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Summary 
 

Background: Cancer continues to pose one of the greatest health challenges 
globally, with conventional treatments such as chemotherapy and radiotherapy 
often carrying significant side effects and offering limited efficacy, especially in 
advanced stages of the disease. In recent years, immunotherapy has 
revolutionized the field of oncology by harnessing the body’s natural immune 
defenses to identify and destroy cancer cells. By enhancing the immune system’s 
capacity to recognize and target tumor-specific antigens, immunotherapy presents 
a promising alternative that is both more precise and potentially more enduring in 
its therapeutic impact. 

Nasopharyngeal carcinoma (NPC) is a distinct malignancy within the head and 
neck cancer spectrum and is predominant in East and Southeast Asia. NPC is 
strongly associated with the Epstein–Barr virus (EBV), particularly in endemic 
regions. This viral association makes NPC distinct, as EBV latent proteins like 
Epstein-Barr nuclear antigen 1 (EBNA1), latent membrane protein 1 (LMP1), 
and latent membrane protein 2A (LMP2A) play central roles in tumor 
development and immune evasion. Additionally, survivin (BIRC5), a tumor-
associated protein involved in inhibiting apoptosis and promoting tumor cell 
survival, is overexpressed in NPC, further driving disease progression. These 
antigens represent promising targets for developing immunotherapeutic strategies 
aimed at activating the immune system to attack NPC cells. Despite recent 
therapeutic advances, late-stage NPC remains challenging to treat effectively, 
highlighting the need for innovative strategies such as multi-epitope vaccines 
tailored to the immunogenic profile of individual patients. 

Aim of the Study: This study aims to design and evaluate a novel multi-epitope 
vaccine targeting key antigens associated with NPC, specifically EBV latent 
proteins (EBNA1, LMP1, LMP2A) and the tumor-associated protein survivin. 
Utilizing advanced in silico approaches, the research seeks to identify highly 
immunogenic epitopes capable of eliciting strong cellular and humoral immune 
responses. The vaccine construct integrates these epitopes into a rationally 
designed framework, incorporating adjuvants, linkers, and structural elements to 
optimize immunogenicity, stability, and population coverage. Ultimately, the 
research aims to develop a targeted immunotherapeutic strategy that addresses 
the challenges of late-stage NPC, enhances treatment precision, and improves 
patient outcomes by offering a robust, safe, and effective vaccination platform.
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Results: The study successfully designed a multi-epitope vaccine targeting 
EBV-associated antigens (EBNA1, LMP1, LMP2A) and survivin, critical for 
NPC progression. Computational analysis identified epitopes with strong 
immunogenicity, non-toxicity, non-allergenicity, and broad conservation across 
populations. The finalized vaccine construct demonstrated excellent solubility 
(SolPro score: 0.842; Protein-sol score: 0.629), good antigenicity (VaxiJen score: 
0.550, ANTIGENpro score: 0.641), global coverage rate of 99.96%  and a stable 
physicochemical profile, with a molecular weight of 56 kDa, theoretical 
isoelectric point (pI) of 9.83, an instability index of 31.86 classifying it as stable 
and a grand average of  hydrophilicity (GRAVY) score of −0.376 suggesting 
hydrophilicity and enhanced solubility in aqueous environments. Codon 
optimization yielded a Codon Adaptation Index (CAI) of 1.0 which is ideal and a 
GC content of 49.09%, ensuring efficient expression in Escherichia coli (E.coli). 

Structural validation confirmed a high-quality 3D structure with 96.6% of 
residues in favorable regions per Ramachandran plot analysis, supported by Z-
scores of −9.78 indicating native-like protein stability. Disulfide engineering 
further improved the construct's stability by introducing strategically placed 
bonds that reinforced its structural integrity and robustness. Molecular docking 
showed strong and stable interactions with major histocompatibility complex 
class I (MHC-I) and major histocompatibility complex class II (MHC-II) 
receptors, with binding affinities of -15.4, and -13.3 kcal/mol, respectively. 
Molecular dynamics (MD) simulations further validated the structural stability 
and flexibility of the vaccine-receptor complexes, confirming their adaptability 
for efficient antigen binding. Immune simulations revealed robust primary and 
secondary immune responses, characterized by significant IgG production, 
activation of cytotoxic T cells, and cytokine secretion, ensuring a balanced and 
effective immune response. Additionally, the B cell simulation shows a robust 
response with significant memory B cell formation and sustained IgG production, 
supporting long-term immunity. These results highlight the vaccine’s structural 
integrity, broad population coverage, and potential efficacy in NPC 
immunotherapy.  

Conclusion: This study demonstrates the potential of a computationally 
designed multi-epitope vaccine targeting EBV-associated antigens and survivin 
for NPC immunotherapy. The vaccine construct shows strong immunogenicity, 
safety, and broad population coverage, supported by immune simulations and 
structural analyses. By harnessing in silico tools and a novel antigenic 
combination, this approach offers a promising path toward more effective, 
targeted treatments for NPC, with the potential to improve patient outcomes and 
quality of life. However, further experimental validation and clinical studies are 
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essential to translate these findings into practical applications. This work not only 
advances the field of NPC treatment but also lays the foundation for the 
development of similar immunotherapeutic strategies against other EBV-
associated cancers. 
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Introduction 
NPC is a distinct type of head and neck cancer with a global incidence exceeding 
130,000 cases annually, more than 77% of the incidence rate of NPC occurs in 
East Asia and Southeast Asia, especially in southern China [1]. Histologically, 
NPC is classified into three types: keratinizing squamous cell carcinoma (Type I), 
non-keratinizing carcinoma (Type II), and undifferentiated carcinoma (Type III). 
The prevalence of EBV is 100% in Type II and Type III, which is predominant in 
endemic areas such as North Africa, Southeast Asia, and South China  [2, 3]. This 
association not only distinguishes NPC from other head and neck cancers but 
also presents unique antigenic targets for therapeutic intervention. 

Despite advancements in radiotherapy and chemotherapy, the prognosis for NPC 
remains poor, particularly for advanced-stage patients. This unfavorable outcome 
is largely due to late-stage diagnosis, high metastatic potential, and resistance to 
conventional treatments [3]. There has been a significant increase in research on 
NPC over the past two decades.  

Immunotherapy has emerged as a promising avenue for cancer treatment, aiming 
to harness the body's immune system to combat tumor cells. In NPC, 
immunotherapeutic approaches have been limited by the lack of vaccines capable 
of eliciting potent and specific immune responses against tumor-associated 
antigens. Given the strong association of Type III and Type II  NPC with EBV, 
targeting EBV-specific antigens provides a strategic approach for vaccine 
development. Since EBV is predominantly found in the latent phase in NPC, 
latent proteins such as EBNA1, LMP1, and LMP2A are consistently expressed 
and play crucial roles in oncogenesis and immune evasion [3]. 

In addition to EBV antigens, survivin—a member of the inhibitor of apoptosis 
protein (IAP) family—is overexpressed in many cancers, including NPC. It plays 
a key role in tumor cell survival by inhibiting apoptotic pathways and promoting 
cell proliferation, contributing significantly to NPC progression. In normal 
tissues, survivin is minimally expressed and primarily restricted to embryonic 
development and adult tissues with high cellular turnover, such as the placenta, 
hematopoietic stem cells, and the basal layer of the skin [4, 5]. This restricted 
expression highlights its relevance in cancer research, as it offers a specific 
avenue for therapeutic intervention. 

This study aims to design a multi-epitope vaccine targeting NPC-specific 
antigens, including EBV latent proteins (EBNA1, LMP1, LMP2A) and survivin, 
to enhance immunotherapy for NPC. By employing in silico methods to predict 
and select highly immunogenic epitopes, we aim to construct a vaccine capable 
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of eliciting robust cellular and humoral immune responses. The integration of 
advanced immunoinformatics tools for epitope prediction, vaccine design, and 
molecular modeling provides a novel approach to addressing the therapeutic 
challenges associated with NPC. 

Previous research has not extensively explored the use of computational vaccine 
design targeting both EBV-associated antigens and survivin in NPC. By 
developing an effective multi-epitope vaccine, this study has the potential to 
revolutionize NPC treatment by providing a personalized and targeted 
immunotherapeutic option. This innovation could significantly improve survival 
rates and quality of life for patients facing this challenging disease. 

 

 

Figure 1:Global distribution of NPC estimated by GLOBOCAN in 2022 
(incidences in Females) [2]. 
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Figure 2: Global distribution of NPC estimated by GLOBOCAN in 2022 
(incidences in males) [2]. 
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Methodology 
I. Protein selection 
The Epstein-Barr virus (EBV), a member of the Herpesviridae family, is known 
for its ability to establish persistent infections within host cells, primarily through 
a state of latency. During latency, EBV expresses a subset of proteins that 
maintain the viral genome, evade immune responses, and drive oncogenic 
transformation, making them ideal targets for a vaccine. Among these are 
EBNA1, LMP1, and LMP2A, which play pivotal roles in promoting cancerous 
transformations within infected cells. 

EBNA1: EBNA1 is indispensable for maintaining the viral genome in host cells 
by tethering the episomal DNA to host chromosomes during cell division. It 
facilitates immune evasion by inhibiting antigen presentation through its Gly-Ala 
repeat domain, reducing recognition by cytotoxic T lymphocytes. Additionally, 
EBNA1 can modulate host cellular pathways to promote immune evasion and 
tumor progression. Its consistent expression in latency types I, II, and III, but 
absence in latency 0, makes it a prime target for therapeutic intervention. In NPC, 
which predominantly exhibits latency type II, EBNA1 plays a crucial role in 
sustaining viral persistence and driving oncogenesis through immune evasion and 
tumor-supportive mechanisms. This association underscores its significance as a 
therapeutic target in NPC treatment[ 3, 6, 7]. 

