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Abstract 

Background: Psoriasis is a chronic inflammatory disease involving both immune 

dysregulation and environmental factors, with a global prevalence of 2-3%. The 

introduction of TNF-alpha inhibitors previously used for other immune-mediated 

conditions like rheumatoid arthritis marked a transformative shift in psoriasis 

treatment. However, despite their efficacy, 30-40% of psoriasis patients fail to 

respond to anti-TNF-alpha therapy. This underscores the critical need for reliable 

predictive tools to assess individual treatment responses, enabling personalized 

therapeutic decisions. 

Aim: This study aims to develop a machine learning model based on DNA 

methylation profiles to predict Anti-TNF-α response in psoriasis patients, 

distinguishing responders from non-responders. 

Materials and Methods: Using Google Colab, five machine learning models 

Random Forest (RF), Logistic Regression (LR), Decision Tree (DT), Support 

Vector Machine (SVM), and Multi-Layer Perceptron Classifier (MLPClassifier) 

were trained on DNA methylation data from 70 psoriasis patients. The cohort was 

stratified into: 

• 49Anti-TNF-α responders (PASI improvement ≥90%) 

• 21Anti-TNF-α non-responders (PASI improvement <70%) 

The methylation dataset was sourced from the NCBI’s GEO 

database (Accession:[GSE151278]). 

Results: Among the evaluated models, Random Forest (RF) exhibited the highest 

predictive performance, with a (CV accuracy of 0.750 and  test-accuracy: 0.785, 

precision: 0.835, recall: 0.785, F1: 0.735).Notably, the three most influential 

variables in our model mapped to genomic loci where differential methylation 

patterns could potentially regulate the expression of genes encoding proteins 

directly implicated in psoriasis pathogenesis . 

Conclusions: Our machine learning analysis of DNA methylation data identified 

Random Forest as the optimal predictor of anti-TNF-α response in psoriasis patients 

(79% accuracy). The top predictive loci were biologically relevant to psoriatic 

pathways, suggesting clinical potential for treatment stratification. Further 

validation in larger cohorts could enhance predictive utility. 

Keywords: Psoriasis- DNA Methylation- Machine Learning 
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 ملخص

ية والمناعية الصدفية هي مرض مناعي ذاتي مزمن ينتج عن تداخل العديد من العوامل البيئ خلفية البحث:

-anti) لفااستخدام مثبطات عامل نخر الورم أ(. شكل %3-2صابة به عالميا من )تتراوح نسبة الإ .والجينية

TNF-α) خرى مثل التهاب المفاصل الروماتيدي نقلة نوعية في المستخدمة سابقا لعلاج أمراض مناعية أ

( %30-20ن )ج المرضى إلا أجية في علاهذه الزمرة العلا هميةولكن على الرغم من أ ،ج هذا المرضعلا

دوات تنبؤية تساهم في التنبؤ بمدى مما أبرز الحاجة الملحة إلى وجود أ ،من المرضى لا يستجيبون للعلاج

 اتخاذ قرارات علاجية صحيحة.و علاج الفرديالاستجابة العلاجية بحيث تسهم في دعم ال

 DNA حمض النوويلي يعتمد على تباين مثيلة الم آه الدراسة إلى تطوير نموذج تعلتهدف هذ هدف البحث:

 مرضى الصدفية. لدى (anti-TNF-α)ـللتنبؤ بالاستجابة ل

لي هي ريب خمسة نماذج تعلم آتم تد ،(Google Colab)باستخدام بيئة عمل  :دوات وطرائق البحثأ

(Random Forest (RF), Logistic Regression (LR), Decision Tree (DT), Support 

Vector Machine (SVM), and Multi-Layer Perceptron Classifier (MLPClassifier)) 

 49ولى مؤلفة من الأ :مريض صدفية ينتمون إلى مجموعتين 70 ـل DNAعلى بيانات مثيلة الحمض النووي 

استيراد تم  .مريض غير مستجيب للعلاج 21المجموعة الثانية مؤلفة من بشكل جيد،  للعلاجاستجابوا مريض 

 .[GSE151278]معرفة بالرقم   NCBIالتابعة ل  GEOهذه البيانات من قاعدة بيانات 

 : CV accuracyداء تنبؤي بنتائج )( أعلى أRandom Forest) ظهر نموذج الغابات العشوائيةأ النتائج:

0.750   test- accuracy: 0.785, precision: 0.835, recall: 0.785, F1: 0.735 .)منا في كما ق

وربطها بمواقعها الجينية فتبين أنها  استخلاص أهم ثلاثة مواقع مثيلة ساهمت في التنبؤ في هذا النموذجالبحث ب

لوجي ولم يكن ساس بيوأعلى رتكز ن التنبؤ اأيؤكد تنتمي إلى مواقع ذات صلة مباشرة بمرض الصدفية مما 

 .ةحصائيإ صدفةنتيجة 

لي للتنبؤ ( كأفضل نموذج تعلم آRandom Forestالغابات العشوائية )حددت هذه الدراسة نموذج  الخلاصة:

بدقة  DNA( بالاعتماد على بيانات مثيلة الحمض النووي anti-TNF-αباستجابة مرضى الصدفية ل )

أثيرها الجيني ومناقشة تهم مواقع المثيلة المؤثرة في عملية التنبؤ وربطها بموقعها كما تم تحديد أ. 79%

يمكن  . مراضية لمرض الصدفية مما يقترحها هدفا للدراسات الجزيئية المستقبليةفي المسارات الإالبيولوجي 

ذج وتجعله قابلا للتطبيق ن تعزز فائدة ودقة هذا النموالتي تشمل عدد أكبر من المرضى أللدراسات المستقبلية 

 .السريري

 التعلم الآلي -DNAمثيلة  -: مرض الصدفيةالكلمات المفتاحية
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CHAPTER 1 

PREFACE 

 

1.1. Introduction 

Psoriasis is a chronic immune related skin disorder .This disorder is observed in 

roughly (2-3)% of individuals globally. Studies indicate that 30% of psoriasis 

patients suffer from psoriatic arthritis, and nail lesions occur in 50% of cases (1). 

 

Figure 1.1. Types of Psoriasis 

Psoriasis results from a combination of immunological genetic and environmental 

triggers: (1) 

Genetic and environmental triggers: current genomic research has uncovered 

more than 63 genetic loci that show significant association with psoriasis 

pathogenesis. Key environmental triggers of psoriasis encompass metabolic factors 

(obesity, diet), lifestyle habits (smoking, alcohol), physical trauma, medication 

reactions, and infectious agents 

Immunological triggers: Psoriasis manifests through cellular and molecular 

mechanisms: epidermal keratinocytes exhibit dysregulated proliferation and 
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aberrant differentiation, while immune cells (particularly T-cells and dendritic cells) 

infiltrate the dermis. At the molecular level, these cells generate excessive pro-

inflammatory cytokines (e.g., IL-17, IL-23, TNF-α), creating a self-sustaining 

inflammatory microenvironment within psoriatic lesions. While epidermal 

keratinocytes normally function as the primary physical and immunological barrier, 

psoriatic keratinocytes exhibit profound dysregulation. Their accelerated 

proliferation stems resulting in immature cells with deficient lipid and keratohyalin 

production. Crucially, these dysfunctional keratinocytes engage in pathological 

crosstalk with innate and adaptive immune cells - particularly dendritic cells, 

monocyte-derived macrophages, and tissue-resident memory T cells - establishing a 

self-perpetuating inflammatory circuit. Psoriasis pathogenesis involves complex 

immunomodulatory networks converging on key signaling cascades. Critical 

pathways including  NF-κB,  JAK-STAT, and interferon regulatory factor (IRF) 

systems become activated, driving inflammatory gene transcription in keratinocytes 

and immune cells. (1) 

 

Figure 1.2  Aberrant interplay of keratinocytes and immune cells in 

psoriasishttps://en.wikipedia.org/wiki/en:Creative_Commons (2) 
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Advances in the understanding of psoriasis pathogenesis have led to the discovery 

and development of an expanding array of targeted molecules, which demonstrate 

improved clinical outcomes and better quality of life for patients. 

