
العالي� التعلي�م وزارة
��ة السوريّ الافتراضي�ة الجامعة

�ة �ويّ الحي المعلوماتي�ة في� والتخصص التأهي�ل �ر ماجستي

شبكة باستعمال المو,تمت ��ة الدمويّ �ا الخلايّ عد�/

شبكة على ��ة مبني ��ة مستحدثة UNetعصبوني
�وباور ني نوع من عد�ادة حجرات وباستعمال

 : مشكورا حسن ��ان حي الدكتور إشراف تحت
الدائم : عبد عمر حي�در الطالب تقدمة

Haider Abd Aldaim – SVU – Master Thesis - S24

Automated Blood Cell Count using a Neural Network
based on a Novel U-Net Architecture and Neubauer

Haemocytometer
Author: Haider Abd Aldaim, Syrian Virtual University, Damascus, Syria Email:

haider_176932@mail.svuonline.org

Abstract: Large and expensive analytical machines pose an insurmountable hurdle to
providing healthcare in remote suburban and rural areas. Such machines have proven
to be cost prohibitive, immobile and locked down to specific vendors or countries.
With advancement in machine learning algorithms and improved compute units a
new chimeric option between manual slow and inaccurate analysis and large cost
prohibitive immobile analysis machines. This option can prove to be a solution with
minimal disadvantages. The objective of this paper is to develop a machine learning
algorithm/neural network capable of carrying out blood cells count using a single
image from a blood sample on a Neubauer counting chamber/slide. Developing such
algorithms and models could pave the path for a universal and readily available on-
the-fly blood tests in rural and suburban areas. Methods: a methodolgy based on
heavy mathematical preprocessing of the images followed by UNet have been
developed as a special architecture for the segmentation of medical images offering
less computational load shifting the bulk of the processing onto mathematical models
reducing the overall computational cost of the process. Results: the trained model
has shown remarkable accuracy when it comes to segmentation (97.59%). However
instance segmentations performance of stacked cells is yet insufficient for medical
use.

Introduction:
Manual complete blood count have proven to be a tiresome error-prone task in the
modern world. While automated flow cytometers exist, they tend to be large,
complicated to operate and expensive. With the development of AI in the past couple
of years, the idea of a chimeric blood count system combining cheap readily available
counting chambers and microscopes with machine learning and vision to create a
cheap and reliable system have never been more approachable. In this paper we
explore the development of a machine vision model to tackle such a task.

mailto:haider_176932@mail.svuonline.org

Haider Abd Aldaim – SVU – Master Thesis - S24

Materials and Methods:
After sifting through the literature for suitable architectures three models have been
identified Meta's SAM 2, YOLOv11 and UNet. Meta's SAM 2 i.e Segment Anything
Model is a pretrained open source (Apache 2.0) model that requires only tweaking to
better fit a customized task, However, as we plan to use our model in rural areas,
providing a suffiecnt processing power to use this model have proven to be
cumbersome and thus we chose not to use the aforementioned model. YOLOv11 i.e
You Only Look Once model is quick, lightweight and open source model with the
ability to run on limited resources, however, further analysis of the model has shown
that the model is mainly designed to identify real life day to day objects and is
illsuited for medical images. UNet architecture is an open source architecture/model
devised specially for the spacial segmentation of medical images. It is also

Figure 1: Project’s Workflow

Haider Abd Aldaim – SVU – Master Thesis - S24

lightweight and relatively simple to implement. Multiple versions of the model exists
and for our purposes we will use a tweaked version that we create.
Noise reduction/thresholding was intentionally ignored with hope of reducing
overfitting as real life data has innate noise. The images go through the following
steps, firstly, the colorspace of the input image will be transfered into a common
colorspace using Reinhard transformation, this transformation helps minimize errors
in the segmentation due to color discrepancies. Secondly, the images are used to
generate three pseudodimensions (G = Grayscale,E = Edges, H= Haematoxylin)
which are stacked together, the images will then be "patchified" into easily
consumable chunks for the neural network to process, these chunks will be 256x256
pixels. The training dataset consisting of 1328 images was deemed sufficient and no
data augmentation methodoligies were used. Image segmentation using UNet
follows generating a mask of all BCs. The segmented patches will then be smooth
blended back into a complete image and a combination of Voronoi, Otsu and
Watershed algorithm will be used to segment the mask into instances. Finally, a count
is run on the segmented image and the results of the analysis will be displayed in
human readable format.
We will discuss the methodologies used in depth in the following subchapters.

