate
degradation, ASB1 unexpectedly stabilizes its substrate, TAB2, by inhibiting
its K48-linked ubiquitination. This enhancement of TAB2 stability leads to
amplified activation of downstream NF-xB inflammatory pathway (18).
This stabilization of TAB2 by ASB1 provides a potential molecular
mechanism for the hyperactive inflammation observed in chronic diseases
such as psoriasis. It may also explain the differential patient responses to
therapies targeting upstream cytokines (e.g., anti-TNF).
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Figure.4.6 cg09969882 position

We observe that the top three variables in the model correspond to genomic loci

where variation in methylation may affect the transcription of genes encoding
proteins directly involved in the immunological and molecular mechanisms of

psoriasis. This indicates that the model reflects biologically plausible associations,

not merely artificial or noise-driven correlations.

Future studies should focus on these variables to further elucidate their precise role

in (antiTNF-o response in psoriasis patients).
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CHAPTER 5

Conclusion and Future Prospects

5.1. Conclusion

In this study, we developed a machine learning framework leveraging DNA
methylation data to predict anti-TNF-ao response in psoriasis patients. Among the
five models tested, Random Forest demonstrated the best performance (79%
accuracy), highlighting its potential for clinical stratification. Notably, the top three
predictive variables were biologically relevant, mapping to genomic loci implicated
in psoriasis-related immune pathways. While these results are promising, further
validation in larger cohorts and integration of multi-omics data could enhance
predictive power. Our approach underscores the utility of Al in personalized
dermatology, paving the way for more targeted therapeutic decisions.

5.2. Future Prospects

1. Validation in Larger, Prospective, and Diverse Cohorts: The performance
of our model must be rigorously validated in larger, multi-center, prospective
cohorts that encompass greater ethnic, genetic, and clinical diversity. This is
essential to confirm generalizability, assess potential confounding factors,
and ultimately ensure the model's robustness before clinical deployment.

2. Model Optimization and Advanced Architectures: Although Random
Forest demonstrated superior performance, exploring more complex and
sophisticated algorithms could yield further improvements.

3. Multi-Omics Data Integration: To move beyond a predictive model
towards a mechanistic understanding, future work should integrate DNA
methylation data with other molecular layers. A multi-omics approach
incorporating matched transcriptomic (RNA-seq), proteomic, and genomic
data would provide a more comprehensive systems biology view. This could
unravel the functional consequences of epigenetic changes and identify
master regulators of treatment response.
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4. Functional Characterization of Top Predictive Loci: The biological
relevance of our top predictors (e.g., cg19430537) is a major strength. We
propose dedicated functional studies to elucidate their causal role. This could
involve in vitro experiments.
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