A major breakthrough in psoriasis treatment was first achieved with the use of 

tumor necrosis factor (TNF) inhibitors, which had already been approved for other 

inflammatory conditions, such as rheumatic diseases. (3) 

Etanercept  Etanercept is a bioengineered fusion protein that combines 

two key components: 

Two soluble TNF receptor domains These bind to both free-

floating (soluble) and cell-surface (membrane-bound) TNF-

α, blocking its activity. 

An IgG1 Fc fragment This stabilizes the molecule and 

extends its lifespan in the bloodstream. 

As a dimer, Etanercept can neutralize two TNF-α molecules 

simultaneously, effectively competing with natural TNF 

receptors and reducing inflammation. TNF-α itself is 

produced by immune cells such as dendritic cells, 

Th1/Th17/Th22 lymphocytes, macrophages, and even skin 

cells (keratinocytes), playing a major role in psoriasis 

pathogenesis (3) 

Infliximab  Infliximab is a chimeric monoclonal antibody composed of: 

Murine-derived variable regions (for precise TNF-α binding) 

Human-derived IgG1 constant regions (to reduce immune 

rejection) 

It works by binding and neutralizing both soluble and 

membrane-bound TNF-α, blocking its inflammatory effects. 

(3) 

Adalimumab  Adalimumab is a fully human IgG1 monoclonal 

antibody that specifically targets and neutralizes both soluble 

and membrane-bound TNF-α, similar to infliximab. 

Fully human structure (reduces immunogenicity compared to 

chimeric antibodies like infliximab). (3) 

Table1.1. TNF-α inhibitors 
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Anti-TNF-α agents (4) 

Although Anti-TNF-α agents (e.g., adalimumab, infliximab, etanercept) are 

effective in treating psoriasis and psoriatic arthritis. However, 30-40% of patients 

exhibit either primary non-response(PNR) or secondary non-response (SNR), 

limiting treatment efficacy. 

Personalized medicine represents a transformative approach in psoriasis 

management, enabling tailored therapeutic strategies that optimize treatment 

efficacy while minimizing adverse effects and reducing healthcare costs. (5) 

Despite considerable progress in elucidating the pathogenesis of psoriasis, the 

implementation of individualized genetic profiling remains constrained by 

prohibitive costs, time limitations, and the scarcity of highly specific biomarkers 

capable of predicting treatment response. Consequently, a standardized biomarker 

panel would likely prove more reliable than single-target gene analysis. 

Furthermore, the development of a comprehensive algorithm integrating both 

genotypic and phenotypic patient data could significantly enhance diagnostic and 

therapeutic (5). 

The global proliferation of data derived from medical devices and electronic health 

records has facilitated the advancement of machine learning (ML) technologies. 

These innovations are poised to play a pivotal role in developing personalized 

psoriasis bio panels. Such ML-driven approaches aim to integrate multidimensional 

patient data, including genetic profiles, phenotypic characteristics, comorbid 

conditions (which may contraindicate certain therapies), and histories of treatment 

failure (which may help delineate distinct psoriasis endotypes). This integrated 

framework promises to enhance clinical decision-making by enabling physicians to 

select optimal, patient-specific therapeutic strategies (5) . 

To date, despite numerous studies investigating biomarkers predictive of response 

to biologic therapies, no consensus has been established regarding a standardized 
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panel suitable for routine clinical implementation. The integration of artificial 

intelligence (AI) to develop algorithms that synthesize individual genotypic and 

phenotypic data represents a transformative approach to holistic patient 

management, enabling truly personalized therapeutic strategies. However, further 

research is required to validate and optimize this paradigm (5). 

Historically, the majority of research on inter-individual variability in drug response 

has centered on genetic polymorphisms that alter transcription factor binding sites. 

However, emerging evidence highlights the role of heritable, epigenetic 

modifications such as DNA methylation, his tone modifications, and non-coding 

RNA regulation in modulating gene expression and pharmacodynamic outcomes 

independently of DNA sequence variation. These mechanisms contribute 

significantly to phenotypic diversity in drug metabolism, efficacy, and toxicity, 

underscoring the need for integrative genomic and epigenomic approaches in 

precision medicine. (6) 

DNA methylation stands as one of the most extensively studied epigenetic 

modifications governing gene expression regulation. Notably, this heritable 

molecular marker frequently occurs in genomic regions encoding 

pharmacologically relevant proteins, including: 

(1) Drug-metabolizing enzymes (e.g., cytochrome P450 superfamily) 

(2) Membrane transport proteins (e.g., ABC transporters) 

(3) Molecular drug targets (e.g., receptor proteins) 

DNA methylation, primarily occurring as 5-methylcytosine (5-mC), serves as a key 

epigenetic regulator of gene silencing, which can be reversed through active or 

passive demethylation processes. While 5-mC dominates eukaryotic DNA 

methylation, minor modifications such as N6-methyladenine (N6-mA) and 7-

methylguanine (7-mG) also contribute to epigenetic regulation, though their roles 

remain less understood. Methylation-induced transcriptional suppression can be 

dynamically modulated, influencing critical biological processes, including drug 

metabolism, cellular differentiation, and disease pathogenesis. (6) 

The Illumina DNA methylation microarray platforms, such as the 

HumanMethylation450 BeadChip (450K array) and the Infinium Methylation 

EPICBeadChip (850K array), along with whole-genome bisulfite sequencing 

(WGBS) and reduced representation bisulfite sequencing (RRBS), represent the 

most widely utilized high-throughput technologies for genome-wide DNA 

methylation profiling at single-nucleotide resolution. (7) 
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1.2. Problem Statement: 

• High Non-Response Rates to Anti-TNF-α Therapy: Although Anti-TNF-α 

agents (e.g., adalimumab, infliximab, etanercept) are effective in treating 

psoriasis and psoriatic arthritis, 30–40% of patients exhibit either partial non-

response (PNR) or total non-response. This limits treatment efficacy, leading 

to prolonged disease activity, reduced quality of life, and increased 

healthcare burdens. 

• Limitations of Current Predictive Approaches: Existing studies primarily 

rely on clinical or serum biomarkers (e.g., CRP, PASI scores) and statistical 

models to predict treatment response. However, these methods lack sufficient 

accuracy for individualized predictions, as they fail to fully capture the 

complex genetic and epigenetic mechanisms underlying non-response. 

• Underexplored Role of DNA Methylation in Treatment Response: 

Recent evidence suggests that DNA methylation patterns may influence Anti-

TNF-α responsiveness, but most studies have analyzed these genetic factors 

using traditional statistical methods (e.g., regression models). This approach 

overlooks the potential of machine learning (ML) to detect non-linear 

interactions and improve predictive performance. 

 

1.3. Objectives: 

The primary goal of this study is to construct a predictive machine learning model 

utilizing DNA methylation signatures to stratify Anti-TNF-α responders and non-

responders among psoriasis patients. More precisely: 

▪ Identify Differential Methylation Patterns: Investigate and compare DNA 

methylation profiles in psoriasis patients who respond to Anti-TNF-α therapy 

versus non-responders (PNR/SNR) to pinpoint epigenetically significant loci. 

▪ Develop Machine Learning Predictive Model: Design and train an 

interpretable ML model using methylation data to classify patients into 

responders and non-responders with high accuracy. 

▪ Translate Findings into Potential Biomarkers: Extract and prioritize top 

predictive methylation markers to propose a minimal epigenetic signature for 

future clinical use in personalized treatment selection. 
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CHAPTER 2 

Theoretical Background 

 

2.1. Introduction 

Psoriasis is a persistent inflammatory dermatological condition, has a worldwide 

prevalence of 2–3%. This disease is often linked to several comorbid conditions, 

such as psoriatic arthritis (PsA), cardiovascular disorders, and depressive illness. 