Reinhard transformation:

Reinhard transformation is a popular method for color normalization in medical
imaging, particularly for standardizing images across different scanners or devices.
However, there are several other techniques used for similar purposes were
considered such as : Histogram Matching, Linear Transformations, Z-Score
Normalization, Contrast-Limited Adaptive Histogram Equalization (CLAHE). At the
end Reinhard transformation was chosen due to its suitibility for microscopic images
and relatively low computational cost.
How it works :
The Reinhard transformation is a global mapping technique that adjusts the pixel
values of an input image so that its color distribution and intensity resemble a
reference image (usually a "target" or a standard reference image). The
transformation involves two key steps: intensity normalization and chromaticity
scaling. Step 1: Convert to a Logarithmic Color Space, specifically by taking the
logarithm of the intensity values of each pixel. This helps to reduce the dynamic
range and handle very bright or dark regions in a controlled way. Step 2: Compute
Statistics of the Image. After converting the image to a logarithmic space, statistics
(such as the mean and standard deviation) of both the input image and the reference
image are computed. This allows for a direct comparison of their intensity

Haider Abd Aldaim – SVU – Master Thesis - S24

Figure 2: Model's Summary part 1

Haider Abd Aldaim – SVU – Master Thesis - S24

Figure 3: Model's Summary part 2

Haider Abd Aldaim – SVU – Master Thesis - S24

Figure 4: Model's Summary part 3

Haider Abd Aldaim – SVU – Master Thesis - S24

distributions. Moreover, each color channel (RGB, typically), the mean and standard
deviation of pixel intensities are computed for both the input image and the reference
image. Step 3: Match the Intensity Distribution, the next step involves adjusting the
pixel values of the input image so that the mean and standard deviation of its intensity
distribution match those of the reference image. This is done by a scaling and shifting
operation, which is a linear transformation based on the computed statistics. Step 4:
Chromatic Adjustment (Color Correction), after intensity normalization, the next step
is to handle the chromaticity (color balance) of the image. The Reinhard
transformation attempts to preserve the color relationships between pixels while
matching the overall intensity distribution. This is done by scaling the chromatic
channels (e.g., the RGB color channels) to match the color distribution in the
reference image. The goal is to make the color balance in the transformed image
similar to that of the reference image, avoiding any shifts in hue or saturation. This is
typically achieved by scaling the color channels independently while maintaining
their relative proportions, ensuring that the image doesn't look unnaturally
desaturated or color-shifted after the transformation. Step 5: Apply Inverse
Logarithmic Transform (if necessary). After the normalization process, the image
may be transformed back into the linear space (inverse logarithmic transformation),
depending on the application. This step can help bring the image back to a more
realistic brightness level, especially if the image was originally captured in a high
dynamic range (HDR) format.
Due to the dataset having over a thousand images no one image was chosen as a
reference image but rather the standard deviation and mean of all images was
calculated and averaged and used a reference.
Means (BGR) = (195.11752, 183.79773, 183.8279)
Standard deviation (BGR) = (40.50984, 58.086155, 55.982433)
Furthermore, there was no need for inversing the logarithmic transform in this case.

Channel's generation: Grayscale pseudochannel

The first pseudochannel to be generated is the grayscale layer. This layer uses a
simple transformation from the BGR colorspace to HSV colorspace. The V channel
was simply isolated as the grayscale layer.

Channel's generation: Edges pseudochannel

The second pseudochannel was more complicated to generate. We attempted to use
built-in edge detection algorithms (Canny) in OpenCV however to no avail. The use
of a simple Sobel filter with the dimensions of 3x3 on both axes after applying a

Haider Abd Aldaim – SVU – Master Thesis - S24

fastNlMeansDenoising filter followed by GaussianBlur filter proved to be sufficient
to generate a fairly accurate mask of the images edges.
Channel's generation: Haematoxylin pseudochannel
Scikit library was used for this job. Converting the image from OpenCV's BGR to
RGB followed by changing the scale from 0 - 255 to 0 - 1. And then the function
rgb2hed is called to convert RGB to HED colorspace. Finally, the H channel was
chosen followed by the conversion back to 0 - 255.