LMP1: Acting as an oncoprotein, LMP1 mimics CD40 signaling to activate key 
survival pathways such as nuclear factor kappa B (NF-κB), c-Jun N-terminal 
kinase (JNK), and phosphatidylinositol-3-kinase/protein kinase B pathway 
(PI3K/Akt). This activation results in the upregulation of  pro-survival genes and 
immunosuppressive cytokines like IL-10, creating a tumor-friendly 
microenvironment. Furthermore, LMP1 plays a critical role in modulating 
immune checkpoints, such as PD-1/PD-L1, and promoting angiogenesis, 
underscoring its potential as a vaccine target [3, 6, 7]. 

LMP2A: LMP2A supports EBV latency by mimicking B-cell receptor signaling, 
thereby enhancing cell survival, and preventing apoptosis. It achieves this by 
activating the PI3K/Akt pathway, promoting cell survival signals. LMP2A also 
contributes to immune evasion by reducing MHC class II expression through 
downregulation of the class II transactivator (CIITA) pathway. Additionally, 
LMP2A's expression has been linked to increased cell motility and epithelial-
mesenchymal transition (EMT), processes that contribute to NPC metastasis. 
These multifaceted roles make LMP2A an attractive target for 
immunotherapeutic strategies aimed at combating NPC. [3, 6, 7]. 
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Survivin: Beyond EBV-associated proteins, survivin represents a significant 
tumor-associated target. As a member of the IAP protein family, survivin is 
highly overexpressed in NPC tissues compared to normal nasopharyngeal tissues 
(Figure 3). This overexpression is strongly correlated with advanced stages of 
NPC, increased metastasis, and poorer survival rates, making survivin a critical 
target for immunotherapy. Its minimal expression in normal cells compared to 
NPC tissues makes survivin a selective target for the immune system, enabling a 
vaccine to focus on cancer cells with minimal impact on healthy tissue. 

In summary, a multi-epitope vaccine targeting EBNA1, LMP1, LMP2A, and 
survivin addresses key pathways of viral persistence, immune evasion, and tumor 
cell survival in NPC. This strategic approach holds promises for controlling NPC 
progression, managing latent EBV infections, and reducing the recurrence risk of 
this EBV-associated malignancy. 

 

Figure 3: Immunohistochemical analysis on expression of β-catenin, T-cell 
Factor-4 (TCF-4) and survivin proteins in the NPC tissues and Chronic 
Nasopharyngitis (CNP) tissues (SP, ×200) [4]. 
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II. Retrieval of Protein Sequences 
The protein sequences for EBNA1, LMP1, LMP2A, and survivin were retrieved 
from the UniProt database. EBNA1 sequences were obtained from three different 
Epstein-Barr virus (EBV) strains with the following UniProt accession numbers: 
P03211 (strain B95-8), Q3KS54 (strain GD1), and Q1HVF7 (strain AG876), 
each consisting of 641 amino acids. LMP1 sequences were retrieved from two 
strains: P03230 (strain B95-8) and P13198 (strain Raji), both with a length of 386 
amino acids. For LMP2A, three strain-specific sequences were included: P13285 
(strain B95-8), P0C729 (strain GD1), and Q1HVJ2 (strain AG876), with 
sequence lengths ranging from 496 to 497 amino acids. Additionally, survivin 
(BIRC5) was retrieved from UniProt (Accession: O15392). Survivin has seven 
different isoforms, generated through alternative splicing, contributing to its 
structural diversity. All sequences were extracted in FASTA format and will be 
used for epitope prediction, structural modeling, and immunogenicity 
assessments in the vaccine development pipeline. 

III. Prediction of T-cell epitopes: CTL 

Major Histocompatibility Complex (MHC) molecules are essential in presenting 
peptides on the cell surface, facilitating the activation of T cells and playing a 
pivotal role in initiating T-cell-mediated immune responses. The interaction 
between MHC molecules and antigenic peptides represents the most selective 
and critical step in the antigen presentation pathway. To identify potential MHC 
class I-restricted cytotoxic T lymphocyte (CTL) epitopes, the immune epitope 
database (IEDB) online server was employed [8]. Predictions were conducted 
using the NetMHCpan 4.1 BA method, recognized as a top-performing binding 
predictor based on weekly automated benchmarks. The HLA allele reference set 
was utilized, with the inclusion of HLA-A0207 and HLA-B4601 due to their 
positive associations with NPC in previous studies [9, 10]. The identified CTL 
epitopes, each consisting of 9 amino acids (9-mer peptides), were selected based 
on their strong binding affinity with half-maximal inhibitory concentration 
(IC50) scores below 200 nM. IC50 values are defined as the concentration that 
inhibits 50% binding of a labeled reference peptide. The lower the IC50 value, 
the stronger the binding affinity of the peptide to the MHC molecule[11]. The 
antigenicity of the selected epitopes was assessed using VaxiJen 2.0, which 
evaluates the potential of epitopes to trigger immune responses specific to the 
target organism type [12]. A threshold of 0.4 was set to prioritize highly antigenic 
candidates. AllerTop 2.0 was used to predict allergenicity, categorizing epitopes 
as allergenic or non-allergenic [13], while ToxinPred was employed to filter out 
potentially toxic epitopes [14]. Immunogenicity scores for each CTL epitope 
were calculated using the IEDB Immunogenicity Prediction Tool to evaluate their 
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potential to activate T-cell-mediated responses [15]. Sequence conservation was 
analyzed using the IEDB Conservancy Analysis Tool, which identifies epitopes 
conserved across strains and isoforms of a protein [16]. Only epitopes with 100% 
conservation were considered. 

Finally, T-cell epitope processing prediction was performed using the IEDB 
server, incorporating evaluations of proteasomal cleavage and transporter 
associated with antigen processing (TAP) transport efficiency [17]. Proteasomal 
cleavage prediction ensured that the selected epitopes could be naturally 
generated from their source proteins, while TAP transport efficiency assessed 
their likelihood of being effectively transported into the endoplasmic reticulum 
for MHC-I molecule presentation. These evaluations ensured that the selected 
epitopes were optimally processed and transported, enhancing their potential to 
elicit robust CD8+ T-cell responses. The Selected CTL epitopes were further 
validated using NetCTL 1.2 [18] and NetMHCcons [19] tools. 

IV. Prediction of T-cell epitopes: HTL 
Helper T lymphocyte (HTL) epitopes were predicted using the IEDB online 
server (NetMHCIIPan 4.1 BA method) [20]. The HLA allele reference set was 
used, and epitopes consisting of 15 amino acids (15-mer peptides), with IC50 
scores below 200 nM were selected. The selected epitopes were further evaluated 
for antigenicity (using VaxiJen 2.0, with a threshold of 0.4) [12], allergenicity 
(AllerTop 2.0) [13], toxicity (ToxinPred) [14], and sequence conservation 
(Conservation Across Antigens IEDB) across strains and isoforms [16]  to ensure 
broad applicability and safety. 

To evaluate the functional potential of the selected HTL epitopes, their ability to 
induce critical cytokines was assessed using the IFNepitope [21], IL6-Pred [22], 
and il2pred [23] servers. These tools predicted the capacity of each epitope to 
stimulate key cytokines that modulate immune responses: interferon-gamma 
(IFN-γ), a hallmark of a robust Th1 (T-helper1 cells) response essential for 
activating cytotoxic T-cells and macrophages; interleukin-6 (IL-6), which 
supports T-cell differentiation and promotes an effective immune response; and 
interleukin-2 (IL-2), which is critical for T-cell proliferation, differentiation, and 
the development of long-lasting memory T cells. By prioritizing epitopes capable 
of eliciting these cytokines, the analysis ensured the selection of candidates that 
enhance anti-pathogen or anti-tumor immunity by driving potent immune 
activation and T-cell-mediated responses. Furthermore, the selected HTL epitopes 
were validated using NetMHCII version 2.3 [24] to confirm their strong binding 
affinity to MHC class II molecules, a key determinant of their potential 
immunogenicity. 
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V. Prediction of Linear B-cell Epitopes 
Linear B-cell (LBL) epitopes were predicted using the ABCpred Prediction 
Server [25, 26], which employs a recurrent neural network (RNN) for precise 
identification of continuous B-cell epitopes within antigenic sequences. A 
window length of 16 amino acids was chosen and a threshold of 0.8 was applied 
to prioritize high-confidence epitopes. The selected epitopes were further 
evaluated for antigenicity using VaxiJen 2.0 (threshold > 0.4) [12], allergenicity 
using AllerTop 2.0 [13], and toxicity using ToxinPred [14]. Only epitopes fully 
conserved across protein strains and isoforms were shortlisted to ensure broad 
cross-reactivity and applicability in vaccine design. 

VI. Population Coverage 
The population coverage of the selected CTL and HTL epitopes was analyzed 
using the Population Coverage Tool from IEDB online server [27]. This tool 
assesses the potential efficacy of epitopes in providing immunological protection 
across different geographical regions and ethnic groups. The analysis focused on 
determining the percentage of the population covered by the proposed vaccine 
construct in various regions, calculating the average number of epitope hits per 
individual, and evaluating the HLA combinations recognized by 90% of the 
population (pc90). Standard deviation values were also computed to assess the 
consistency and reliability of the predictions. The study considered coverage data 
for regions including East Asia, North Africa, South Asia, and Southeast Asia, 
among others, and calculated an overall global coverage rate. 

VII. Combining the final multi‑epitope vaccine construct 
The vaccine construct includes CTL, HTL, and LBL epitopes, along with IFN-γ, 
IL-2, and IL-6-inducing epitopes. To overcome HLA restriction and ensure a 
broad CD4+ T-cell response across diverse populations, the Pan HLA-DR 
reactive epitope (PADRE), a universal epitope, was incorporated [28]. 