 

Figure 2.1. molecularly targeted therapy of psoriasis 

In mild-to-moderate psoriasis, symptoms are frequently controlled with topical 

therapies and/or phototherapy. However, patients with severe disease typically 

require systemic treatments, including biologic agents.  

The advent of biologic therapies has revolutionized the treatment paradigm for 

psoriasis. Before their introduction, achieving disease remission often entailed 

prolonged trials of topical and systemic agents, accompanied by considerable risks 

of drug-related toxicity. In contrast, contemporary biologic agents including tumor 

necrosis factor (TNF) inhibitors, interleukin (IL)-17A inhibitors, and IL-23/IL-

12/23 inhibitors demonstrate markedly superior efficacy, with up to 80% of patients 

attaining PASI 90 responses and up to 90% achieving PASI 75 responses. 
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Optimal treatment selection for psoriasis patients often involves trial and error, with 

some requiring several drug switches before achieving long-term efficacy. 

However, each unsuccessful attempt raises the risk of discontinuation due to 

inefficacy. 

 

2.2. Review of literature 

1) Ancor SG, Reolid A, Fisas LH, Munoz-Aceituno E, Llamas-Velasco M, 

Sahuquillo-Torralba A, Botella-Estrada R, Garcia-Martinez J, Navarro R, 

Dauden E, Francisco AS. DNA copy number variation associated with anti-

tumour necrosis factor drug response and paradoxical psoriasiform 

reactions in patients with moderate-to-severe psoriasis. Actadermato-

venereologica. 2021 May 4;101(5):689. 

Although biologic agents targeting tumor necrosis factor (TNF) demonstrate 

efficacy in psoriasis treatment, 30–50% of patients exhibit either non-response or 

paradoxical psoriasiform reactions. This study investigates potential DNA copy 

number variations (CNVs) as predictive biomarkers for anti-TNF therapeutic 

response or the development of TNF inhibitor-induced psoriasiform eruptions. 

CNVs are structural genomic variants characterized by reduced (deletion) or 

elevated (duplication/insertion) copies of specific DNA sequences, which may alter 

gene dosage and regulatory landscapes. 

Blood samples were collected from 70 patients with moderate-to-severe psoriasis 

who were treated with anti-TNF agents (adalimumab, infliximab, or etanercept). 

Treatment response was clinically evaluated, and patients were stratified into two 

groups based on therapeutic outcomes: 

• Excellent responders (ER, n=49): Patients demonstrating optimal clinical 

improvement. 

• Partial responders (PR, n=21): Patients exhibiting suboptimal or limited 

therapeutic response. 

DNA was extracted from blood samples, followed by genome-wide DNA 

methylation profiling using the high-density Infinium HumanMethylation450 

BeadChip array. Methylation data were recorded as IDAT files for downstream 

analysis. 
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Figure 2.2. Workflow performed in this study. 

Raw IDAT files were processed using two specialized R packages: conumee and 

the Chip Analysis Methylation Pipeline (ChAMP). These tools were employed to 

detect copy number variations (CNVs) based on methylation array output. 

Specifically, CNVs were derived from ChAMP using the 'myCAN' function. The 

ChAMP pipeline integrates methylated and unmethylated probe intensity values for 

each cytosine-phosphate-guanine (CpG) site, followed by intensity normalization 

using a series of controls obtained from the minfi package (healthy reference 

genomes). (minfiData: Example data for the Illumina Methylation 450k array. R 

package version 0.36.0) 

Following initial data processing, the conumee package performs two distinct DNA 

partitioning operations: bins and segments. Bins represent contiguous 15-CpG 

genomic regions, with a fixed count of 15,820 bins per patient. Segments are larger 

homogeneous regions of consistent copy number variation, identified through the 

Circular Binary Segmentation (CBS) algorithm. These segments range from 

100,000 to 6,000,000 base pairs in size, with the number varying across patients. 

Following CNV identification, significant bins and segments have been mapped to 

genomic coordinates using the R bedr package to identify overlapping genes. These 

genes have been subsequently analyzed for pathway enrichment using EnrichR to 

determine relevant signaling pathways. 

For comparative analysis: 

1. A custom scripts to cross-validate CNVs have been developed and called by 

different packages and identify representative CNV regions. 

2. Methylation intensity values per bin have been compared between patient 

groups (ER vs PR) using Student's t-tests. 

3. Segment comparisons have been restricted to: 
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• Identical genomic coordinates (same start/end positions) 

• Minimum recurrence (≥2 patients per group) 

• Length-matched regions 

To address multiple testing: 

• Bonferroni correction has been applied  

• This conservative approach has minimized false discovery while maintaining 

detection power. 

This study demonstrates that: 

1. Therapeutic Response: Clinical response to adalimumab correlates 

significantly with specific CNV patterns (p<0.05). 

2. Adverse Effects: Development of cutaneous complications shows a strong 

association with distinct CNV profiles. 

3. Predictive Biomarkers: Statistically significant CNVs (p<0.05) were 

identified as potential biomarkers for: 

• Predicting adalimumab treatment efficacy 

• Anticipating adverse drug reactions 

 

2) Ovejero-Benito MC, Cabaleiro T, Sanz-García A, Llamas-Velasco M et al. 

Epigenetic biomarkers associated with antitumour necrosis factor drug 

response in moderate-to-severe psoriasis.2018 Mar;178(3):798-800. 

PMID: 28369750 

Recent studies have revealed that epigenetic changes, particularly DNA 

methylation, play a role in the development of psoriasis. DNA methylation is a 

heritable and dynamic covalent modification that occurs at cytosine-phosphate-

guanine (CpG) sites and can influence gene expression. While anti-tumor necrosis 

factor-alpha (anti-TNF-α) therapies such as( adalimumab, etanercept, and 

infliximab) are effective treatments for moderate-to-severe psoriasis, approximately 

30–50% of patients show an insufficient response. This study is the first to 

investigate potential epigenetic biomarkers that may predict patient response to anti-

TNF therapy. 

https://www.ncbi.nlm.nih.gov/pubmed/28369750
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This study included 70 White patients with moderate-to-severe plaque psoriasis 

who were treated with anti-TNF therapy. Patients were selected and divided into 

two groups: 

• excellent responders (ER) : whose achieved  >=90% improvement 

• partial responders (PR) : whose achieved <70% improvement 

DNA methylation profiling was performed using the Illumina Infinium 

HumanMethylation450 BeadChip array. The ChAMP pipeline was employed for 

methylation data analysis. All analyses were performed in R. Differential 

methylation was assessed using a moderated t-test, adjusted for batch effects. The 

test statistic was computed as the ratio of the methylation β-value (or M-value) to its 

standard error. 

For categorical variables, the study applied the moderated t-test, while linear 

regression models were used to evaluate associations between methylation levels 

(M-values) and continuous variables, such as PASI scores at 3- and 6-month 

follow-ups. 

Results: 

No differentially methylated sites (DMSs) were identified between patients 

exhibiting an excellent response and those with a partial response to anti-TNF 

therapy. Similarly, no significant DMSs were observed when comparing excellent 

and partial responders to either infliximab or etanercept. However, three CpG sites 

were found to be hypermethylated in partial responders (n = 4) compared to 

excellent responders (n = 21) to adalimumab treatment. 

Linear regression analysis revealed no significant association between baseline 

PASI or PASI at 3 months and the methylation levels (m-values) of any analyzed 

CpG sites. However, a positive correlation was observed between PASI at 6 months 

and the m-values of cg09141835, suggesting that hypermethylation at this site may 

be associated with a poorer response to anti-TNF therapy. 
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Figure 2.3. Results from Ovejero et al 2018 

 

 

 

3) Amy X. Du, Zarqa Ali , Kawa K. Ajgeiy, Maiken G. Dalager, Tomas N. Dam, 

Alexander Egebjerg, Christoffer V. S. Nissen, Lone Skov, Simon Francis Thomsen, 

Sepideh Emam, Robert Gniadecki1. Machine Learning Model for Predicting 

Outcomes of Biologic Therapy in Psoriasis.Journal of the American Academy 

ofDermatology doi: 10.1016/j.jaad.2022.12.046 

 

Objective: To evaluate and compare the predictive accuracy of a conventional risk 

factor-based frequentist statistical model versus machine learning algorithms in 

estimating the 5-year probability of biologic therapy discontinuation. 

Methodology: Data were extracted from the Danish national psoriasis registry 

(DermBio), which included 6,172 treatment courses involving anti-TNF agents 

(etanercept, infliximab, adalimumab), ustekinumab, guselkumab, and anti-IL-17 

therapies (secukinumab, ixekizumab) across 3,388 unique patients. Cox 

proportional hazards regression was employed to calculate hazard ratios (HRs) for 

all available predictive factors. For machine learning (ML) approaches, multiple 

models were trained to predict 5-year drug discontinuation risk using 10 routinely 

collected clinical features. Model training incorporated a 5-fold cross-validation 

framework. Predictive performance was evaluated using the area under the receiver 

curve (AUC). 

Results: Ustekinumab and ixekizumab demonstrated the lowest 5-year 

discontinuation rates among the evaluated biologics. Additional predictors of 

treatment persistence included male sex and biologic-naïve status. The conventional 

risk factor-based predictive model achieved modest discrimination (AUC = 0.61). 

https://doi.org/10.1016/j.jaad.2022.12.046
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In contrast, the optimal machine learning approach (gradient boosted trees) showed 

superior predictive performance (AUC = 0.85). 

 

Figure 2.4. AUC Curve  

Conclusion: 

In this study, two distinct approaches for predicting biologic therapy 

discontinuation are developed and validated: a conventional risk factor-based 

statistical model and a machine learning (ML)-based predictive tool. Our findings 

demonstrate the superior performance of the ML algorithm, which shows promising 

potential as a clinical decision-support tool for personalized treatment selection in 

psoriasis. This advanced predictive model may enhance therapeutic decision-

making by enabling dermatologists to optimize biologic selection and improve 

patient counseling through individualized risk assessment. 

 

4) (8), Multivariable Predictive Models to Identify the Optimal Biologic 

Therapy for Treatment of Patients with Psoriasis at the Individual Level. 

JAMA Dermatol, August 17, 2022;158;(10):1149-

1156. doi:10.1001/jamadermatol.2022.3171 

Objective: To determine the most effective biologic therapy for psoriasis patients 

using predictive statistical modeling and machine learning approaches. 

Methodology: This nationwide cohort study utilized data from Danish national 

registries, with DERMBIO serving as the primary data source. The study population 

comprised adult patients receiving biologic therapy for moderate-to-severe 
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psoriasis. Data processing and analyses were conducted from spring 2021 through 

spring 2022. 

This study employed unsupervised learning to identify clinically meaningful patient 

clusters using routinely collected registry data. Statistical methods and supervised 

machine learning algorithms were subsequently applied to: 

1. predict treatment discontinuation (binary outcome) within 1-3 years,  

2. classify patients according to their optimal biologic therapy (multiclass 

outcome) based on treatment persistence. 

Results: Using a success criterion of 3 years of sustained treatment, this study 

analyzed 2034 patients with a total of 3452 treatment series. The majority of 

treatment series involved male patients (2147, 62.2%), with most originating 

from Denmark (3190, 92.4%). Additionally, 2414 (69.9%) of the patients had 

completed education beyond primary school. The average age at psoriasis 

diagnosis was 24.9 years, while the average age at the start of biologic 

therapy was 45.5 years. 

In predicting the most effective cytokine target (e.g., interleukin-17 inhibition), 

 gradient-boosted decision trees achieved an accuracy of 63.6%, while logistic 

regression reached 59.2%. The top 2accuracy improved to 95.9% and 93.9%, 

respectively. 

For predicting specific successful drugs, gradient boosting showed an accuracy 

of 48.5%, compared to 44.4% for logistic regression. The top 2 

accuracy was 77.6% (gradient boost) and 75.9% (logistic regression), while the top 

3 accuracy reached 89.9% and 89.0%, respectively. 

 

5) April W. ARMSTRONG, Elisabeth RIEDL, Patrick M. BRUNNER, Stefano 

PIASERICO, Willie I. VISSER, Natalie HAUSTRUP, Bruce W. KONICEK, 

Zbigniew KADZIOLA, Mercedes NUNEZ, Alan BRNABIC and Christopher 

SCHUSTER. (9). (9). ActaDermato-Venereologica, 2024.DOI: 

10.2340/actadv.v104.40556  

Objective: Despite the availability of extensive clinical data, the selection of 

 biologic therapies for patients with moderate-to-severe psoriasis (PsO) remains 

largely based on a trial-and-error approach. While modern biologics achieve high 

rates of skin clearance (PASI90/100) in many patients, suboptimal initial therapy 

can delay effective disease control and impact long-term outcomes. This study 

evaluated predictors of complete skin clearance (PASI100) at the following time 

points: 
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1. Week 12 (short-term response) 

2. Month 12 (long-term response) 

3. Week 12 with durability through Months 6 and 12 (sustained response) 

A secondary objective was to analyze predictor variables (e.g., demographic, 

clinical, or molecular biomarkers) to: 

• Quantify their association with PASI100 likelihood 

• Compare differences in efficacy across biologic classes (e.g., anti-TNF, IL-

17/23 inhibitors) 

Methodology and Results: Using machine learning and advanced statistical 

methods, this study analyzed a sub-population of 1,917 patients with moderate-to-

severe psoriasis (PsO) from the PSoHO dataset who were treated with biologics. 

Researchers identified 14 novel predictor variables, which were combined with 12 

additional variables previously linked to treatment response in the literature, 

resulting in a total of 26 potential predictors. 

A subsequent logistic regression analysis revealed three significant predictors 

associated with achieving at least one of the three PASI100 outcomes (complete 

skin clearance at Week 12, Month 12, or sustained response): 

1. Nail Psoriasis: The absence of nail involvement emerged as a strong 

predictor for two different PASI100 outcomes, underscoring its clinical 

relevance. 

2. Hypertension 

3. Body Surface Area (BSA) involvement 

This study underscores the persistent difficulty in defining reliable clinical 

predictors of treatment response in moderate-to-severe psoriasis. Despite this 

challenge, the absence of nail involvement emerged as the most robust and 

clinically actionable marker from real-world evidence to predict optimal biologic 

therapy outcomes. 

Critical Takeaways for Practice: 

1. Nail PsO Assessment as a Decision Tool 

• Routine screening for psoriatic nail disease should be prioritized during 

clinical evaluations 

• Its absence serves as a practical indicator for higher likelihood of PASI100-

level responses 

2. Therapeutic Strategy Implications 
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• Findings advocate for tailored biologic selection based on nail involvement 

status 

• Reinforces need for comprehensive baseline assessments beyond skin 

severity alone 

This evidence transforms a simple bedside observation (nail examination) into 

a stratification tool for precision medicine in psoriasis management. 

 

2.3. Research gap 

Despite advances in ML applications for precision medicine, no study has yet 

developed an ML-based predictive framework using methylation profiles to stratify 

psoriasis patients by their likelihood of responding to Anti-TNF-α therapy. Bridging 

this gap could enable earlier identification of non-responders, reduce trial-and-error 

prescribing, and optimize therapeutic outcomes. 

While numerous studies have focused on predicting factors influencing treatment 

response, most rely on either statistical approach. This study aims to address a 

critical gap by leveraging machine learning models topredict treatment response 

based on genetic methylation data. By doing so, we propose a more robust and data-

driven approach to personalize psoriasis therapy, overcoming the limitations of 

traditional statistical methods and enhancing predictive accuracy for clinical 

decision-making. 
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CHAPTER 3 

Materials and Methods 

 

3.1. The Dataset 

Link https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE151278 

Title 

Genome-wide DNA methylation analysis of peripheral blood 

samples of moderate-to-severe psoriasis patients treated with anti-

TNF drugs 

Publish Date May 28, 2020 

Summary 

Genome wide DNA methylation profiling of peripheral blood 

samples of moderate-to-severe psoriasis patients treated with anti-

TNF drugs. Patients were distributed on Excellent Responders 

(ER) if they achieved PASI90 (a 90% reduction with respect to 

baseline PASI) at 3 and 6 months of treatment with anti-TNF 

drugs and Partial responders if they did not achieve a PASI75 (a 

75% reduction with respect to baseline PASI) at 3 and 6 months 

of treatment. The Illumina Infinium 450k Human DNA 

methylation Beadchip v1.2 was used to obtain DNA methylation 

profiles across approximately 485,000 CpGs in 49 ER and 21 PR 

which were obtained from peripheral blood samples of anti-TNF 

drug treated patients. We have searched for pharmaco epigenetic 

biomarkers of anti-TNF response in moderate-to-severe psoriasis 

patients. 

Samples 70 

Organization 

name 

Instituto de Investigación Sanitaria la Princesa (IIS-IP) 

MADRID, Spain 

Features 

(inputs) 

Age  

Age at initiation  

Gender Male/female 

Treatment Type Adalimumab- Etanercept- infliximab 

Labels 

(Targets) 

Response to Anti-TNF 

Therapy 

Responder (1) 

Non-Responder (0) 

Table 3.1.The data set 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE151278
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Blood samples were collected from adult patients diagnosed with moderate-to-

severe plaque psoriasis, as defined by the Spanish Academy of Dermatology and 

Venereology Psoriasis Working Group guidelines. These patients were undergoing 

treatment with anti-TNF agents (adalimumab, infliximab, or etanercept) and 

provided written informed consent. The study protocol and consent forms adhered 

to Spanish regulations on biomedical and clinical research and were approved by 

the Ethics Committee for Clinical Research of Hospital Universitario de la Princesa. 

To enhance the contrast in treatment outcomes, patients with extreme phenotypic 

responses to anti-TNF therapy were selected. They were categorized into two 

groups: 

1. Excellent responders (ER): Patients who achieved a PASI90 response (≥90% 

improvement from baseline Psoriasis Area and Severity Index score) at both 

3 and 6 months. 

2. Partial responders (PR): Patients who failed to reach a PASI75 response 

(≥75% improvement from baseline PASI score). 

DNA Extraction and Methylation Analysis: Genomic DNA was isolated from 

peripheral blood samples using the MagNA Pure® System (Roche Applied Science, 

Penzberg, Germany). DNA integrity was assessed using the 2100 

Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Subsequently, 1,000 

ng of genomic DNA underwent bisulfite conversion using the EZ DNA Methylation 

Kit (Zymo Research, Irvine, CA, USA). 

Genome-wide DNA methylation profiling was conducted using the Illumina 

Infinium HumanMethylation450 BeadChip (Illumina Inc., San Diego, CA, USA) 

following the manufacturer’s protocol. The methylation data generated in this study 

have been deposited in NCBI’s Gene Expression Omnibus (GEO) and are publicly 

available under the accession 

number GSE151278:(https://www.ncbi.nlm.nih.gov/geo/). (10) 

 

3.2. Tools Used 

a) Computational Environment: 

All machine learning workflows were implemented in Python 3.8+ using Google 

Colaboratory (Colab), a cloud-based Jupyter notebook platform.  

 

https://www.ncbi.nlm.nih.gov/geo/
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b) Libraries & Dependencies: 

A powerful data manipulation and analysis library, 

offering data structures like Data Frames and Series 

for handling structured data. 

pandas 

A fundamental library for numerical computing in 

Python, providing support for large, multi-

dimensional arrays and matrices, along with 

mathematical functions 

numpy 

A popular plotting library for creating static, 

interactive, and animated visualizations in Python. 
Matplotlib.pyplot 

A Python library for compressing and 

decompressing files 
gzip 

A popular machine learning library for Python, 

providing simple and efficient tools for data 

mining and data analysis 

scikit-learn (sklearn) 

 

A built-in Python module providing core tools 

for input/output (I/O) operations, supporting file 

handling, streams, and in-memory buffers. 

IO 

A built-in Python module (part of IO) that allows 

treating strings as file-like objects in memory, 

supporting read/write operations like a file. 

stringIO 

 A submodule in scikit-learn for dimensionality 

reduction and matrix factorization techniques 
sklearn.decomposition 

A linear dimensionality reduction technique 

in sklearn .decomposition that transforms data 

into orthogonal components (ordered by variance) 

PCA (Principal 

Component Analysis) 

A scikit-learn submodule for data 

preprocessing and feature scaling, essential for 

preparing data before machine learning modeling 

sklearn.preprocessing 

A preprocessing tool that standardizes features StandardScaler 

 A preprocessing tool that encodes categorical 

labels (strings or integers) into numerical values 
LabelEncoder 
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A scikit-learn submodule for model evaluation, 

selection, and hyperparameter tuning 
sklearn.model_selection 

 A function to split datasets into random training and 

testing subsets, commonly used for model 

validation. 

train_test_split 

A scikit-learn submodule for ensemble learning, 

combining multiple base models to improve 

predictive performance and robustness 

sklearn.ensemble  

An ensemble learning method that constructs 

multiple decision trees during training and outputs 

the majority vote (classification) or average 

prediction (regression). 

Random Forest 

Classifier  

A scikit-learn submodule for model evaluation, 

providing functions to measure performance for 

classification, regression, clustering, and more 

sklearn.metrics 

A function that generates a text summary of key 

classification metrics, including precision, recall, 

F1-score, and support for each class. 

classification_report 

A function that computes the accuracy classification 

score, i.e., the fraction of correct predictions out of 

all predictions made. 

accuracy_score  

 A popular, user-friendly HTTP library for Python, 

designed for making web requests 
Requests 

Table3.2. Libraries & Dependencies 

 

3.3. Workflow and Data Preprocessing 

Data has been loaded directly to colab by defining dataset URL and local file 

path then using Python’s requests library to fetch the data. Pandas.read_csv  has 

been used directly with URL for gzipped files. 

Metadata parsing: Geo files are characterized by a distinctive format that begins 

with metadata lines starting with an exclamation mark (!).A function has been 

defined to handle this format, which systematically segregates metadata (denoted by 

'!' prefixes) from primary data entries. The implemented pipeline successfully 

imported the metadata (marked by '!' prefixes) and expression data matrices, 

establishing a complete dataset for  processing. 
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Expression Data Head (first 5 rows, first 5 columns): 

ID_REF       GSM4570206     GSM4570207  GSM4570208  GSM4570209  GSM4570210 

cg00000029    0.449950          0.483412          0.383950         0.499973         0.368064 

cg00000108    0.919370          0.889380          0.879016         0.885480         0.884407 

cg00000109    0.720833          0.675689          0.682002         0.686516         0.728309 

cg00000165    0.285152          0.212334          0.200122         0.184203         0.192691 

cg00000236    0.683391          0.650948          0.686666         0.585181         0.701103 

Table3.3. Expression Data Head (first 5 rows, first 5 columns) 

 

Initial data visualization: To ensure data integrity, all expression values were 

verified to be numeric prior to analysis. Subsequently, two key visualizations were 

generated: 

Plot 1: Distribution of All Expression Values. A density plot  displaying the global 

distribution of beta value across the entire dataset. 

 

Figure 3.1. Data Distribution 
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Plot 2: Distribution of Expression Values for 20 Samples – A (violin plot) 

illustrating the variation in expression profiles across a subset of 20 representative 

samples. 

 

Figure 3.2. violin plot 

Data Preprocessing: 

The machine learning model expects samples as rows and features as columns; 

hence, the data matrix has been transposed. 

Subsequently, the independent variables (age, gender, age at initiation,drug) and the 

dependent variable (response) have been extracted from metadata. 

Sample IDs have been extracted from the index (X) to ensure consistent tracking of 

observations throughout the analysis. 

Label encoder has been applied to transform categorical variables into numerical 

representations 
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ID_REF Gender Age Age_at_Initiation cg00000029 cg00000108   

GSM4570206 1 57 42 0.449950 0.919370 

GSM4570207 0 38 23 0.483412 0.889380 

GSM4570208 0 62 18 0.383950 0.879016 

GSM4570209 1 48 29 0.499973 0.885480 

GSM4570210 

 

1 

 

66 

 

37 

 

0.368064 

 

0.884407 

 
Table 3.4. Data matrix 

 

All features have been standardized using scikit-learn'sStandardScaler 

--- Standardizing Features (X) --- 

ID_REF          Gender               Age       Age_at_Initiation cg00000029  cg00000108 

GSM4570206  0.792406         0.685028           1.404207      0.070306    2.500579 

GSM4570207 -1.261980        -0.625889          -0.245612      0.761601    0.790761 

GSM4570208 -1.261980         1.030007          -0.679775     -1.293154    0.199858 

GSM4570209  0.792406          0.064067           0.275383      1.103738    0.568417 

GSM4570210  0.792406          1.305989           0.970044     -1.621342    0.507228 

Table3.5. Standardizing Features (X) 

 

▪ Perform the mean and variance 

To ensure robust feature selection, we calculated  

the mean and variance of DNA methylation levels (β-values) across all samples for 

each CpG site. 
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ID_REF              Mean           Variance 

ID_REF                             

cg00000029      0.446546          0.002377 

cg00000108      0.875510          0.000312 

cg00000109      0.717971          0.000911 

cg00000165      0.220072          0.001042 

cg00000236      0.659683          0.001223 

Table3.6.Mean and Variance 

 

 

Figure 3.3. Samples with variance values>0.05 

 

3.4. Chapter Closure 

In a preliminary analysis of the data, we observe that: 

DNA methylation levels are not normally distributed; instead, they tend to cluster 

into either high or low values. Generally, low methylation levels (hypomethylation) 
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in promoter regions are associated with active gene expression, whereas high 

methylation levels (hypermethylation) are linked to gene silencing. However, the 

relationship between methylation and gene expression can vary depending on 

genomic context, such as enhancers or gene bodies, where methylation may have 

different regulatory role. 

DNA methylation profiling identified >430,000 CpG sites per patient, annotated 

as cg x (where "x" is an 8-digit probe ID). 
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Chapter 4 

Prediction Using Machine Learning 

 

4.1. Methodology 

4.1.1. Predictive Models 

Several predictive models have been trained and evaluated, with priority given to 

established algorithms demonstrating high potential for performance accuracy. 

• logistic regression 

• Decision Tree Classifier 

• Random Forrest Classifier 

• Support Vector Machine – SVM 

• Multi-Layer Perceptron Classifier (MLPClassifier) 

 

Logistic Regression 

Logistic Regression is a statistical model used for classification that predicts the 

probability of an instance belonging to a class. While commonly used for binary 

classification (e.g., Yes/No), it can be extended to multiclass problems (3+ classes) 

using: 

Binary Logistic Regression uses the sigmoid function to output a probability 

between 0 and 1. Equation: 

 

Multinomial Logistic Regression (Softmax): Generalizes to multiple classes by 

assigning probabilities using the softmax function. One-vs-Rest (OvR): Trains 

multiple binary classifiers (one per class). 

Properties of logistic regression: 

• Interpretable (coefficients show feature importance). 

• Works for both binary and multiclass tasks. 
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Limitations: 

• Poor performance on non-linear decision boundaries. (11) 

 

Decision Tree Classifier 

A Decision Tree splits data into branches based on feature values to classify 

instances. It uses rules like Gini impurity or entropy to select optimal splits. Trees 

are intuitive (mimic human decision-making) but prone to overfitting without 

constraints (e.g., max depth). 

For node m, the Gini impurity is: 

 

where Pmk is the proportion of class k in node m. 

Key Properties: 

• Non-parametric: No assumptions about data distribution. 

• Transparency: Rules are human-readable (unlike "black-box" models). 

Limitations: 

• High variance; small data changes alter tree structure. (12) 

 

Random Forest Classifier 

Random Forest is an ensemble method that builds multiple decision trees on 

random subsets of data and features, then aggregates their predictions (majority vote 

for classification). It reduces overfitting and improves accuracy compared to single 

trees. 

A Random Forest is an ensemble of B decision trees trained on bootstrap samples 

of the data (bagging). Each split uses a random subset of features (size m≈√p

 for p features).  

Properties: 
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• Variance reduction: Averaging over trees decreases overfitting. 

• Robustness: Handles noisy data and outliers. 

Limitations: 

• Computationally expensive for large B. (13) 

 

Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a supervised learning algorithm used 

for classification and regression. It works by finding the optimal hyperplane that 

maximizes the margin between classes in a high-dimensional feature space. SVM 

can handle both linear and non-linear decision boundaries using kernel functions. 

Linear SVM (Hard Margin): Minimizes1 ∕2∥w∥² subject to 

 

 where w is the weight vector and b is the bias. 

Soft Margin (C-SVM): Introduces slack variables ξi to handle misclassifications: 

 

where C controls the trade-off between margin width and classification error. 

Kernel Trick: Maps data to a higher-dimensional space using kernel functions 

(e.g., RBF, polynomial): 

 

Advantages: 

• Effective in high-dimensional spaces. 

• Robust to overfitting, especially with small datasets. 

• Versatile (works with linear and non-linear data via kernels). 

Limitations: 

• Computationally intensive for large datasets. 
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• Requires careful tuning of hyperparameters (e.g., C, γ). 

Multi-Layer Perceptron Classifier (MLPClassifier) 

The MLPClassifier (Multi-Layer Perceptron Classifier) is a feedforward artificial 

neural network (ANN) used for supervised learning tasks, particularly classification. 

It consists of multiple layers of interconnected neurons (nodes) that learn non-linear 

decision boundaries through backpropagation and gradient descent optimization. 

Components: 

▪ Architecture: 

• Input Layer: Receives feature vectors. 

• Hidden Layers: One or more layers with activation functions . 

• Output Layer: Uses Softmax (for multi-class) or Sigmoid (for binary) 

activation. 

▪ Mathematical Formulation (Forward Pass): 

For layer l: 

 

▪ where Wl =weights, bl =biases, σ =activation function. 

▪ Loss Function: Cross-entropy (classification). 

▪ Optimization: Stochastic Gradient Descent (SGD) or Adam. 

Advantages: 

• Handles non-linear relationships via hidden layers. 

• Flexible architecture (adaptable to various problems). 

Limitations: 

• Prone to overfitting (requires regularization like dropout or L2 penalty). 

• Computationally expensive for large networks.  

(14). 
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4.1.2. Stratified K-Fold Cross-Validation 

Stratified K-Fold is a cross-validation technique that preserves the class 

distribution (stratification) in each fold. It partitions the dataset into K subsets 

(folds) of approximately equal size, ensuring that each fold maintains the same 

percentage of samples for each class as in the original dataset. 

Features: 

• Preserves Class Balance: Critical for imbalanced datasets. 

• Reduces Bias: Provides more reliable performance estimates than standard 

K-Fold. 

• Model Evaluation: Each fold serves as a validation set once while the 

remaining K−1 folds are used for training. 

Advantages: 

• More accurate performance estimation for classification tasks. 

• Mitigates overfitting in imbalanced scenarios. 

Limitations: 

• Computationally intensive for large K. 

• Not suitable for regression (use standard K-Fold instead) 

(15) 

 

4.2. Implementation and Results : 

After performing the initial preprocessing, the data has been ready for the training 

phase. As mentioned in the previous chapter, we have used the Google Colab 

environment. We have split the data into 80% for training and 20% for testing, 

increasing the training set size due to the limited original dataset size. Additionally, 

we have employed Stratified K-Fold cross-validation (K=5) to handle the class 

imbalance, as the number of treatment responders is significantly higer than non-

responders. 

To reduce dimensionality and remove low-variance features, Variance Threshold 

filtering has been applied. Through repeated model training and statistical 

evaluation, the variance threshold range of 0.005-0.8 has been identified as the most 

impactful range.  
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A subset of previously extracted metadata features (e.g., age, gender, age at 

initiation, drug) was identified as non-predictive. These features were excluded 

from final models. 

Model Performance Evaluation 

Following  hyperparameter optimization and cross-validation, the trained models 

demonstrated the following performance metrics on the held-out test set: 

Model CV Mean 

Accuracy 

Test 

Accuracy 

Test 

Precision 

Test Recall Test F1 

RForest 0.750 0.785 0.835 0.785 0.735 

Logest_Reg 0.713 0.785 0.835 0785 0.735 

NN 0.680 0.785 0.774 0.785 0.775 

SVM 0.696 0.714 0.510 0.714 0.595 

DTree 0.521 0.642 0.669 0.642 0.653 

Table4.1 Model Performance 
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Figure4.1 Model performance comparison 
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Figure4.2. Model confusion matrix 

Random Forest and Logistic Regression achieved the highest cross-validation 

(CV) accuracy and identical test accuracy (0.7857). However, Random Forest 

demonstrated greater stability (lower standard deviation). 

The Neural Network attained the highest F1-score (0.7755) despite its lower CV 

accuracy, suggesting a better balance between precision and recall compared to 

other models. 

SVM struggled with low precision (0.5102), significantly reducing its F1-score, 

even though its recall was acceptable. 

Decision Tree performed the weakest across most metrics. 
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Based on rigorous evaluation (CV accuracy, precision, recall, and F1-score), 

Random Forests emerged as the most effective model. 

Variable Importance Analysis for the Best Model (Random Forest) 

In the Random Forest model, assessing variable importance helps identify which 

features have the most significant impact on predictions. The following 25 CpG 

sites were identified as the most influential variables in the predictive model, ranked 

by their importance scores: 

ID_REF variable variance importance 

cg19430537 cg19430537 0.005051 0.015181 

cg16045423 cg16045423 0.005765 0.011622 

cg09969882 cg09969882 0.012825 0.007985 

cg26547816 cg26547816 0.005669 0.007942 

cg14638919 cg14638919 0.030298 0.007700 

cg15935227 cg15935227 0.019368 0.007478 

cg10075506 cg10075506 0.024824 0.006818 

cg16586594 cg16586594 0.009493 0.006793 

cg00169354 cg00169354 0.023266 0.006658 

cg17471939 cg17471939 0.008031 0.006549 

cg00168694 cg00168694 0.005731 0.006379 

cg05645557 cg05645557 0.006956 0.005951 

cg21790587 cg21790587 0.007325 0.005869 

cg17833169 cg17833169 0.010260 0.005844 

cg15519096 cg15519096 0.005003 0.005663 

cg13410614 cg13410614 0.006876 0.005520 

cg12738248 cg12738248 0.030968 0.005513 

cg10701640 cg10701640 0.006511 0.005511 

cg12728606 cg12728606 0.005570 0.005422 

cg03292213 cg03292213 0.010938 0.005385 

cg04269043 cg04269043 0.005830 0.005311 

cg18584424 cg18584424 0.006924     0.005311 

cg03666441 cg03666441   0.005157     0.005300 

cg18757828 cg18757828   0.022755     0.005176 

cg17906168 cg17906168 0.006565     0.005158 

Table 4.2.Top 25 Most Important CpG Sites 
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Figure4.3.Top 15 Most Important CpG Sites 

 

Figure4.4.Variance vs Importance 
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4.3. Improvement 

Some trials are made to enhance the results: 

• PCA, a linear dimensionality reduction technique, was applied but failed 

to enhance performance. This implies that either (1) key predictive features 

were correlated with low-variance components, or (2) non-linear feature 

interactions dominate the data’s discriminative structure. 

• Dimensionality reduction was performed by selecting features with 

variance thresholds between 0.005 and 0.08. This optimized feature subset 

led to significant performance improvements, suggesting that: 

1. Features with very low variance (<0.005) were likely noise-dominated 

and their removal enhanced model robustness. 

2. Retaining features within this variance range preserved discriminative 

patterns while eliminating redundancy. 

3. The upper threshold (0.08) effectively prevented high-variance 

features from dominating the feature space. 

 

4.4. Discussion 

Our findings demonstrate that the Random Forest model outperformed other 

approaches in predicting treatment response (CV Mean Accuracy 0.750, test 

accuracy 0.785, test prcecision0.835, test recall0785, F1 0.735) highlighting its 

efficacy in capturing complex interactions among variables. Key methylation sites  

were identified as top predictors. The three most influential DNA methylation sites 

were examined to validate that the model's predictions were biologically meaningful 

and not due to random noise. Using the UCSC database, the genomic positions of 

this methylation sites and the associated genes were identified. 

1) First site: cg19430537 

The CpG site cg19430537 (chr17:74,128,860-74,128,860) .This site is part of a 

robust epigenetic signature specific to CD8+T cells, capable of accurately inferring 

cell-type-specific methylation from bulk blood data (16). Consequently, its 

association with treatment response in psoriasis likely reflects a direct role in 

modulating CD8+T cell biology, a key player in psoriatic inflammation, thereby 

providing a compelling biological rationale for its predictive value. 
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2) Second site: cg16045423 

The CpG site cg16045423 (chr22:39,378,346-39,378,346) is located within 

the APOBEC3B gene body. This gene is a member of the cytidine deaminase gene 

family. Given the crucial role of the PKC/classical NF-κB pathway in the 

transcriptional regulation of, APOBEC3B  in cancer cells (17) and considering that 

this pathway is hyperactivated in psoriatic plaques, we propose that APOBEC3B 

expression may serve as a biomarker for predicting response to anti-TNF therapy. 

 

. 

 

Figure 4.5 cg16045423 genomic position 

 

3) Third site:cg09969882 

The CpG site cg09969882 (chr2:239346400-239346400) is located within 

the ASB1 gene. Unlike typical SOCS box proteins that promote substrate 

degradation, ASB1 unexpectedly stabilizes its substrate, TAB2, by inhibiting 

its K48-linked ubiquitination. This enhancement of TAB2 stability leads to 

amplified activation of downstream NF-κB  inflammatory pathway (18). 

This stabilization of TAB2 by ASB1 provides a potential molecular 

mechanism for the hyperactive inflammation observed in chronic diseases 

such as psoriasis. It may also explain the differential patient responses to 

therapies targeting upstream cytokines (e.g., anti-TNF). 
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Figure.4.6 cg09969882 position 

 

We observe that the top three variables in the model correspond to genomic loci 

where variation in methylation may affect the transcription of genes encoding 

proteins directly involved in the immunological and molecular mechanisms of 

psoriasis. This indicates that the model reflects biologically plausible associations, 

not merely artificial or noise-driven correlations.  

Future studies should focus on these variables to further elucidate their precise role 

in (antiTNF-α response in psoriasis patients). 
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CHAPTER 5 

Conclusion and Future Prospects 

 

5.1. Conclusion 

In this study, we developed a machine learning framework leveraging DNA 

methylation data to predict anti-TNF-α response in psoriasis patients. Among the 

five models tested, Random Forest demonstrated the best performance (79% 

accuracy), highlighting its potential for clinical stratification. Notably, the top three 

predictive variables were biologically relevant, mapping to genomic loci implicated 

in psoriasis-related immune pathways. While these results are promising, further 

validation in larger cohorts and integration of multi-omics data could enhance 

predictive power. Our approach underscores the utility of AI in personalized 

dermatology, paving the way for more targeted therapeutic decisions. 

 

5.2. Future Prospects 

1. Validation in Larger, Prospective, and Diverse Cohorts: The performance 

of our model must be rigorously validated in larger, multi-center, prospective 

cohorts that encompass greater ethnic, genetic, and clinical diversity. This is 

essential to confirm generalizability, assess potential confounding factors, 

and ultimately ensure the model's robustness before clinical deployment. 

2. Model Optimization and Advanced Architectures: Although Random 

Forest demonstrated superior performance, exploring more complex and 

sophisticated algorithms could yield further improvements. 

3. Multi-Omics Data Integration: To move beyond a predictive model 

towards a mechanistic understanding, future work should integrate DNA 

methylation data with other molecular layers. A multi-omics approach 

incorporating matched transcriptomic (RNA-seq), proteomic, and genomic 

data would provide a more comprehensive systems biology view. This could 

unravel the functional consequences of epigenetic changes and identify 

master regulators of treatment response. 
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4. Functional Characterization of Top Predictive Loci: The biological 

relevance of our top predictors (e.g., cg19430537) is a major strength. We 

propose dedicated functional studies to elucidate their causal role. This could 

involve in vitro experiments.



 

48 
 

 

REFERENCES 

 

1. Jen-Chih Tseng 1, Yung-Chi Chang 2, Chun-Ming Huang 3, Li-Chung Hsu 2,4,* and Tsung-Hsien 

Chuang 1,*. Therapeutic Development Based on the Immunopathogenic. Pharmaceutics 2021, 13, 

1064. https://doi.org/10.3390/pharmaceutics13071064. july 11, 2021. 

2. Albanesi C, Madonna S, Gisondi P and Girolomoni G. The Interplay Between Keratinocytes and 

Immune Cells in the Pathogenesis of Psoriasis. 2018. 

3. Iversen, Kirsten Rønholt * and Lars. Old and New Biological Therapies for Psoriasis. 

international journal of molecular science. november 1, 2017. 

4. Eng, Grith Petersen. Optimizing biological treatment in rheumatoid arthritis with the aid of 

therapeutic drug monitoring. Danish Medical Journal. November 2016. 

5. Elisa Camela, Luca Potestio, Gabriella Fabbrocini, Angelo Ruggiero & Matteo. New frontiers in 

personalized medicine in psoriasis. Expert Opinion on Biological Therapy. Augest 16, 2022. 

6. J. Tang*†a MD, Y. Xiong*†a MD, H.-H. Zhou*† MD PhD and X.-P. Chen*† MD PhD. DNA 

methylation and personalized medicine. Journal of Clinical Pharmacy and Therapeutics,. August 

17, 2014. 

7. Ting Wei1, †, Jinfu Nie2,†, Nicholas B. Larson 1, Zhenqing Ye1,. CpGtools: a python package for 

DNA methylation. Bioinformatics, 37(11), 2021, 1598–1599. december 4, 2019. 

8. Mia-Louise Nielsen, MSc1, et al., et al. Multivariable Predictive Models to Identify the Optimal 

Biologic Therapy for Treatment of Patients With Psoriasis at the Individual Level. JAMA Dermatol. 

august 17, 2022. 

9. Identifying Predictors of PASI100 Responses up to Month 12 in Patients with Moderate-to-

severe Psoriasis Receiving Biologics in the Psoriasis Study of Health Outcomes (PSoHO).  

10. Ancor SANZ-GARCÍA1, Alejandra REOLID2, Laura H. FISAS3, Ester MUÑOZ-ACEITUNO2, Mar 

LLAMAS-VELASCO2, Antonio. DNA Copy Number Variation Associated with Anti-tumour Necrosis 

Factor Drug Response and Paradoxical Psoriasiform Reactions in Patients with Moderate-to-

severe Psoriasis. Acta Derm Venereol. april 13, 2021. 

11. Hastie, T. (Trevor),Tibshirani, R. (Robert),Friedman, J. (Jerome). The Elements of Statistical 

Learning: Data Mining, Inference, and Prediction. s.l. : Springer, 2009. 

12. Breiman, L. (Leo), Friedman, J. (Jerome), Stone, C. J. (Charles J.), & Olshen, R. A. (Richard A. 

Classification and Regression Trees. s.l. : CRC Press, 1984. 

13. Breiman, L. (Leo. Random Forests. Machine Learning. 2001. 

14. Goodfellow, I. (Ian), Bengio, Y. (Yoshua), & Courville, A. (Aaron). Deep Learning. 2016. 



 

49 
 

15. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., 

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., 

Perrot, M., & Duchesnay, É. Scikit-learn: Machine Learning in Python. Journal of Machine 

Learning Research (JMLR). 2011. 

16. Daniel W. Kennedy, Nicole M. White,Miles C. Benton,Andrew Fox,Rodney J. Scott,Lyn R. 

Griffiths,Kerrie Mengersen,Rodney A. Le. Critical evaluation of linear regression models for cell-

subtype specific methylation signal from mixed blood cell DNA. PLOS one. december 20, 2018. 

17. Wataru Maruyama, Kotaro Shirakawa, Hiroyuki Matsui, Tadahiko Matsumoto,Hiroyuki 

Yamazaki, Anamaria D. Sarca, Yasuhiro Kazuma, Masayuki Kobayashi Keisuke Shindo, Akifumi 

Takaori-Kondo. Classical NF-κB pathway is responsible for APOBEC3B expression in cancer cells. 

Biochemical and Biophysical Research Communications. 2016. 

18. Panpan Hou a, 1, Penghui Jia a,1 , Kongxiang Yang b,1 , Zibo Li a , Tian Tian c , Yuxin Lina , 

Weijie Zeng a, Fan Xinga,Yu Chen b, Chunmei Li a, Yingfang Liu a, and Deyin Guo a. An 

unconventional role of an ASB family protein inNF-κB activation and inflammatory response 

duringmicrobial infection and colitis. immunology and inflammation.  

19. : Ovejero-Benito MC, Cabaleiro T, Sanz-García A, Llamas-Velasco M et al. Epigenetic 

biomarkers associated with antitumour necrosis factor drug response in moderate-to-severe 

psoriasis. Br J Dermatol. march 2018. 

20. Amy X. Du1, Zarqa Ali2 , Kawa K. Ajgeiy3, Maiken G. Dalager4, Tomas N. Dam5, Alexander 

Egebjerg2, Christoffer V. S. Nissen2, Lone Skov6, Simon Francis Thomsen2, Sepideh Emam7*, 

Robert Gniadecki1*†. Machine Learning Model for Predicting Outcomes of Biologic Therapy in 

Psoriasis. Journal of the American Academy of Dermatology . december 7, 2021. 

21. Support-Vector Networks. Machine Learning . septemper 1995. 

22. Matsui, H., Yokoyama, T., Sekiguchi, T., Iijima, D., Sunaga, S., Maniwa, Y., ... & Matsuo. 

Interferon-γ induces APOBEC3B expression through JAK-STAT signaling in human keratinocytes. 

Journal of Investigative Dermatology. 2010. 

23. Lande, R., Botti, E., Jandus, C., Dojcinovic, D., Fanelli, G., Conrad, C., ... & Gilliet. 

Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide LL-37 in psoriasi. 

Science Translational Medicine. 2014. 

24. Hastie, T. (Trevor),Tibshirani, R. (Robert),Friedman, J. (Jerome). The Elements of Statistical 

Learning: Data Mining, Inference, and Prediction. s.l. : Springer, 2009. 

 

 

 