"Patchification":

A special function was written with purpose of turning incoming images into patches
of 256x256 size which the UNet network can easily process. At first the image
dimensions are read, followed by a loop sliding a frame across the images generating
the wanted patches. A stride of 240 was chosen creating an overlap of 16 in both
axes.

Data augmentation:

As forementioned, data augmentation was not used as the dataset was of sufficient
size.
The UNet Network:
A Unet Network with 4 encoder blocks and 4 decoder blocks was employed resulting
in a neural network with the shape (see pages 3-5) and parameters (see page 5). The
nerual network was trained on 100 images due to insufficient ram generating a model
of the size 237MB after 10 epochs with an accuracy of 97.59%.

Smooth Blending:

To simplify the process of stitching the patches back together
smooth_tiled_predictions.py library was used [12]. This library is developed to sticht
GIS images together, however it has shown remarkable performance avoiding the
"edge effect" (i.e the tile edges being misclassified due to stitching aberrations).
Nevertheless, the library required some modification to function as it used deprecated
functions.

Instance Segmentation: Voronoi:

Voronoi image segmentation is a technique that partitions an image into regions based
on distance to a set of seed points. It involves creating a Voronoi diagram, which
divides the image into polygons, each associated with a seed point. Pixels within a
polygon are closer to their associated seed point than to any other. The seed points
can be manually selected or determined automatically using various methods

Haider Abd Aldaim – SVU – Master Thesis - S24

(Brightness in our case). Voronoi segmentation is useful for separating objects with
distinct boundaries and can be applied to various image types, including medical,
satellite, and microscopy images. It can be combined with other segmentation
techniques, such as thresholding or edge detection, to improve accuracy and
robustness. Voronoi segmentation has applications in various fields, including
medical image analysis, object tracking, and pattern recognition.

Instance Segmentation: Otsu:

Otsu image segmentation is a popular technique for thresholding images. It
automatically selects a threshold value to separate pixels into two classes: foreground
and background. The method analyzes the image's histogram, which represents the
distribution of pixel intensities. It aims to find the threshold that maximizes the
variance between the two classes while minimizing the variance within each class.
Otsu's method is particularly effective for images with bimodal histograms, where the
pixel intensities are clustered around two distinct values. It is widely used in various
applications, including medical image analysis, object detection, and document
analysis.

Instance Segmentation: Watershed:

The watershed algorithm is a popular technique used for image segmentation,
particularly when dealing with complex images where simple thresholding and
contour detection may not yield accurate results. It treats the image as a topographic
surface, where pixel intensities represent elevation. The algorithm identifies
catchment basins, which are regions that drain into a common local minimum, and
divides the image along the boundaries of these basins. This process is analogous to
how water flows downhill and collects in valleys, with the boundaries between
watersheds representing the dividing lines. The watershed algorithm is effective in
segmenting objects with irregular shapes and can be particularly useful when dealing
with images containing touching or overlapping objects. However, it is important to
note that the watershed algorithm can be sensitive to noise and may oversegment the
image, leading to the creation of many small regions. To mitigate this issue, various
techniques, such as marker-based watershed segmentation, can be employed to guide
the algorithm and improve the quality of the segmentation results.

Instance Segmentation: pyclEsperanto Library:

pyclEsperanto Library offers a convenient method to implement all the
forementioned methodologies by calling abstracted functions.
"voronoi_otsu_labeling" function was used which uses all the abovementioned

Haider Abd Aldaim – SVU – Master Thesis - S24

algorithms to yield an instance segmented image with the highest "class" number
denoting the number of instances found in the image, i.e BCs count.

Results:
The UNet model has shown remarkable accuracy during training (see figure 5).
However, the model was trained for only 10 epochs due to processing power
limitations and thus, even better results can be expected when more processing power
is available. When it comes to instance segmentation performance the model has
shown subpar performance in images with many overlapping cells but well enough
with images that are not so "crowded". (see figures 7-9 for results).