The 50S ribosomal protein L7/L12 (rpIL), a key component of the prokaryotic 
ribosome, functions as a "danger signal" in vaccine development, alerting the 
immune system to the vaccine's presence. By enhancing antigen presentation and 
promoting immune activation, rpIL boosts overall immunogenicity, making it an 
ideal adjuvant for strengthening immune responses [28]. 

To complement this, a fynomer sequence was added to enhance stability and 
functionality by improving molecular interactions. Fynomers are small and stable 
globular protein derived from the Src homology 3 (SH3) domain of the human 
tyrosine-protein kinase Fyn. Fyn is a cytoplasmic, non-receptor tyrosine kinase 
(TK) of the Src family kinases (SFKs) consisting of 11 members in humans. It 
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plays a crucial role in various signal transduction pathways within the central 
nervous system (CNS). Their structure contains two antiparallel β-sheets and two 
flexible loops called RT and Src loops, essential in interactions with other 
proteins. It is highly stable (melting temperature ~70°C), monomeric, non-
immunogenic, and lacks cysteine residues, minimizing misfolding risks. Easily 
expressed in E. coli, it serves as a versatile scaffold for enhancing structural 
stability and vaccine efficacy [28]. 

Linkers such as EAAAK and KK were used to maintain the spatial arrangement 
of epitopes, ensuring proper folding and interaction. Additionally, the H5E tag, a 
histidine-rich peptide with the sequence HEHEHEHEH, was incorporated to 
facilitate purification and detection. The overall design and organization of these 
components are illustrated in (Figure 6). 

VIII. Assessment of Antigenicity, Allergenicity, Toxicity, Solubility, 
and Physicochemical Characteristics of the Vaccine 
To evaluate the antigenicity, allergenicity, toxicity, solubility, and 
physicochemical characteristics of the designed vaccine construct, several 
computational tools were employed. Antigenicity was assessed using the VaxiJen 
v2.0 [12] and ANTIGENpro [29] servers. The allergenicity of the vaccine was 
analyzed with the AllerCatPro 2.0 server [30] to confirm its non-allergenic 
nature. The presence of toxic components was evaluated using the ToxinPred 
server [14], ensuring the vaccine construct, including the adjuvant sequence, 
epitopes, linkers, fynomer sequence, and H5E tag, contained no toxin elements. 
Solubility predictions were performed using SolPro [29] and Protein-sol [31] 
servers. 

Physicochemical properties were evaluated using the ProtParam tool [32] from 
the ExPASy server. Parameters such as amino acid composition, molecular 
weight, theoretical isoelectric point (pI), extinction coefficient, instability index, 
aliphatic index, and GRAVY score were calculated to determine the vaccine's 
stability and suitability for physiological environments.  

IX. Secondary structure prediction 
The secondary structure of the designed vaccine construct was analyzed using 
protein structure prediction (PSIPRED), a highly reliable and widely utilized tool 
for secondary structure prediction. PSIPRED integrates position-specific Iterated 
BLAST (PSI-BLAST) to generate an evolutionary conservation profile of the 
protein sequence. This profile is processed by two advanced feed-forward neural 
networks, enabling precise predictions of alpha helices, beta strands, and random 
coils. This analysis provides crucial insights into the structural organization of the 
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vaccine construct, supporting its design and functionality [33]. To complement 
this, the self-optimized prediction method with alignment (SOPMA) tool was 
used for an independent prediction of the secondary structure elements. SOPMA 
predicts the structural composition based on multiple sequence alignments and 
provides a detailed breakdown of the proportions of alpha helices, beta strands, 
and random coils within the construct [34]. These methods together ensured a 
reliable and accurate prediction of the vaccine’s secondary structure, essential for 
assessing its stability and flexibility. 

X. Modeling, Refinement, and Validation of the 3D Structure 
The 3D structure of the multi-epitope vaccine was modeled using the Robetta 
server [35], utilizing its ab initio structure prediction capabilities. The generated 
model was refined using the GalaxyRefine server, which applies molecular 
dynamics simulations to optimize side-chain conformations and improve the 
overall structural quality through iterative relaxation [36]. Structural validation 
was performed on the refined vaccine using tools like Error Analysis of Tertiary 
Structures (ERRAT) [37] and Protein Structure Analysis (ProSA) [38, 39], which 
assess the global and local quality of the predicted model by evaluating geometry, 
residue conformation, and stereochemistry. The Ramachandran plot, generated 
using PROCHECK analysis [40] in the PDBsum server [41], provided an 
additional layer of validation by analyzing the stereochemical properties of the 
refined model. Finally, the vaccine structure was visualized and rendered for 
further analysis using UCSF ChimeraX software [42]. 

XI. Prediction of Conformational B-Cell Epitopes 
Following the validation of the vaccine's 3D structure, conformational B-cell 
epitopes were predicted using the ElliPro server [43]. This tool identifies 
discontinuous epitopes by analyzing protein geometry, solvent accessibility, and 
flexibility. Prediction parameters were set to a minimum protrusion score of 0.8 
and a maximum residue distance of 6 Å, ensuring a balance between sensitivity 
and specificity. An area under the curve (AUC) score of 0.732 confirmed the 
reliability of ElliPro in identifying key epitopes with a high likelihood of 
effectively engaging the immune system. 

XII. Disulfide engineering of the vaccine construct 
Disulfide engineering was conducted using disulfide by design 2 (DbD2), a 
specialized tool designed for rational disulfide bond formation in proteins. DbD2 
evaluates residue pairs in a protein structure for proximity and geometric 
compatibility, assuming mutation to cysteine residues, to identify potential sites 
for disulfide bond introduction. The input model, the refined 3D vaccine 
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structure, was provided as a protein data bank (PDB) file, and DbD2 analyzed the 
structure to output residue pairs that met the criteria for disulfide bond 
engineering [44]. Key selection parameters included optimal Chi3 angles (torsion 
angles) between -87° and +97° and interaction energy values below 2.2 kcal/mol 
[45], indicating favorable bond stability. This approach ensures that the 
engineered disulfide bonds enhance the structural stability of the vaccine 
construct, contributing to its robustness and suitability for downstream 
applications. 

XIII. Molecular docking of the vaccine construct with MHC-I, 
and MHC-II receptors and molecular dynamics simulation 
In this study, the vaccine construct was docked against MHC-I and MHC-II 
receptors to assess its binding affinity and interactions. The receptor structures 
(PDB IDs: 1KG0 for MHC-I and 1ZIW for MHC-II) were pre-processed using 
ChimeraX to remove ligands and water molecules, ensuring a clean binding 
interface. Only the alpha chain was retained for docking to focus on the 
biologically relevant binding region responsible for immune recognition while 
minimizing computational complexity. This approach allowed for a precise 
evaluation of the vaccine's potential to interact with MHC molecules effectively. 
Molecular docking was performed using the ClusPro 2.0 server [46], followed by 
detailed analysis of binding interactions through the PDBsum server. PDBsum 
provided comprehensive insights into the interface areas, interacting residues, 
and the types of interactions (e.g., hydrogen bonds, salt bridges, and non-bonded 
contacts) for each receptor-vaccine complex [41]. Additionally, binding affinity 
and dissociation constants (Kd) were computed using the PRODIGY server, 
which quantified the thermodynamic stability of the complexes by calculating the 
binding free energy (ΔG) values [47]. This multi-step approach ensured a 
thorough assessment of the structural and energetic properties of the vaccine-
receptor interactions, supporting the evaluation of its immunogenic potential. 

To unravel the intricate dynamics of vaccine-receptor interactions, the best-
scoring complexes were further analyzed using the internal coordinates normal 
mode analysis (iMODS) server to assess their stability and flexibility. This tool 
employs normal mode analysis (NMA) to evaluate molecular interactions without 
the need for time-dependent simulations, providing a realistic depiction of 
structural behavior [48]. The vaccine-receptor complexes were evaluated using 
key parameters such as B-factors, covariance, deformability, and elastic network 
analysis. The B factor quantifies the thermal motion of atoms in a crystal 
structure, reflecting their displacement from their mean positions. It is essential 
for understanding the flexibility and stability of various regions within a 
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macromolecule. An elevated B factor often indicates greater atomic motion, 
suggesting that those areas might be more flexible or less rigid. In the covariance 
map, highly correlated regions represent residues moving together dynamically, 
which is crucial for maintaining structural stability or facilitating specific 
functions. Conversely, anti-correlated regions reflect residues contributing to 
flexibility or large-scale movements, which are critical for molecular functions 
such as binding or conformational transitions. This comprehensive analysis 
highlights the stability and dynamic behavior of the vaccine-receptor complexes. 

XIV. Codon Optimization and In Silico Vaccine Cloning 
Codon optimization of the final vaccine sequence was performed using the java 
codon adaptation tool (JCat) to enhance expression efficiency in E.coli (strain 
K12). This tool adapts the sequence to align with the host organism's codon usage 
preferences, thereby improving translational efficiency and maximizing protein 
production [49]. 

For in silico cloning, SnapGene software was used to design the integration of 
the optimized vaccine sequence into the pET-28a(+) expression vector [50]. This 
vector was selected for its widespread application in high-expression protein 
systems in E. coli. The cloning strategy incorporated XhoI at the 5' end and 
BamHI at the 3' end of the vaccine sequence to facilitate directional cloning. A 
restriction site analysis was conducted to ensure that these enzymes do not cut 
within the vaccine sequence, preserving the integrity of the insert. 

The cloning workflow involved simulating the digestion of the pET-28a(+) vector 
with XhoI and BamHI, followed by ligation of the optimized vaccine sequence 
into the vector. To verify the construct, a simulated agarose gel electrophoresis 
was performed, confirming the expected fragment sizes. This computational 
approach ensured the correct design of the recombinant plasmid, enabling 
subsequent experimental validation and protein expression studies in E. coli. 

XV. Immune simulation 
The immune response simulations were carried out using the computational 
immune simulation C-ImmSim server, a computational tool that models immune 
system dynamics and predicts the effects of vaccine constructs [51]. To replicate 
a realistic vaccination schedule, three doses of the vaccine were administered at 
intervals corresponding to days 1, 28, and 56. These intervals were strategically 
chosen to simulate the progression from an initial immune activation to 
subsequent booster responses, allowing the evaluation of primary, secondary, and 
tertiary immune reactions. 
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The simulation was configured with default settings, excluding the addition of 
lipopolysaccharides, ensuring the focus remained on the vaccine construct's 
intrinsic immunogenic properties. This approach provided a comprehensive 
overview of the vaccine's ability to elicit antibody production, cytokine 
responses, and the development of long-lasting immunological memory. The use 
of C-ImmSim enabled a detailed and systematic exploration of the vaccine's 
potential efficacy, making it a valuable step in the design process. 

Methods steps summary 
 

 
Figure 4: Schematic workflow of in silico multi-epitope vaccine design process. 
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Computational Tools and Bioinformatics Resources 
Utilized in the Study 

 

Tool Name URL 
UniProt database https://www.uniprot.org/ 

PDB database https://www.rcsb.org 

VaxiJen 2.0 https://ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html 

ANTIGENpro http://scratch.proteomics.ics.uci.edu/ 

AllerTOP 2.0 https://ddg-pharmfac.net/allertop_test/ 

AllerCatPro 2.0  https://allercatpro.bii.a-star.edu.sg/ 

ToxinPred https://webs.iiitd.edu.in/raghava/toxinpred/ 

NetCTL 1.2  https://services.healthtech.dtu.dk/services/NetCTL-1.2/ 

NetMHCcons-1.1 https://services.healthtech.dtu.dk/services/NetMHCcons-1.1/ 

NetMHCII version 2.3  https://services.healthtech.dtu.dk/services/NetMHCII-2.3/ 

IEDB https://www.iedb.org/ 

MHC-I Binding (IEDB) http://tools.iedb.org/mhci/ 

MHC-II Binding (IEDB) http://tools.iedb.org/mhcii/ 

MHC-I Processing (IEDB) http://tools.iedb.org/processing/ 

Epitope Conservancy Analysis 
(IEDB) http://tools.iedb.org/conservancy/ 

Population Coverage (IEDB) http://tools.iedb.org/population/ 

Class I Immunogenicity 
(IEDB) http://tools.iedb.org/immunogenicity/ 

ElliPro http://tools.iedb.org/ellipro/ 

IFNepitopes https://webs.iiitd.edu.in/raghava/ifnepitope/ 

il2pred  https://webs.iiitd.edu.in/raghava/il2pred/ 

IL6-Pred  https://webs.iiitd.edu.in/raghava/il6pred/ 

ABCpred  https://webs.iiitd.edu.in/raghava/abcpred/ 

Disulfide by Design 2.0 http://cptweb.cpt.wayne.edu/DbD2/ 

ProtParam https://web.expasy.org/protparam/ 

ProSA-web https://prosa.services.came.sbg.ac.at/prosa.php/ 

Protein-Sol https://protein-sol.manchester.ac.uk/ 

SolPro http://scratch.proteomics.ics.uci.edu/ 

ERRAT https://www.doe-mbi.ucla.edu/errat/ 

PSIPRED http://bioinf.cs.ucl.ac.uk/psipred/ 

Robetta server https://robetta.bakerlab.org/ 

https://www.uniprot.org/
https://www.rcsb.org/
https://ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
http://scratch.proteomics.ics.uci.edu/
https://ddg-pharmfac.net/allertop_test/
https://allercatpro.bii.a-star.edu.sg/
https://webs.iiitd.edu.in/raghava/toxinpred/
https://services.healthtech.dtu.dk/services/NetCTL-1.2/
https://services.healthtech.dtu.dk/services/NetMHCcons-1.1/
https://services.healthtech.dtu.dk/services/NetMHCII-2.3/
https://www.iedb.org/
http://tools.iedb.org/mhci/
http://tools.iedb.org/mhcii/
http://tools.iedb.org/processing/
http://tools.iedb.org/conservancy/
http://tools.iedb.org/population/
http://tools.iedb.org/immunogenicity/
http://tools.iedb.org/ellipro/
https://webs.iiitd.edu.in/raghava/ifnepitope/
https://webs.iiitd.edu.in/raghava/il2pred/
https://webs.iiitd.edu.in/raghava/il6pred/
https://webs.iiitd.edu.in/raghava/abcpred/
http://cptweb.cpt.wayne.edu/DbD2/
https://web.expasy.org/protparam/
https://prosa.services.came.sbg.ac.at/prosa.php/
https://protein-sol.manchester.ac.uk/
http://scratch.proteomics.ics.uci.edu/
https://www.doe-mbi.ucla.edu/errat/
http://bioinf.cs.ucl.ac.uk/psipred/
https://robetta.bakerlab.org/
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PDBsum server  https://www.ebi.ac.uk/thornton-srv/databases/pdbsum/ 

GalaxyRefine  https://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE 

PROCHECK https://www.ebi.ac.uk/thornton-srv/software/PROCHECK/ 

SOPMA 
https://npsa.lyon.inserm.fr/cgi-
bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html 

ClusPro 2.0  https://cluspro.org/ 

PRODIGY https://rascar.science.uu.nl/prodigy/ 

iMODS https://imods.iqf.csic.es/ 

JCat https://www.jcat.de/ 

C-ImmSim  https://kraken.iac.rm.cnr.it/C-IMMSIM/ 

SnapGene software  https://www.snapgene.com/ 

UCSF ChimeraX software  https://www.cgl.ucsf.edu/chimera/ 

 

Results 
I. Prediction of T-cell epitopes: CTL 
Using the IEDB, potential CTL epitopes were identified for the four target 
proteins. The selection process involved rigorous criteria to ensure the suitability 
of the candidates. First, epitopes with strong binding affinity (IC50 < 200 nM) 
were filtered. Subsequent evaluations focused on ensuring non-allergenicity 
(AllerTop 2.0), non-toxicity (ToxinPred), and a high immunogenicity score 
(IEDB Immunogenicity Prediction Tool). Antigenicity was also assessed using 
VaxiJen 2.0 (threshold > 0.4).To guarantee reliability, conservation analysis 
confirmed that the selected epitopes were 100% conserved across all strains and 
isoforms. Additionally, processing predictions using IEDB's MHC-I Processing 
(Proteasome, TAP) tool validated their compatibility with MHC class I 
presentation pathways. After completing all analyses, the final selected epitopes, 
listed in (Table 1), were identified as the most promising candidates for vaccine 
design. 

The identified CTL epitopes were further validated using NetCTL 1.2 and 
NetMHCcons tools. NetCTL 1.2 integrates predictions for MHC binding, 
proteasomal cleavage, and TAP transport, enabling comprehensive analysis of T-
cell epitope processing and presentation. NetMHCcons combines multiple MHC-
binding prediction algorithms to improve prediction accuracy through a 
consensus-based approach. Both tools confirmed that the selected epitopes 
showed strong to moderate binding affinity to at least one MHC supertype using 

https://www.ebi.ac.uk/thornton-srv/databases/pdbsum/
https://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE
https://www.ebi.ac.uk/thornton-srv/software/PROCHECK/
https://npsa.lyon.inserm.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html
https://npsa.lyon.inserm.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html
https://cluspro.org/
https://rascar.science.uu.nl/prodigy/
https://imods.iqf.csic.es/
https://www.jcat.de/
https://kraken.iac.rm.cnr.it/C-IMMSIM/
https://www.snapgene.com/
https://www.cgl.ucsf.edu/chimera/
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NetCTL 1.2 and strong to moderate binding affinity to nearly the same alleles 
using NetMHCcons. These results reinforce the reliability of the selected 
epitopes for vaccine design. 

 

 Table 1: The selected CTL epitopes for the final vaccine construct using IEDB server. 

Protein      Epitope       Allele Processing 
    Score 

Antigenicity       Allergenicity/Toxicity Immunogenicity Conservancy 

Survivin 
(BIRC5) 

5TLPPAWQPF 
HLA-A*23:01 
HLA-A*24:02 
HLA-B*15:01 

      1.80      0.9674 NON-ALLERGEN / Non-Toxin       0.12761         100% 

Survivin 
(BIRC5) 

33CTPERMAEA 
HLA-A*02:03 
HLA-A*02:06 
HLA-A*68:02 

      0.83       0.8084 NON-ALLERGEN / Non-Toxin       0.07377         100% 

EBNA1 389SSSGSPPRR HLA-A*68:01       1.36       0.8168 NON-ALLERGEN / Non-Toxin       -0.17026         100% 

EBNA1 53RPGAPGGSG HLA-B*07:02       0.06       1.1793 NON-ALLERGEN / Non-Toxin        0.33271          100% 

LMP1 132RLGATIWQL 

HLA-A*02:01 
HLA-A*02:06 
HLA-A*32:01 
HLA-A*02:03 
HLA-B*13:01 

      1.82        0.7761 NON-ALLERGEN / Non-Toxin       0.05043         100% 

LMP2A 136LAAIAASCF HLA-B*35:01 
HLA-B*15:01 

      2.42       0.7048 NON-ALLERGEN / Non-Toxin       0.01872         100% 

LMP2A 373GSILQTNFK 

HLA-A*11:01 
HLA-A*30:01 
HLA-A*03:01 
HLA-A*68:01 

      1.19       1.0565 NON-ALLERGEN / Non-Toxin       -0.03965         100% 

LMP2A 119SMNPVCLPV 
HLA-A*02:03 
HLA-A*02:01 
HLA-A*02:06 

      0.78       1.5822 NON-ALLERGEN / Non-Toxin       -0.03965         100% 

 

II. Prediction of T-cell epitopes: HTL 
The identification of potential HTL epitopes for the target proteins utilized the 
IEDB platform, applying a series of stringent selection criteria. Epitopes 
demonstrating strong binding affinity (IC50 < 200 nM) were prioritized, 
alongside assessments for antigenicity (VaxiJen 2.0, threshold > 0.4), non-
allergenicity (AllerTop 2.0), non-toxicity (ToxinPred), and complete sequence 
conservation across all strains and isoforms. A unique aspect of this process was 
the prediction of cytokine induction. Epitopes were evaluated for their ability to 
stimulate key immune mediators, including IFN-γ, IL-6, and IL-2. This ensured 
the selection of epitopes capable of orchestrating a robust and balanced immune 
response. After completing all analyses, the final selected epitopes, listed in 
(Table 2), were identified as the most promising candidates for vaccine design. 
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Furthermore, the selected HTL epitopes were validated using NetMHCII version 
2.3 to add an additional layer of confirmation. All the selected epitopes 
demonstrated moderate to strong binding affinities to at least one of the selected 
HLA class II alleles using this tool, further supporting their potential as robust 
vaccine candidates. 

 

    Table 2: The selected HTL epitopes for the final vaccine construct using IEDB server. 

Protein             Epitope                       Allele Antigenicity  Allergenicity/ 
     Toxicity 

   IFN-γ IL-2/IL-6 Conservancy 

Survivin 
(BIRC5) 9AWQPFLKDHRISTFK            HLA-DRB1*11:01 

           HLA-DRB1*03:01    0.9005 NON-ALLERGEN, 
      Non-Toxin POSITIVE     Inducer, 

Non-Inducer         100% 

Survivin 
(BIRC5) 17HRISTFKNWPFLEGC 

           HLA-DRB1*15:01 
HLA-DQA1*04:01/DQB1*04:02 
           HLA-DRB1*07:01 
HLA-DPA1*01:03/DPB1*02:01 
           HLA-DRB1*01:01 

   1.3323 NON-ALLERGEN, 
      Non-Toxin POSITIVE Inducer, 

Non-Inducer         100% 

EBNA1 476PKFENIAEGLRALLA 

           HLA-DRB1*01:01 
           HLA-DRB5*01:01 
HLA-DQA1*04:01/DQB1*04:02 
HLA-DQA1*01:02/DQB1*06:02 

   0.4822 NON-ALLERGEN, 
      Non-Toxin POSITIVE      Inducer, 

      Non-Inducer         100% 

EBNA1 530QCRLTPLSRLPFGMA 

           HLA-DRB1*11:01 
           HLA-DRB1*12:01 
           HLA-DRB1*01:01 
           HLA-DRB4*01:01 
           HLA-DRB1*15:01 

   1.1843 NON-ALLERGEN, 
      Non-Toxin POSITIVE     Inducer, 

Non-Inducer         100% 

LMP1 69IFIFRRDLLCPLGAL 

HLA-DPA1*03:01/DPB1*04:02 
           HLA-DRB1*01:01 
           HLA-DRB1*03:01 
           HLA-DRB1*13:02 
           HLA-DRB3*01:01 

   0.7629 NON-ALLERGEN, 
        Non-Toxin POSITIVE     Inducer, 

    Inducer         100% 

LMP1 132RLGATIWQLLAFFLA 
HLA-DPA1*01:03/DPB1*02:01 
HLA-DPA1*01:03/DPB1*04:01 
HLA-DPA1*03:01/DPB1*04:02 

   0.504 NON-ALLERGEN, 
        Non-Toxin POSITIVE     Inducer, 

    Inducer         100% 

LMP2A 373GSILQTNFKSLSSTE 

HLA-DPA1*01:03/DPB1*02:01 
HLA-DPA1*01:03/DPB1*04:01 
HLA-DPA1*02:01/DPB1*01:01 
HLA-DPA1*03:01/DPB1*04:02 
HLA-DQA1*04:01/DQB1*04:02 
           HLA-DRB1*01:01 

   0.8826 NON-ALLERGEN, 
        Non-Toxin POSITIVE     Inducer , 

Non-Inducer         100% 

LMP2A 375ILQTNFKSLSSTEFI 

HLA-DQA1*04:01/DQB1*04:02 
           HLA-DRB1*01:01 
           HLA-DRB1*04:01 
           HLA-DRB1*04:05 
           HLA-DRB1*07:01 
           HLA-DRB1*09:01 
           HLA-DRB5*01:01 

    0.764 NON-ALLERGEN, 
        Non-Toxin POSITIVE     Inducer, 

Non-Inducer 
        100% 

III. Prediction of Linear B-cell Epitopes 
Using the ABCpred Prediction Server, linear B-cell epitopes were identified 
based on a high-confidence threshold of 0.8. These epitopes were evaluated for 
their antigenicity (VaxiJen 2.0, threshold > 0.4), non-allergenicity (AllerTop 
2.0)and non-toxicity (ToxinPred), ensuring their safety and immunogenic 



 30 

potential. Conservation analysis confirmed that the selected epitopes were 
completely conserved across protein isoforms and virus strains, making them 
suitable candidates for vaccine development. After completing all analyses, the 
final selected epitopes, listed in (Table 3), were identified as the most promising 
candidates for further experimental validation and inclusion in vaccine 
formulations. 

 

     Table 3: The selected LBL epitopes for the final vaccine construct using by ABCpred. 

Protein Epitope     ABCpred 
       Score 

Antigenicity Allergenicity/Toxicity Conservancy 

Survivin 
(BIRC5) 

41AGFIHCPTENEPDLAQ          0.89    0.4732 NON-ALLERGEN, Non-Toxin        100% 

EBNA1 39HGRGRGRGRGRGGGRP          0.94    1.2239 NON-ALLERGEN, Non-Toxin        100% 

LMP1 326EVENKGGDQGPPLMTD          0.85    0.8124 NON-ALLERGEN, Non-Toxin        100% 

LMP2A 289SSPGGLGTLGAALLTL          0.85    0.8574 NON-ALLERGEN, Non-Toxin        100% 

 

IV. Population Coverage 
The selected CTL and HTL epitopes demonstrated strong global immunological 
protection potential, achieving a remarkable global coverage rate of 99.96% 
(Figure 5) and excellent regional coverage in endemic areas: East Asia (99.64%), 
North Africa (99.62%), South Asia (99.98%), and Southeast Asia (97.82%). 
Average epitope hits in these regions were 7.25 in East Asia, 6.82 in North 
Africa, 9.62 in South Asia, and 4.26 in Southeast Asia, reflecting robust 
immunological protection. Consistent performance was evident in the HLA 
combinations recognized by 90% of the population (pc90), which averaged 4.64 
with minimal variability (standard deviation: 4.11% for coverage) (Table 4). 
These findings underscore the vaccine's robust design and its potential to deliver 
broad and effective immunological protection, particularly in regions with the 
highest prevalence of cases, as well as across diverse global populations. 
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Figure 5: Global coverage for the selected epitopes for the vaccine construct.  
The chart represents the number of epitope-HLA combinations recognized by 
individuals across different populations. The x-axis shows the number of epitope-
HLA combinations recognized, while the left y-axis indicates the percentage of 
individuals recognizing a given number of combinations. The blue bars depict the 
distribution of individuals, with most recognizing between 5 and 12 epitope-HLA 
combinations, peaking around 10 combinations. The right y-axis represents the 
cumulative percentage of population coverage, shown by the green curve with 
yellow markers. The red horizontal line at 90% cumulative population coverage 
(PC90) indicates that at least 6 epitope-HLA combinations are recognized in 90% of 
individuals. Similarly, approximately 80% of the population recognizes 8 or more 
combinations, while 50% of the population recognizes 11 or more. The total 
population coverage for Class I and Class II epitopes combined is 99.96%, 
demonstrating the broad immune response potential of the vaccine construct. 

 

                                         Table 4: Population Coverage by Region. 

Population/Area Class Combined 

Coverage Average Hit pc90 
Central Africa 99.99% 10.4 6.88 

Central America 97.67% 6.85 3.15 
East Africa 99.99% 10.65 6.57 
East Asia 99.64% 7.25 3.55 

Europe 100.0% 11.63 8.11 
North Africa 99.62% 6.82 3.87 

North America 100.0% 12.2 8.36 
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Northeast Asia 99.0% 7.47 4.35 
Oceania 99.81% 7.71 4.41 

South Africa 82.75% 6.5 3.1 
South America 99.92% 10.2 5.57 

South Asia 99.98% 9.62 6.26 
Southeast Asia 97.82% 4.26 1.85 
Southwest Asia 99.05% 5.91 3.21 

West Africa 99.42% 8.5 4.66 
West Indies 98.85% 5.8 2.49 

Average 98.42% 7.82 4.64 
Standard Deviation 4.11 2.8 2.16 

 

V. Combining the final multi‑epitope vaccine construct 
The finalized multi-epitope vaccine construct demonstrated a rational and well-
structured linear design incorporating essential immunogenic and stabilizing 
components. The construct consists of 514 amino acids, including 8 CTL 
epitopes, 8 HTL epitopes, and 4 linear B-cell epitopes, strategically selected to 
ensure broad and robust immune responses. The inclusion of PADRE enhanced 
immunogenicity by promoting a broad CD4+ T-cell response, ensuring the 
vaccine's efficacy across diverse populations. The rpIL adjuvant effectively 
boosted immune activation, while the fynomer sequence contributed to improved 
molecular interactions and stability of the construct. Linkers (EAAAK and KK) 
successfully ensured proper spatial arrangement of the epitopes, and the H5E tag 
facilitated efficient purification and detection. The integration of these 
components resulted in a stable and functional vaccine construct, as represented 
in the schematic shown in (Figure 6). 

 

Figure 6: Graphical representation of the combined vaccine construct. 
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VI. Assessment of Antigenicity, Allergenicity, Toxicity, 
Solubility, and Physicochemical Characteristics of the Vaccine 
The vaccine construct exhibited a good antigenicity score of 0.550 using VaxiJen 
v2.0 and 0.641 using ANTIGENpro, confirming its ability to elicit an immune 
response. AllerCatPro 2.0 analysis confirmed the vaccine's non-allergenic nature, 
while ToxinPred analysis ensured no toxic components were present in the final 
construct. Solubility scores of 0.842 (SolPro) and 0.629 (Protein-sol) indicate 
excellent solubility. 

The physicochemical properties of the vaccine construct were analyzed using the 
ProtParam tool from the Expasy web server, developed by the Swiss institute of 
bioinformatics (SIB). The construct consists of 514 amino acids with a molecular 
weight of 56.00 kDa and a theoretical pI of 9.83, indicating its essential nature. 
The construct contains 92 positively charged residues and 54 negatively charged 
residues, yielding a net positive charge favorable for stability in physiological 
environments. This pI and positive net charge at physiological pH enhances its 
solubility, interaction with negatively charged molecules, and potential 
effectiveness as part of a vaccine. The extinction coefficient was determined as 
50,335 M⁻¹ cm⁻¹ assuming all pairs of cysteines forming cystines, and 49,960 
M⁻¹ cm⁻¹ assuming reduced cysteines. The instability index of 31.86 classified 
the construct as stable, and the aliphatic index of 79.11 indicated thermostability. 
The GRAVY score of −0.376 suggested hydrophilicity and enhanced solubility in 
aqueous environments. 

Collectively, these results support the vaccine construct's stability, solubility, and 
suitability for inducing an effective immune response, meeting the criteria for 
vaccine formulation. 

VII. Secondary structure prediction 
The secondary structure of the vaccine was predicted using PSIPRED. The 
results of this prediction are shown in (Figure 7(A,B)), where alpha helices are 
represented in pink, beta strands in yellow, and coils in gray. Additionally, the 
SOPMA tool was utilized to further evaluate the vaccine's secondary structure. 
The SOPMA analysis revealed that 40.86% of the residues form alpha helices, 
10.70% form extended strands, and 48.44% are random coils (Figure 7C). These 
findings indicate that the vaccine construct contains a balanced proportion of 
structural elements, which supports its stability and flexibility for effective 
immune interactions. Furthermore, the presence of random coils is advantageous 
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for epitope presentation, as these regions are typically more accessible for 
immune recognition, facilitating the efficient display of epitopes to immune cells. 

 

Figure 7: Predicted Secondary Structure Analysis of the Vaccine Construct. 
(A, B) Graphical representation of the secondary structure of the vaccine 
construct predicted by the PSIPRED server, where yellow represents strands, 
pink represents helices, and gray represents coils. (C) Distribution of alpha 
helices, beta strands, random coils, and turns across the vaccine construct using 
SOPMA tool. 

 

VIII. Modeling, Refinement, and Validation of the 3D Structure 
After generating the 3D vaccine model using the Robetta server, the first model 
was selected as the best prediction. Following refinement of the 3D structural 
model using the GalaxyRefine server, Model 3 was chosen as the optimal final 
vaccine model based on key parameters, including GDT-HA (0.9728), root-mean-
square deviation (RMSD) (0.358), Mol Probity (1.472), clash score (8.8), and 
poor rotamers (0.2), among other refined models (Figure 9B and Table 5). The Z-
score for the vaccine structure in the ProSA web server was −6.63 indicates the 
structure is within the range of native-like proteins, which are naturally occurring 
and correctly folded proteins (Figure 9C, 9D).  

The overall quality of the refined  model, as predicted by the ERRAT server, was 
determined to be 94.35. Stereochemical quality analysis of the refined protein 
structure was conducted using the Ramachandran plot via the PROCHECK tool 
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available on the PDBsum server. The analysis revealed that 96.6% of the residues 
were in the most favorable regions, 3.4% in the additionally allowed regions, no 
residues in the generously allowed regions or disallowed regions (Figure 9A) 
which confirms the reliability of this model. 

         Table 5: Validation metrics for refined 3D structure models using GalaxyRefne server. 

Model GDT-HA RMSD Mol Probity Clash score Poor rotamers Rama favored 

MODEL 1 0.9674 0.354 1.540 10.5 0.2 99.2 

MODEL 2 0.9742 0.340 1.472 8.8 0.5 99.0 

MODEL 3 0.9728 0.358 1.472 8.8 0.2 99.2 

MODEL 4 0.9781 0.344 1.540 10.5 1.0 98.8 

MODEL 5 0.9757 0.343 1.492 9.3 0.7 99.4 

 

 

Figure 8: Ramachandran Plot Analysis of the Vaccine Construct Before 
Refienment. The results indicate that 93.5% of residues fall within the most 
favored regions, while 6.5% are in additional allowed regions. Notably, no 
residues are found in the generously allowed or disallowed regions. 
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Figure 9: Structural Validation and Quality Assessment of the Vaccine Construct 
After Refienment. (A) Analysis of the Ramachandran plot after refienment utilizing 
the PROCHECK server showed 96.6%, and 3.4% residues laying in favored, 
additional allowed, respectively. (B) The three-dimensional refined vaccine. (C) 
ProSA validation of predicted structure with Z-score of −6.63 and (D) plots the 
residues scores to check the local model quality. 

 

IX. Prediction of Conformational B-Cell Epitopes 
Based on the results obtained from the ElliPro server, 5 conformational B-cell 
epitopes were identified from the refined three-dimensional (3D) vaccine model. 
The epitopes' amino acid residues, number of residues, and their respective 
scores are detailed in (Table 6). Additionally, a graphical representation of these 
epitopes mapped onto the 3D vaccine structure is presented (Figure 10), 
highlighting their spatial distribution and potential accessibility for immune 
interactions. 
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Table 6: List of conformational/discontinuous B-cell epitopes predicted over final 
vaccine construct. 

NO Residue Number of residues Score 

1 A:A340, A:I341, A:K342, A:D343, A:L344, A:V345, A:M346, A:T347, A:K348, A:P349, A:A350, 
A:P351, A:T352, A:C353, A:N354, A:K355, A:K356, A:K357, A:F358, A:E359, A:N360, A:I361 

22 0.943 

2 A:L195, A:G196, A:I199, A:W200, A:K203, A:K204, A:S205, A:M206, A:N207, A:T497, A:L498, 
A:G499, A:A500, A:A501, A:L502, A:L503, A:T504, A:L505, A:H506, A:T507, A:H508, A:T509, 
A:H510, A:T511, A:H512, A:T513, A:H514 

27 0.903 

3 A:A56, A:Q60, A:S61, A:E62, A:F63, A:D64, A:V65, A:I66, A:L67, A:E68, A:A69, A:A70, A:G71, 
A:D72, A:K73, A:I75, A:G76, A:V80, A:E83, A:I84, A:A123, A:G124, A:A125, A:T126, A:V127, 
A:T128, A:K130 

27 0.875 

4 A:M1, A:A2, A:K3, A:L4, A:S5, A:E8 6 0.874 

5 A:S86, A:G87, A:L88, A:G89, A:L90 5 0.861 

 

 

Figure 10: Graphical representation of the five discontinuous B-cell epitopes 
mapped onto the 3D vaccine structure. 

 

X. Disulfide engineering of the vaccine construct 
Using the Disulfide by Design 2 (DbD2) server, a total of 43 residue pairs in the 
vaccine construct were identified as potential candidates for disulfide bond 
formation (Table 7). These candidates were selected based on proximity, 
geometric constraints, and energy favorability, which are key parameters for 
predicting viable disulfide bonds. After applying Chi3 torsion angle constraints 
and energy thresholds, only three residue pairs (220-PRO-229-SER, 156-MET-
162-LEU, and 218-GLY-222-GLY) met the criteria for stable disulfide bond 
formation. These residues were identified as optimal sites for potential disulfide 
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engineering if mutated to cysteine, which could enhance structural stability and 
robustness for downstream applications. However, for this study, the vaccine 
construct will proceed with its original sequence without introducing these 
mutations. 

Table 8: List of residue pairs in the vaccine construct that have the ability to create 
disulfide bonds. 

Res1 Chain Res1 Seq # Res1 AA Res2 Chain Res2 Seq # Res2 AA Chi3 Energy Sum B-Facto  
A 220 PRO A 229 SER -83.33 0.34 0 
A 156 MET A 162 LEU 86.16 1.74 0 
A 218 GLY A 222 GLY 94.59 2.08 0 
A 337 ALA A 362 ALA -93.06 0.54 0 
A 330 GLN A 369 LEU -102.71 1.47 0 
A 43 ALA A 147 ALA -93.63 1.62 0 
A 45 ALA A 142 TRP 104.13 1.67 0 
A 297 LEU A 301 GLU 101.79 1.84 0 
A 334 PHE A 365 LEU -109.12 1.92 0 
A 172 GLY A 214 LYS 71.47 2.35 0 
A 324 LEU A 328 ILE 122.4 2.4 0 
A 113 ALA A 136 ALA 80.02 2.43 0 
A 271 LYS A 274 ILE 119.74 2.5 0 
A 107 LYS A 423 PRO 94.2 2.67 0 
A 17 THR A 255 GLY 94.71 2.97 0 
A 33 GLU A 217 PRO 81.83 3.29 0 
A 94 LYS A 115 GLU 117.54 3.54 0 
A 96 LEU A 111 GLU -91.84 3.62 0 
A 316 PRO A 319 ALA 119.31 3.76 0 
A 43 ALA A 146 ALA -74.68 3.78 0 
A 178 ASN A 181 LYS 116.23 4.05 0 
A 153 PRO A 165 ALA 95.63 4.14 0 
A 47 ALA A 139 VAL 124.93 4.19 0 
A 263 LYS A 492 PRO 114.41 4.3 0 
A 117 LYS A 132 ALA -100.28 4.7 0 
A 264 SER A 491 SER 99.99 4.72 0 
A 4 LEU A 8 GLU 90.78 4.8 0 
A 32 PHE A 226 LYS -115.99 5.2 0 
A 109 ALA A 139 VAL 122.37 5.21 0 
A 224 GLY A 227 SER 111.22 5.23 0 
A 212 PRO A 406 GLY -85.67 5.29 0 
A 242 PHE A 379 LEU 104.51 5.39 0 
A 49 PRO A 116 ALA -80.03 5.44 0 
A 109 ALA A 140 ALA -82.14 5.48 0 
A 112 ALA A 136 ALA -113.29 5.52 0 
A 50 ALA A 54 VAL 79.46 5.57 0 
A 321 LYS A 329 TRP 88.33 5.62 0 
A 469 PRO A 480 GLN -103.79 5.66 0 
A 228 SER A 231 SER 117.81 5.78 0 
A 189 SER A 259 GLN -88.29 6.5 0 
A 120 LEU A 125 ALA 125.04 8.03 0 
A 399 GLN A 413 SER 103.27 8.09 0 
A 277 PHE A 373 VAL 121.59 8.21 0 
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XI. Molecular Docking and Binding Affinity Analysis of the 
Vaccine Construct with MHC-I, and MHC-II Receptors 
The molecular docking analysis, performed using ClusPro 2.0 server, 
demonstrated stable and detailed binding interactions between the vaccine 
construct and the target receptors: MHC-I and MHC-II. The PDBsum results 
provided a comprehensive overview of the interface areas, number of interacting 
residues, and interaction types, further validating the strength and specificity of 
the docking outcomes (Figures 11, 12). 

In the MHC I-vaccine complex, 34 vaccine residues interacted with 36 MHC-I 
residues, forming interface areas of 1805 Å² for the vaccine and 1755Å² for 
MHC-I. This interaction was supported by 3 salt bridges, 23 hydrogen bonds, and 
247 non-bonded contacts, demonstrating significant binding stability.  

For the MHC II-vaccine complex, 36 vaccine residues interacted with 31 MHC-II 
residues, creating interface areas of 1825 Å² for the vaccine and 1876Å² for 
MHC-II. The binding involved 9 salt bridges, 24 hydrogen bonds, and 252 non-
bonded contacts, suggesting a highly stable and energetically favorable 
interaction. 

The binding affinities were assessed using the PRODIGY server (Table 8), which 
yielded ΔG values of −15.4 kcal/mol for MHC-I, and −13.3 kcal/mol for MHC-
II. The corresponding dissociation constants (Kd) were 1.40E-11 M, and 3.90E-
10 M, respectively, indicating strong and stable interactions for the two 
complexes. 

These results underscore the vaccine construct's potential to form highly stable 
and energetically favorable interactions with immune receptors, supporting its 
efficacy in stimulating an immune response against EBV. 

 

Table 9: The predicted binding affinities of the docked complexes of the vaccine 
with MHC-I and MHC-II, using PRODIGY server. 

Protein-protein complex Gibbs free energy ΔG (kcal mol-1) Kd (M) at ℃ 

Vaccine-MHC class I receptor -15.4 1.40E-11 

Vaccine-MHC class II receptor -13.3 3.90E-10 
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Figure 11: Molecular Docking Analysis of the Vaccine-MHC-I Complex.  
(A) Visualization of docking results for the vaccine-MHC-I complex. The 
vaccine construct is shown in gold, while MHC-I is depicted in Turquoise. (B) 
Map of total interacting residues and bonds between the vaccine (Chain B) and 
MHC-I (Chain A) proteins. 
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Figure 12: Molecular Docking Analysis of the Vaccine-MHC-II Complex. 
(A) Visualization of docking results for the vaccine-MHC-II complex. The 
vaccine construct is shown in gold, while MHC-II is depicted in green. (B) Map 
of total interacting residues and bonds between the vaccine (Chain B) and MHC-
II (Chain A) proteins. 

XII. Molecular dynamics simulation of the vaccine-receptor complexes 
MD simulation, performed using the iMODS server, provided comprehensive 
insights into the structural and functional dynamics of the vaccine-receptor 
complexes involving MHC-I and MHC-II receptors. Deformability analysis 
(Figures 13B, 14B) identified key flexible regions with hinge points critical for 



 42 

structural transitions and binding adaptability. The B-factor profiles (Figures 
13D, 14D) highlighted mobile and rigid regions within the complexes, 
correlating well with experimental data. Eigenvalue analyses (Figures 13E, 14E), 
low eigenvalue for the first mode reflects the structure’s adaptability, while the 
increasing values for higher modes indicate progressively rigid motions. Variance 
analyses (Figures 13C, 14C) demonstrated that the first few modes captured most 
of the structural motion, emphasizing the dominance of global dynamics in the 
complexes. 

Covariance mapping (Figures 13F, 14F) illustrates dynamic correlations between 
residues, with red regions indicating positively correlated motions, blue regions 
showing anti-correlated movements, and white areas representing uncorrelated 
motions. These coordinated dynamics are essential for maintaining stable 
binding. Additionally, elastic network models (Figures 13G, 14G) revealed 
densely connected regions, representing tightly interconnected parts of the 
molecule critical for maintaining structural stability and integrity. Conversely, 
sparsely connected regions were identified in flexible areas, such as loops, 
terminal ends, or regions undergoing functional conformational changes, 
highlighting their role in facilitating efficient receptor binding and dynamic 
molecular interactions. 

Together, these analyses confirm the vaccine-receptor complexes' structural 
stability, flexibility, and adaptability, providing a robust framework for 
optimizing vaccine design to enhance immune responses. 
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Figure 13:  Molecular dynamics simulation of vaccine construct and MHC-I 
complex by iMODS server. (A) vaccine construct and MHC-I docking complex. (B) 
Main-chain deformability. (C) B-factor values. (D) The eigenvalue. (E) Variance. (F) Co-
variance map. (G) Elastic network of model. 
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Figure 14: Molecular dynamics simulation of vaccine construct and MHC-II 
complex by iMODS server. (A) vaccine construct and MHC-II docking complex. (B) 
Main-chain deformability. (C) B-factor values. (D) The eigenvalue. (E) Variance. (F) Co-
variance map. (G) Elastic network of model. 

 

XIII. Codon optimization and in-silico vaccine cloning in pET-28a(+) 
expression vector 
Codon optimization of the final vaccine sequence using JCat generated a 1542 bp 
cDNA sequence, achieving a Codon Adaptation Index (CAI) of 1.0, indicating 
optimal adaptation for E. coli expression. The GC content was 49.09%, which is 
within the optimal range for E. coli expression. These results suggest that the 
codon-optimized vaccine sequence is well-suited for high expression in E. coli, 
enhancing the efficiency of protein production for vaccine development. To 
facilitate cloning, XhoI and BamHI restriction sites were introduced at the 5' and 
3' ends of the sequence. 
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Using SnapGene, in silico cloning successfully integrated the optimized vaccine 
sequence into the pET-28a(+) vector, generating a recombinant plasmid construct 
for expression. Virtual restriction digestion and gel electrophoresis simulation 
confirmed the expected fragment sizes: 5329 bp vector backbone and 1548 bp 
vaccine insert, validating that XhoI and BamHI did not cut within the insert. 

These results confirm the accuracy of the in silico cloning strategy and the proper 
design of the recombinant plasmid construct, ensuring its suitability for 
downstream applications in vaccine development and high-level protein 
expression in E. coli. 

The output from SnapGene software shown in (Figure 15), illustrating the 
cloning of the vaccine sequence into the pET-28a(+) vector.  

 

 

Figure 15: In silico restriction cloning of the vaccine construct into the pET-
28a(+) vector by SnapGene tool. Red bar represents the codon-optimized 
vaccine gene, while the black circle depicts the vector backbone. 
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XIV. Immune simulation 
Based on the results from the C-IMMSIM immune simulation analysis, 
administration of the vaccine demonstrated a robust induction of immune 
responses through several key markers. The initial injection elicited a noticeable 
increase in IgM levels, indicative of a primary immune response. Subsequent 
doses, as evidenced in the simulations, enhanced IgG1, IgG2, and IgG + IgM 
concentrations, particularly after the second and third injections. This pattern 
reflects the typical secondary immune response, characterized by higher affinity 
antibodies due to class switching. Over time, a decline in these immunoglobulins 
was observed, aligning with the contraction phase of the immune response; 
however, this does not imply diminished protection, as memory T and B cells 
were effectively generated. 

In addition to humoral responses, a significant activation of CTLs, HTLs, and 
memory T cells was observed, showcasing the vaccine's capability to invoke 
cellular immunity. Dendritic cells, NK cells, and macrophages exhibited 
increased activity post-exposure, contributing to antigen processing and the 
orchestration of adaptive immunity. Cytokine profiling revealed elevated levels 
of IFN-γ, IL-12, and IL-10, markers of a balanced and robust immune response, 
essential for pathogen clearance and long-term immunity. Overall, the 
simulations confirm that three doses generated sufficient immunogenic response. 
However, if the vaccine is administered through 12 consecutive injections, the 
immune system will respond more strongly. essential for enhancing anti-tumor 
responses in cancer immunotherapy. 

The following figures (Figures 16 to 20) represent the in silico simulation of the 
immune response triggered by the designed vaccine after three subsequent 
injections, illustrating key aspects of humoral, cellular, and innate immune 
activation. 
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Figure 16: Humoral Immune Response Simulation. 
Antigen count and antibody titers, including IgM, IgG, and IgG subtypes, 
indicating the activation of primary, secondary, and tertiary immune responses 
after vaccination. 

 

 

Figure 17: B-Cell Immune Response Dynamics. 
(A) Total B-cell population and isotype distribution. (B) B-cell population per state, 
including active, duplicating, internalized, presenting, and anergic cells. 
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Figure 18: T-Cell Mediated Immune Response. 
(A) Helper T-cell population. (B) Cytotoxic T-cell population. 

 

 
Figure 19: Cytotoxic T-Cell States and Innate Immune Activation. 
(A) Cytotoxic T-cell population per state. (B) Dendritic cell population per state. 
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Figure 20: Macrophage Activation and Cytokine Response. 
(A) Macrophages population per state. (B) Cytokine and interleukin concentration 
levels during immune simulation. 

Discussion 
The development of an effective cancer vaccine remains a cornerstone in the 
advancement of immunotherapy, particularly for complex malignancies like 
NPC. This research is driven by the limitations of conventional treatments, which 
often fail to address key mechanisms underlying NPC progression, including 
viral persistence and immune evasion [52]. Addressing these challenges is critical 
to improving patient outcomes. 

In this context, immunotherapy has emerged as a promising avenue, leveraging 
the body’s natural defenses to target cancer cells more precisely. Within 
immunotherapy, the application of immunoinformatics tools has transformed the 
design and development of vaccines. This computational approach enables the 
identification of potent epitopes capable of eliciting robust immune responses, 
streamlining vaccine development while reducing costs and time [53]. The use of 
in silico methods allows researchers to simulate and predict immunological 
interactions, offering a level of precision that was previously unattainable. 

In this study, a multi-epitope vaccine was designed to target EBV-associated 
antigens (EBNA1, LMP1, and LMP2A) and survivin, a tumor-associated protein 
critical to NPC progression. The significance of these proteins in NPC has been 
well-documented [3, 4, 7, 54, 55], supporting their role as therapeutic targets. 
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Multi-epitope vaccines offer several advantages over conventional vaccine 
approaches, including the ability to stimulate both cellular and humoral immune 
responses, improved immunogenicity, and broader population coverage. This 
strategy has been effectively applied in vaccine development for viral infections 
and cancer, showing strong immunogenic potential and tumor protection [28, 45, 
56].  

The results highlighted the vaccine’s strong immunogenic potential, with selected 
CTL, HTL, and LBL epitopes demonstrating high antigenicity, non-allergenicity, 
non-toxicity and comprehensive coverage in human populations. Conservation 
analysis confirmed that the epitopes were 100% conserved across protein 
isoforms and virus strains, ensuring broad applicability. Additionally, the 
inclusion of PADRE sequences ensured a broad CD4+ T-cell response across 
diverse HLA types, and the adjuvant sequence effectively enhanced immune 
activation. PADRE sequences have been shown to enhance vaccine efficacy by 
sustaining T-helper cell activation, improving immunogenicity, and increasing 
population coverage [38, 57]. 

The vaccine construct was enhanced with a fynomer sequence, a high-affinity 
scaffold that strengthens stability and functional efficacy. Previous studies, such 
as Sarvmeili et al. have demonstrated the effectiveness of fynomer-based vaccine 
designs, particularly in a SARS-CoV-2 multi-epitope vaccine, where it improved 
structural stability, antigen-receptor interactions, and solubility [28]. Their 
findings highlight fynomer's potential in optimizing vaccine architecture, 
supporting its incorporation into this NPC vaccine construct to enhance 
immunogenic performance. 

The final vaccine construct designed in this study consists of 514 amino acids 
with an estimated molecular weight of 56 kDa. Using appropriate computational 
tools, its structure was evaluated for stability, solubility, thermostability, and 
other physicochemical properties, confirming its suitability for expression and 
immune system engagement [56].  

Structural analysis plays a pivotal role in vaccine formulation, as secondary and 
tertiary structures influence epitope presentation and immune response induction. 
Secondary structure analysis revealed a well-balanced composition of alpha 
helices, beta strands, and random coils, ensuring proper antigen folding and 
accessibility. The predominance of random coil regions is particularly beneficial, 
as these flexible structures enhance epitope exposure for immune system 
recognition [56]. 
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The 3D structure was modeled and refined using advanced computational tools, 
demonstrating high structural quality. Model validation through Ramachandran 
plot analysis and ProSA scoring (Figure 9) confirmed its native-like 
conformation, reinforcing its potential for proper folding and functionality [38, 
39, 40]. Refinement and validation of the vaccine model are critical for ensuring 
structural integrity and functionality. The achieved scores across different 
validation parameters confirm that the construct is well-folded and possesses a 
native-like conformation, supporting its potential as a viable vaccine candidate. 
Molecular docking analysis was performed to evaluate the interaction and 
binding affinity of the vaccine construct with MHC-I and MHC-II receptors, 
which play a crucial role in antigen presentation and immune activation. The 
docking results demonstrated strong and stable binding, supported by multiple 
salt bridges, hydrogen bonds, and non-bonded contacts, indicating a high degree 
of interaction stability (Figures 11, 12) [45]. Binding affinity analysis revealed 
negative ΔG values, confirming the energetic favorability of the interactions. The 
dissociation constants further validated the strong affinity between the vaccine 
and MHC molecules, reinforcing its potential to enhance antigen presentation and 
stimulate an immune response [45, 47]. 

Structural dynamics and stability of the vaccine-receptor complexes were 
assessed through MD simulations using the iMODS server (Figure 13, 14). The 
results demonstrated system balance, stability, and high flexibility, as indicated 
by low eigenvalues, covariance mapping, and elastic network models, which 
highlighted stable residue correlations and flexible interaction regions. These 
findings confirm that the vaccine construct maintains its structural integrity and 
adaptability, reinforcing its potential to optimize antigen presentation and 
enhance immune responses. A similar approach was employed by Kumar et al. 
[45], who utilized iMODS to assess structural stability and flexibility, further 
validating the effectiveness of this method. 

In order to imitate the usual immune responses, an immune simulation was 
performed, demonstrating the vaccine’s ability to activate both humoral and 
cellular immunity [51]. Following three vaccine doses, a significant increase in 
IgG and IgM titers was observed, indicating the formation of memory B-cells and 
the potential for long-term immunity. Additionally, elevated levels of CTL, HTL, 
and IFN-γ confirmed the vaccine’s ability to induce a robust Th1-dominant 
immune response, which is critical for counteracting the immune-evasive 
mechanisms of NPC and promoting anti-tumor immunity. The immune 
simulation results aligned with expected immune responses, showing a 
progressive enhancement of immune activation with subsequent doses. While 
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three injections successfully generated a strong immunogenic response (Figures 
16 to 20), additional doses could further strengthen and prolong the immune 
response, potentially leading to greater protection and sustained immunity [28, 
45].  

The successful expression of the vaccine construct requires efficient adaptation to 
a suitable host system for recombinant protein production [58]. In this study, the 
sequence was reverse transcribed and optimized for expression in E. coli strain 
K12 before being cloned into the pET-28a(+) vector, a widely used system for 
high-yield protein expression. Codon optimization using JCat resulted in a 1542 
bp cDNA sequence with a Codon Adaptation Index (CAI) of 1.0, indicating 
optimal adaptation for E. coli translation. Additionally, the GC content of 49.09% 
fell within the ideal range for bacterial transcription and translation, further 
suggesting high expression efficiency. 

Scientifically, this vaccine construct holds significant promise. By combining 
EBV-associated antigens with survivin, the design targets both viral and tumor-
specific pathways, potentially reducing tumor progression and recurrence rates. 
This strategy aligns with the broader goal of developing personalized and precise 
cancer treatments.  

However, despite these promising results, the study has limitations. The findings 
are primarily based on in silico analyses, which, while robust, require 
experimental validation. Laboratory studies are needed to test the vaccine’s 
efficacy in vitro and in vivo. Additionally, potential long-term safety and immune 
response durability must be assessed through clinical trials. The reliance on 
computational tools also introduces potential biases based on the algorithms and 
databases used, which should be addressed in future research. 

Looking ahead, the next steps involve initiating preclinical trials to thoroughly 
assess the vaccine's safety and efficacy. Further optimization of delivery systems 
and dosing schedules could enhance its performance. Additionally, evaluating the 
vaccine's effectiveness across diverse patient populations and various stages of 
NPC will be critical to ensure its broader applicability, ultimately providing a 
transformative treatment option for NPC patients worldwide. 

Conclusion 
This study presents a comprehensive approach for designing a novel multi-
epitope vaccine targeting NPC, a cancer strongly associated with EBV infection. 
Utilizing advanced in silico methods, the research identified highly immunogenic 
and conserved epitopes from EBV latent proteins (EBNA1, LMP1, LMP2A) and 
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survivin, incorporating them into a rationally structured vaccine construct. The 
vaccine demonstrated strong antigenicity, non-toxicity, acceptable 
physicochemical properties, and stable structures, alongside strong binding 
interactions with immune receptors (MHC-I, and MHC-II). Immune simulations 
confirmed the vaccine’s ability to activate robust cellular and humoral immune 
responses, ensuring both immediate and long-term immunity. Additionally, codon 
optimization ensured efficient expression in E.coli, making the vaccine viable for 
experimental production. This study underscores the potential of computational 
vaccine design as a cost-effective and efficient strategy for developing targeted 
immunotherapies, paving the way for a new era in personalized cancer 
immunotherapy. 
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