Figure 5:
Training's output

Figure 6: Input image Figure 8: UNet model's output

Haider Abd Aldaim – SVU – Master Thesis - S24

Discussion:
In this section we shall discuss each step of this project with its limitations and
possible improvements:

Reinhard Transformation:

Before processing the incoming images finding a common colorspace was deemed
necessary as most microscopic images were taken in different lighting conditions
with various lightsources. Plus, the cameras used to take such images are usually not
configured in the same way when it comes to exposure, color balance, etc.
Reinhard transformation was chosen for being simple, easy to implement, and not
resource intensive. However, it has many limitations including the fact it might not
perform as well in situations where significant local variations in lighting or scanner
settings exist (e.g., complex multi-modal images), as well as, as a global
transformation, it may not preserve local details or handle noise well in areas with
highly variable intensities, moreover, the method assumes that the reference image
represents the ideal or "target" distribution, which may not always be the case in real-
world medical datasets. Thus, other implementations of color equalisation such as
CLAHE may prove to be more profitable for the prediction process with its in-built
noise reduction at a relatively low cost increase. Future improvements may include:
using a dataset that is homogenically stained, with pictures taken using the same
camera. As well as, choosing a color equalisation method that accounts well for the
local variations of intensity in an image.

Figure 9: Instance segmented output

Haider Abd Aldaim – SVU – Master Thesis - S24

Generating the composite pseudolayers G,E,H:

The idea to generate such composite came to be through careful observation of the
human's way of regarding an image. Human vision tends to ignore most of the color
input in the early stages of understanding an image, evident by the nearly instance
identification of subjects in an image regardless of whether the image is colored or
not. Color data helps only adding "final touchs" of information to the image being
observed. A model that processes the input image as grayscale with later use of image
color info as last layer was devised but never came to fruition due to the complexity
of the implementation. Thus, we ended up using a composite input consisting of the
grayscale image, the edges detected using Sobel in an attempt to reduce the overall
processing the needed to be done with the neural network, and finaly the H layer
from the HED color space showing cells that are stained with haemotoxylin. This
method has shown extremely promising results with the composite clearly
highlighting the cells to the human eye. Improving the edge detectors and the color
separation in future implementations maybe the way forward.

Image Patchification:

There isn't much to discuss here as the method used did what is supposed to do.
Patches of 256x256 were generated which seems to be a nice middleground between
the much smaller model with 128x128 and the exponentially bigger model with
512x512 inputs.

The UNet model:

The UNet model was one of the largest hurdles developing this project due to its
complexity and resource intesivity. Other more complex UNet models were
considered at beginning such as UNet+, UNet++, and UNet3+. However, due to the
complexity of the implementation of such models they deprecated in favor of the
simple to implement UNet model(for example the UNet3+ model uses a fully
connected implementation between each and every layer of the encoders and
decoders!) . The model is ofcourse old and newer models should in theory provide
better accuracy. Nevertheless, the accuracy of the model was impressive and such
future experimentation with such models may prove to be interesting however
unnecessary.

Smooth blending:

A library from github was used to implement the blending. This library was
developed to merge satelite images for GIS analysis. Although the library performed
well the edges had some aberrations which should not be there and thus a future

Haider Abd Aldaim – SVU – Master Thesis - S24

improvement could be either a rewrite of the whole library or from ground up
implementation of a smooth blending library that is specialised in microscopic
images.

Instance Segmentation:

Instance segmentation took place using a library called pyclEsperanto. This library
uses a combination of Voronoi algorithm with Otsu followed by Watershed method.
While initial tests were promising the library's performance was insufficient to isolate
cells in highly crowded images. Possible improvments in this regard include either
finding new algorithms to isolate the cells or developing an instance segmentation
neural network that can be plugged in after th UNet to perform the instance
segmentation. Another possibilty is to tweak the UNet network to provide masks with
isolated cells which can be easily count.

Metrics and cell counting:

Lastly, the topic of metrics and cell counting to be discussed. After applying instance
segmentation the issue of counting cells is relatively trivial. We used the numpy.max
function to denote the cells count as it provides the last "class" number which is the
number of classes. However, in later iterations it is possible to do calculations such as
RBCs mean diameter, volume and much more. Moreover, WBCs can be classified not
only into their major groups such as neutrophils and monocytes but also divided into
groups according to their maturity. But, due to time and resource limitations and the
insufficient accuracy of the results we did not implement such functions.

Acknowledgement:
To my family, friends and valued teachers in my university and online, without which
this project would not be possible.

Citations:
Dataset:
[1] https://github.com/Deponker/Blood-cell-segmentation-dataset
Reinhard transformation:
[2] https://www.kaggle.com/code/charansai612/color-transformation-reinhard
[3] https://eurasip.org/Proceedings/Eusipco/Eusipco2021/pdfs/0001231.pdf
Grayscale layer:

Haider Abd Aldaim – SVU – Master Thesis - S24

[4]
https://docs.opencv.org/4.7.0/d8/d01/group__imgproc__color__conversions.html#gga
4e0972be5de079fed4e3a10e24ef5ef0aa4f6bc658bc546e1660fcab6bf7858f4
H Layer:
[5]
https://scikit-image.org/docs/stable/api/skimage.color.html#skimage.color.rgb2hed
Edge Layer:
[6] https://docs.opencv.org/4.x/d2/d2c/tutorial_sobel_derivatives.html
[7] https://imagejdocu.list.lu/gui/process/find_edges
UNet:
[8] https://www.digitalocean.com/community/tutorials/unet-architecture-image-
segmentation
[9] https://keras.io/api/layers/normalization_layers/batch_normalization/
[10] https://www.tensorflow.org/api_docs/python/tf/keras/Model
[11] https://medium.com/@mlquest0/unet-3-fully-explained-next-generation-unet-
2a8e204e4cf9
Smooth blending:
[12]
https://github.com/bnsreenu/python_for_microscopists/tree/master/229_smooth_predi
ctions_by_blending_patches
Vonoroi, Otsu & Watershed:
[13] https://en.wikipedia.org/wiki/Otsu%27s_method
[14] https://github.com/clEsperanto/pyclesperanto_prototype/blob/master/demo/
segmentation/voronoi_otsu_labeling.ipynb
Additional resources:
[15] Digital Sreeni youtube channel with hunderds of videos about machine learning
and image analysis : https://www.youtube.com/@DigitalSreeni

Haider Abd Aldaim – SVU – Master Thesis - S24

Appendix 1 – Code Blocks

Codeblock 1: Imports

Codeblock 2: Loading dataset into the RAM

Haider Abd Aldaim – SVU – Master Thesis - S24

Codeblock 3: Reinhard Transformation

Codeblock 4: Patchification function

Codeblock 5: A function to return the grayscale layer

Haider Abd Aldaim – SVU – Master Thesis - S24

Codeblock 6: A function to return the haemotoxylin layer

Codeblock 7: A function to generate edge layer

Codeblock 8: A function to generate a composite image using all of the previous layers

Haider Abd Aldaim – SVU – Master Thesis - S24

Codeblock 9: UNet model definitions

Codeblock 10: UNet model training (fitting) function

Haider Abd Aldaim – SVU – Master Thesis - S24

Codeblock 11: UNet model prediction function

Codeblock 12: Cell count function

Haider Abd Aldaim – SVU – Master Thesis - S24

Table of Contents
Introduction:... 2
Materials and Methods:.. 3

Reinhard transformation:.. 4
Channel's generation: Grayscale pseudochannel..8
Channel's generation: Edges pseudochannel...8
"Patchification":.. 9
Data augmentation:...9
Smooth Blending:... 9
Instance Segmentation: Voronoi:.. 9
Instance Segmentation: Otsu:..10
Instance Segmentation: Watershed:..10
Instance Segmentation: pyclEsperanto Library:...10

Results:...11
Discussion:...12

Reinhard Transformation:...12
Generating the composite pseudolayers G,E,H:...13
Image Patchification:..13
The UNet model:...13
Smooth blending:.. 13
Instance Segmentation:...14
Metrics and cell counting:...14

Acknowledgement:...14
Citations:...14
Appendix 1 – Code Blocks...16

	Introduction:
	Materials and Methods:
	Reinhard transformation:
	Channel's generation: Grayscale pseudochannel
	Channel's generation: Edges pseudochannel
	"Patchification":
	Data augmentation:
	Smooth Blending:
	Instance Segmentation: Voronoi:
	Instance Segmentation: Otsu:
	Instance Segmentation: Watershed:
	Instance Segmentation: pyclEsperanto Library:

	Results:
	Discussion:
	Reinhard Transformation:
	Generating the composite pseudolayers G,E,H:
	Image Patchification:
	The UNet model:
	Smooth blending:
	Instance Segmentation:
	Metrics and cell counting:

	Acknowledgement:
	Citations:

