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Abstract 

The highly pathogenic avian influenza virus (H5N1) remains a persistent threat to global public 

health and poultry industries due to its zoonotic potential, rapid mutation rates, and antigenic 

variability. Traditional vaccine development strategies are often limited by time constraints, 

high costs, and inadequate cross-strain protection. In this study, an immunoinformatics-

driven approach was employed to design a novel multi-epitope vaccine against H5N1. Viral 

protein sequences for Hemagglutinin (HA) and Neuraminidase (NA) were retrieved from the 

UniProt database and subjected to comprehensive epitope prediction and screening for T-cell 

(MHC-I and MHC-II) and B-cell (linear and discontinuous) epitopes. The selected epitopes 

were filtered based on their antigenicity, non-allergenicity, non-toxicity, and cytokine-

inducing potential. 

A multi-epitope vaccine construct was designed by assembling these epitopes with 

appropriate adjuvants (MDA5, H9E) and linkers (AAY, GPGPG, KK) to ensure immunogenicity 

and structural stability. Physicochemical analysis predicted a stable and hydrophilic vaccine 

construct, suitable for bacterial expression systems. Tertiary structure modeling using 

RoseTTAFold and subsequent validation (Ramachandran plot, ERRAT, ProSA) confirmed the 

reliability and stability of the protein model. Molecular docking studies revealed strong 

binding interactions with Toll-like receptors TLR7 and TLR8, indicating potential immune 

activation pathways. Immune simulation analysis predicted robust humoral and cellular 

immune responses, with increased IgG, IgM, T-helper cell activity, and IFN-γ cytokine 

production. Codon optimization and in-silico cloning into the pET-26b(+) vector confirmed 

efficient expression compatibility with Escherichia coli systems. 

The results suggest that the designed multi-epitope vaccine construct holds significant 

potential to elicit broad-spectrum immunity against H5N1 and overcome limitations 

associated with traditional vaccines. Future studies involving in-vitro and in-vivo validation 

are essential to confirm the vaccine's immunogenicity, safety, and efficacy. 

Keywords: 

Avian Influenza Vaccine, Bird Flu, H5N1 Virus, Reverse Vaccinology, Immunoinformatics, 

Computational-Driven Vaccinology, Epitope-Based Vaccine, Multi-Epitope Vaccine. 
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1. Introduction 

1.1 Background of Avian Influenza 

Avian influenza, commonly known as bird flu, is an infectious disease caused by influenza A 

viruses that primarily infect avian species, but it can also cross species barriers to infect 

humans and other mammals1. Among avian influenza viruses, highly pathogenic strains such 

as H5N1 and H7N9 are of particular concern due to their severe implications for both public 

health and the global poultry industry2. These strains have been responsible for high mortality 

rates in poultry and sporadic, severe infections in humans, often leading to respiratory 

complications and death3. The World Health Organization categorizes certain avian influenza 

viruses as having pandemic potential because of their zoonotic capability and genetic diversity, 

making them a persistent global health threat4. 

Transmission among birds primarily occurs through contact with contaminated surfaces, 

bodily secretions, or infected individuals, whereas human infection generally arises through 

direct exposure to infected birds, their droppings, or contaminated environments5 . The 

zoonotic potential of these viruses is rooted in their high genetic flexibility; avian influenza 

viruses undergo rapid mutations and genetic reassortment, which occasionally enable them 

to infect humans and, in rare cases, spread between humans6. The H5N1 strain, which caused 

human infections in Hong Kong in 1997, demonstrated the virus's ability to cause severe 

disease, driving global surveillance and containment efforts7. 

Controlling avian influenza is challenging due to the virus's rapid evolution, which allows it to 

evade immune defenses and develop antiviral resistance8. Traditional vaccines against avian 

influenza face significant limitations, as they need to be reformulated and produced to match 

emergent strains2. Consequently, alternative vaccine development approaches, such as 

immunoinformatics, are gaining momentum. Immunoinformatics enables rapid vaccine 

design by identifying conserved epitopes across multiple viral strains, facilitating the creation 

of multi-epitope vaccines that could offer broad, cross-strain immunity9. 

1.2. Importance of Combating Bird Flu 

Combating avian influenza, especially highly pathogenic strains like H5N1, is critical for public 

health and economic stability. Bird flu not only threatens the poultry industry by causing 

devastating losses in poultry populations but also poses significant risks to human health due 

to its zoonotic potential and ability to cause severe, often fatal respiratory illness in humans6. 

Since its first major outbreak in humans in 1997, H5N1 has caused hundreds of cases with 

high mortality rates, leading to concerns about the virus’s potential to mutate into a form 

easily transmissible among humans, thus sparking a potential pandemic10. 
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The economic consequences of avian influenza outbreaks are substantial, impacting poultry 

production and trade, food security, and local economies. Governments often resort to culling 

infected or exposed bird populations, resulting in billions of dollars in losses, particularly in 

countries where poultry farming is a primary livelihood 11 . According to the Food and 

Agriculture Organization (FAO), the direct costs of culling, coupled with trade restrictions and 

decreased consumer demand, lead to extended economic repercussions that strain public 

health resources and hinder global food supply12. 

From a public health perspective, avian influenza viruses are a significant concern because of 

their genetic variability and adaptability. High mutation and reassortment rates in these 

viruses enable them to escape immune responses and develop drug resistance, which 

complicates containment and treatment efforts13. Given the limitations of traditional vaccines 

in addressing rapidly evolving strains, there is an urgent need for innovative vaccine design 

approaches that can provide cross-protection against diverse avian influenza strains. 

Addressing avian influenza is thus critical not only to protect human and animal health but 

also to safeguard economic stability and global food security9. 

1.3. Limitations of Current Vaccines 

Current vaccines against avian influenza, typically inactivated or live-attenuated vaccines, 

present significant limitations in controlling rapidly mutating strains like H5N1. Traditional 

vaccines require exact matching to circulating viral strains to be effective, a challenge 

compounded by the high mutation rate of influenza A viruses, which frequently generate 

antigenic drift and shift14. This necessitates frequent updates to the vaccine composition, 

leading to time delays and substantial costs in vaccine development and production 15 . 

Additionally, while vaccines may reduce mortality in poultry, they are less effective at 

preventing infection or viral shedding, allowing continued transmission among flocks and 

increasing the risk of cross-species spillover16. 

Human vaccines for avian influenza remain largely experimental, with limited availability and 

efficacy. Most are developed to target seasonal influenza and lack the broad protective 

coverage needed to guard against zoonotic avian strains 17 . The reliance on egg-based 

production methods further slows vaccine availability, as this method takes months to yield 

sufficient doses and may introduce mutations that compromise vaccine efficacy18. These 

challenges highlight an urgent need for alternative vaccine platforms that can accommodate 

the genetic variability of avian influenza viruses and provide cross-strain immunity. 

Emerging strategies, such as in silico vaccine design, offer promising alternatives by utilizing 

computational immunoinformatics tools to predict and model conserved epitopes across 

multiple avian influenza strains9. By identifying these conserved regions, multi-epitope 
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vaccines can be constructed to stimulate immune responses that target common antigens 

among diverse virus strains, potentially offering broader protection19. This approach not only 

accelerates the design process but also reduces reliance on traditional vaccine production, 

paving the way for scalable and flexible vaccine solutions against avian influenza. 

1.4. Rationale for In Silico Vaccine Design 

Traditional vaccine development, while effective, is often hindered by lengthy timelines and 

substantial costs, particularly in the context of fast-evolving pathogens like avian influenza 

viruses 20 . Computational tools in vaccine design offer a transformative approach by 

significantly shortening this process. Unlike conventional methods that rely on laboratory-

based pathogen cultivation and testing, in silico approaches utilize vast genomic and 

proteomic data to screen potential vaccine targets rapidly. By leveraging advanced algorithms, 

researchers can predict antigenic regions and identify potential epitopes within a fraction of 

the time required for experimental methods9. This acceleration is especially valuable in 

responding to emergent strains, enabling the development of vaccine candidates that target 

conserved viral components across multiple strains, thus enhancing preparedness against 

pandemics21. 

The use of computational tools not only expedites the identification of immunogenic targets 

but also allows for rapid evaluation of critical parameters such as antigenicity, toxicity, and 

population coverage. This capability reduces the need for initial wet-lab experiments, thus 

conserving resources and enabling researchers to prioritize only the most promising 

candidates for further testing22. 

1.5. Overview of Immunoinformatics 

Immunoinformatics, a specialized field within bioinformatics, applies computational 

techniques to immunology, enabling the virtual exploration and design of vaccines. This 

approach integrates data from genomics, proteomics, and immunology to model host-

pathogen interactions and predict epitopes that can trigger robust immune responses23. One 

of the primary goals of immunoinformatics is to identify epitopes that are likely to be 

recognized by the immune system’s B and T cells. Through tools like the Immune Epitope 

Database (IEDB) and NetMHC, immunoinformatics platforms can predict epitope binding 

affinities to MHC molecules, a key step in assessing immunogenic potential24. 

In the case of avian influenza, where viral proteins undergo frequent mutation, 

immunoinformatics can identify conserved regions that remain stable across strains. 

Designing multi-epitope vaccines based on these conserved elements allows for the 

development of broadly protective vaccines, potentially offering immunity against various 
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viral subtypes21. By combining immunoinformatics with other in silico techniques, researchers 

can model the structural stability and efficacy of vaccine constructs, as well as predict immune 

responses, paving the way for a faster and more efficient vaccine design pipeline. 

1.6. Objective of the Study 

This study aims to design a novel multi-epitope vaccine for avian influenza H5N1 using 

immunoinformatic tools to enhance the speed and precision of vaccine development. 

Specifically, the study seeks to identify conserved B-cell and T-cell epitopes from highly 

immunogenic viral proteins, such as Hemagglutinin and Neuraminidase, that can elicit robust 

immune responses. By leveraging in silico methods, we will construct a vaccine candidate with 

the potential for broad cross-strain protection against multiple avian influenza subtypes. The 

objectives are structured as follows: 

1. Epitope Prediction and Selection: To use immunoinformatics platforms, including the 

Immune Epitope Database, to predict and select conserved epitopes based on their 

binding affinity, immunogenicity, and antigenicity. 

2. Vaccine Construct Design: To assemble the selected epitopes into a multi-epitope 

vaccine construct with appropriate linkers and adjuvants, ensuring structural stability 

and immunogenic potential. 

3. In Silico Evaluation of Vaccine Properties: To assess the construct’s antigenicity, 

allergenicity, and toxicity using computational tools to ensure the vaccine’s safety and 

efficacy. 

4. Structural Modeling and Immune Simulation: To model the three-dimensional 

structure of the vaccine construct and simulate immune responses, thereby predicting 

its effectiveness in generating an immune response across diverse populations. 

5. Codon Optimization and Cloning: To optimize the codon sequence for expression in a 

suitable host system, preparing the vaccine candidate for future experimental 

validation. 

By achieving these objectives, this study aims to establish a proof of concept for using 

immunoinformatics in developing safe, effective, and scalable vaccines against avian 

influenza, potentially contributing to rapid responses against emerging influenza threats. 
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2. Methods 

2.1. Data Collection and Selection 

For this study, the viral protein sequences for hemagglutinin (HA) and neuraminidase (NA) 

from the H5N1 avian influenza A virus were retrieved from the UniProt database25. These 

proteins were chosen due to their critical roles in viral entry and release, as well as their 

immunogenic potential, making them key targets for vaccine development. The sequence 

retrieval process was carried out using the following keywords: "Hemagglutinin and 

Neuraminidase H5N1 avian Influenza A virus". To ensure data quality, the search results were 

filtered by 1) Reviewed Entries, only manually curated entries classified as reviewed (Swiss-

Prot) were included to prioritize high-quality annotations. 2) Completeness, sequences 

annotated as complete were selected to ensure full-length proteins for comprehensive 

analysis. 3) Relevance, results were limited to proteins specific to the H5N1 strain of avian 

influenza A virus. 

The antigenicity of the selected HA and NA protein sequences was evaluated using VaxiJen26 

computational tools. Protein sequences were uploaded in FASTA format. VaxiJen a  is an 

alignment-free tool that predicts antigenicity based on the physicochemical properties of 

proteins, with a threshold of ≥0.4 indicating antigenicity. The results were later analyzed to 

confirm that all selected proteins exhibited strong antigenic potential. 

 

 

a https://www.ddg-pharmfac.net/vaxijen/ 
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Figure 1 Immunoinformatics Approaches Used for Vaccine Design Against H5N1 
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2.2. Epitope Prediction 

The HLA system, located on chromosome 6, plays a pivotal role in the adaptive immune 

system by encoding molecules that present antigenic peptides to T cells. The HLA system is 

divided into two main classes: 1). HLA Class I: Includes HLA-A, HLA-B, and HLA-C molecules, 

which present intracellular peptides to CTLs. 2). HLA Class II: Includes HLA-DR, HLA-DQ, and 

HLA-DP molecules, which present extracellular peptides to HTLs27. 

2.2.1. MHC-I epitope prediction  

For this study, the prediction of T-cell epitopes covered wide demographic groups by choosing 

the most prevalent HLA alleles in the global population to ensure optimal applicability. Full 

HLA class I alleles reference set have been selected, which are the following: HLA-A*01:01, 

HLA-A*02:01, HLA-A*02:03, HLA-A*02:06, HLA-A*03:01, HLA-A*11:01, HLA-A*23:01, HLA-

A*24:02, HLA-A*26:01, HLA-A*30:01, HLA-A*30:02, HLA-A*31:01, HLA-A*32:01, HLA-

A*33:01, HLA-A*68:01, HLA-A*68:02, HLA-B*07:02, HLA-B*08:01, HLA-B*15:01, HLA-B*35:01, 

HLA-B*40:01, HLA-B*44:02, HLA-B*44:03, HLA-B*51:01, HLA-B*53:01, HLA-B*57:01, HLA-

B*58:01, HLA-C*04:01, HLA-C*06:02, HLA-C*07:01, HLA-C*12:02.  

Epitope prediction for HLA class I molecules was conducted using the NetMHCpan_el 

algorithm28, which identifies peptides with strong binding affinities to the selected alleles. 

This method provides binding affinity scores and percentile ranks, enabling the selection of 

high-confidence epitopes based on their potential to elicit robust immune responses. 

Identified epitopes were further filtered based on their antigenicity and safety, ensuring the 

selection of non-toxic and non-allergenic candidates29. The IC50 values for predicted peptides 

were not explicitly calculated. However, based on the very low percentile ranks (≤2%) and 

high binding scores obtained from NetMHCpan_el, the selected peptides are strongly 

indicative of high-affinity binders, with estimated IC50 values of ≤50 nM. 

2.2.2. MHC-II epitope prediction 

To identify potential HTL epitopes, predictions were implemented to the full HLA class II 

alleles reference set globally. The full reference set were HLA-DRB1*01:01, HLA-DRB1*03:01, 

HLA-DRB1*04:01, HLA-DRB1*04:05, HLA-DRB1*07:01, HLA-DRB1*08:02, HLA-DRB1*09:01, 

HLA-DRB1*11:01, HLA-DRB1*12:01, HLA-DRB1*13:02, HLA-DRB1*15:01. Selecting these 

alleles ensured broader population coverage and relevance within wider demographic groups. 

Epitope prediction was conducted using the NetMHCIIpan algorithm30, an advanced tool for 

pan-allelic MHC-II binding affinity prediction. This algorithm identifies peptides capable of 

binding HLA-DR molecules based on their binding affinity, providing percentile ranks and 
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predicted IC50 values to indicate binding strength. The process included the following steps: 

1). Input Data: Protein sequences for HA and NA were submitted in FASTA format. 2). 

Selection of Alleles: Predictions were restricted to the full HLA reference set. 3). Prediction 

Parameters: Peptides of 15 amino acids were generated and analyzed for binding to the 

selected alleles. 4). Binding affinity thresholds were applied: Peptides with score > 0.9 were 

classified as high-affinity binders. Percentile ranks ≤ 2% were used to prioritize strong binders. 

5). Data Filtering: Predicted epitopes were further screened for antigenicity and safety using 

additional computational tools to ensure their potential as vaccine candidates. The predicted 

MHC-II epitopes represent peptides with strong binding affinities to HLA-DR molecules, 

indicating their capability to stimulate helper T-cell responses effectively. 

2.2.3. B-cell Epitopes prediction - Linear 

The prediction of linear B-cell epitopes was conducted using the ABCpred server31, a reliable 

immunoinformatics tool for identifying linear B-cell epitopes. The amino acid sequences of 

the vaccine candidate proteins HA and NA were submitted to the server for 16-mer epitope 

prediction. A threshold of 0.51 was applied to filter epitopes with higher probabilities of 

inducing B-cell-mediated immune responses. The ABCpred serverb employs trained recurrent 

neural networks to predict and rank epitopes. Peptides with higher scores indicate a higher 

likelihood of functioning as effective epitopes. 

  

 

 

b https://webs.iiitd.edu.in/raghava/abcpred/index.html 
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2.3. Epitope Screening and Characterization 

To ensure the immunological suitability of the predicted epitopes, a series of screening and 

characterization steps were performed. The screening workflow included predictions of 

antigenicity, allergenicity, toxicity, and cytokine inducibility, utilizing various computational 

tools as outlined below: 

1. Antigenicity Prediction: All epitope sequences (MHC-I, MHC-II, and Linear B-cell) were 

submitted to the VaxiJen v2.0 server to assess their antigenic potential. A threshold of 

0.5 was applied to classify epitopes as antigenic. VaxiJen is an alignment-independent 

tool based on the physicochemical properties of proteins, providing accurate 

predictions of antigenicity with a reported accuracy exceeding 70%26. 

2. Allergenicity Assessment: The AllerTOP v2.0 serverc was used to identify and exclude 

allergenic epitopes. This tool employs an alignment-free approach, analyzing key 

physicochemical attributes of proteins to predict their allergenic potential with 

approximately 94% sensitivity32. 

3. Toxicity Prediction: ToxinPredd was employed to evaluate the toxicity of the selected 

epitopes. The support vector machine (SVM) approach was utilized with default 

parameters to differentiate between toxic and non-toxic peptides. Only non-toxic 

epitopes were retained for further analysis33. 

4. Class I Immunogenicity: MHC-I epitopes were assessed using the Class I 

Immunogenicity tool available on the IEDB Analysis Resourcee. This tool predicts the 

ability of peptides to elicit immune responses by binding to MHC-I molecules and 

activating CTLs34. 

5. IFN-γ Inducibility: MHC-II epitopes were submitted to the IFN-γ Epitope Serverf, which 

employs an SVM-based method to predict interferon-gamma-inducing peptides. IFN-

γ is a critical cytokine regulating adaptive immune responses35. 

6. IL-4 Inducibility: IL4predg, an in-silico platform for designing and predicting interleukin-

4-inducing peptides, was used to assess the ability of MHC-II epitopes to stimulate IL-

4 production36.  

 

 

c https://www.ddg-pharmfac.net/allertop_test/ 

d https://webs.iiitd.edu.in/raghava/toxinpred/protein.php 

e http://tools.iedb.org/immunogenicity/ 

f https://webs.iiitd.edu.in/raghava/ifnepitope/predict.php 

g https://webs.iiitd.edu.in/raghava/il4pred/predict.php 
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2.4. Population Coverage Calculation: 

The Population Coverage Calculation was performed using the IEDB Population Coverage 

Toolh. This tool assesses the predicted population coverage of selected T-cell epitopes based 

on their binding to HLA alleles. The full HLA reference set was selected to include the most 

frequent MHC class I (CTL epitopes) and MHC class II (HTL epitopes) alleles globally. The 

analysis was conducted for the “World” region to assess global coverage, ensuring a 

comprehensive evaluation.  

The aim was to predict the percentage of the global population that can recognize the 

selected epitopes based on HLA allele distribution. This calculation also includes: 1). Average 

hits: The mean number of epitope-HLA combinations recognized by individuals in the 

population. 2). PC90: The minimum number of epitope-HLA combinations recognized by 90% 

of the population. The selected CTL and HTL epitopes were entered into the Population 

Coverage Tool. Separate analyses were conducted for MHC Class I, MHC Class II, and their 

combined coverage. 

2.5. Epitope Conservancy Analysis 

The degree of conservancy for the selected epitopes of HA and NA proteins was analyzed 

using the IEDB Conservancy Analysis Tooli, 37. This tool allows for determining the level of 

sequence conservancy of epitopes across multiple related protein sequences. Conservancy 

was evaluated against the sequences obtained from UniProt to ensure broad strain coverage. 

The sequence identity threshold was set to determine conservation, ranging from 0% (non-

conserved) to 100% (fully conserved). Peptide lengths and exact sequence matching were 

considered, allowing for the identification of conserved regions across strains or related 

sequences. Conservancy was calculated as the percentage of sequences in the given database 

that matched each epitope at a specified identity threshold. Results provided insight into the 

degree of epitope conservation across various strains, identifying which epitopes were highly 

conserved. Highly conserved epitopes are crucial in vaccine design as they are less prone to 

mutation and are likely to elicit immune responses across a broader range of viral strains, 

facilitating the identification of suitable candidates for vaccine development. Conversely, 

strain-specific epitopes may have limited utility but could be effective for targeting specific 

variants.  

 

 

hh http://tools.iedb.org/population/ 

i http://tools.iedb.org/conservancy/ 
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2.6. Construction of the Multi-Epitope Vaccine:  

The multi-epitope vaccine was designed to overcome the inherent non-immunogenicity of 

short peptides, which, when administered as standalone vaccines, fail to elicit strong immune 

responses 38 . To address this limitation, a potent immune-stimulatory adjuvant was 

incorporated at the N- and C-terminal of the construct to activate both the innate and 

adaptive immune systems, ensuring robust immunogenicity. Additionally, linkers were 

utilized to simulate the vaccine's natural antigen processing, enhance epitope separation, and 

optimize immune responses39. 

The vaccine construct consisted of carefully screened B-cell, CTL, and HTL epitopes, which 

were assembled in a sequential manner. Specific linkers were chosen to optimize the 

immunological processing and presentation of these epitopes, shown in Figure 2. AAY linker 

was employed to separate CTL epitopes. The AAY sequence facilitates efficient proteasomal 

cleavage and subsequent presentation by MHC class I molecules, ensuring a strong cytotoxic 

T-cell response39. GPGPG linker was used to connect HTL epitopes. This flexible sequence 

prevents the formation of junctional epitopes and maintains structural integrity, promoting 

proper presentation by MHC class II molecules for helper T-cell activation38. KK linker was 

applied between B-cell epitopes to stabilize the peptide structure and enhance the 

accessibility of linear B-cell epitopes for antibody recognition40. 

To further boost immunogenicity, the adjuvants MDA5 and H9E were incorporated at the N-

terminus of the vaccine construct, linked using a rigid EAAAK linker. The MDA5 adjuvant, a 

cytoplasmic pattern recognition receptor, was selected for its ability to activate innate 

immunity by recognizing viral RNA and stimulating type I interferons, which are critical for 

antiviral defense31. The H9E epitope, derived from the influenza hemagglutinin protein, was 

included to stimulate specific humoral and T-helper cell responses, particularly targeting 

avian influenza viruses38. The EAAAK linker was employed to spatially separate the adjuvants 

from the epitopes, maintaining their functional independence and ensuring proper structural 

conformation of the vaccine construct39. 
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The final vaccine construct was subjected to comprehensive in silico analysis to validate its 

antigenicity and non-allergenicity, ensuring its suitability as a safe and effective immunogen 

for further development. 

  

 Figure 2 The structural arrangement of B and T cell epitopes along with linkers and adjuvant for the final 
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2.7. Specifications Prediction of the Vaccine Construct: 

2.7.1. Physicochemical Property Analysis 

The physical and chemical properties of the vaccine construct were analyzed using the 

ProtParam tool j, 41. This analysis included assessments of amino acid composition, molecular 

weight, theoretical isoelectric point (pI), instability index, aliphatic index, extinction 

coefficient, atomic composition, and the grand average of hydropathicity (GRAVY). The 

instability index, an essential metric for protein stability, was calculated, with protein 

candidates exhibiting an instability index greater than 40 being excluded as unstable. This 

selection criterion aimed to identify stable vaccine candidates suitable for subsequent 

experimental studies41. 

2.7.2. Secondary Structure Prediction 

The secondary structural attributes of the vaccine construct, such as α-helices, β-strands, and 

random coils, were predicted using SOPMAk, and NetSurfP-2.0l. SOPMA predicts secondary 

structure based on probability matrices derived from amino acid sequences42, while NetSurfP-

2.0 incorporates sequence-based learning to predict secondary structures and surface 

accessibility, enhancing the understanding of the vaccine construct's structural properties43. 

2.7.3. Solubility Prediction 

The SOLpro serverm  was utilized to forecast the solubility of the vaccine construct when 

expressed in Escherichia coli. SOLpro employs a two-stage support vector machine (SVM) 

architecture, where classifiers in the initial layer assess sequence features, and the final 

classifier integrates the outputs to predict solubility with associated probabilities44. Additional 

solubility predictions were performed using Protein-Sol, a web-based suite for theoretical 

solubility calculations, to corroborate the findings45. 

2.7.4. Antigenicity, Allergenicity, and Toxicity Assessments 

The antigenicity of the vaccine construct was assessed using the VaxiJen server (threshold set 

at 0.5), which predicts antigenicity independent of sequence alignment, facilitating the 

identification of potential vaccine candidates26. Allergenicity was evaluated using AllerTOP v. 

 

 

j https://web.expasy.org/protparam/ 

k https://npsa.lyon.inserm.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html 

l https://services.healthtech.dtu.dk/services/NetSurfP-2.0/ 

m https://scratch.proteomics.ics.uci.edu/ 
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2.0, which predicts allergens based on physicochemical properties and machine learning 

techniques46. The toxicity of selected sequences was analyzed using ToxDLn, a deep learning-

based approach for in silico prediction of protein toxicity from sequence alone. 

2.7.5. Homology Analysis 

To ensure minimal cross-reactivity with human proteins and reduce the risk of autoimmune 

reactions, the vaccine construct was subjected to homology analysis against the Homo 

sapiens proteome. BLASTp (Basic Local Alignment Search Tool for proteins, 

blast.ncbi.nlm.nih.gov) was employed for this purpose, and sequences with significant 

homology were excluded to enhance the vaccine's specificity to the target pathogen47. 

2.8. Tertiary Structure Prediction and Validation 

The tertiary structure prediction and validation of the designed multi-epitope vaccine were 

carried out through a systematic workflow involving computational tools to ensure accurate 

structural modeling, refinement, and validation. 

2.8.1. 3D Structure Prediction 

The 3D structure of the multi-epitope vaccine was predicted using a combination of PHYRE2 

(Protein Homology/Analogy Recognition Engine V2.0) server and RoseTTAFold, leveraging the 

strengths of both tools to enhance model accuracy and reliability. 

PHYRE2o employs advanced remote homology detection techniques by combining profile-

profile alignment and fold recognition algorithms to generate accurate structural models 

based on homologous protein templates from PDB48. It also predicts ligand-binding sites and 

evaluates the functional and structural implications of amino acid substitutions within the 

modeled protein sequence. The submitted protein sequence was analyzed using the intensive 

modeling mode of PHYRE2, which provides a refined 3D model optimized for structural 

integrity. 

In parallel, RoseTTAFold p , a deep-learning-based protein structure prediction tool, was 

employed to complement the PHYRE2-derived model. RoseTTAFold integrates end-to-end 

three-track neural network architecture to simultaneously consider protein sequence, 

distance constraints, and structural features for accurate structure modeling49. This approach 

significantly improves structural prediction for proteins with limited homologous templates 

 

 

n http://www.csbio.sjtu.edu.cn/bioinf/ToxDL/ 

o https://www.sbg.bio.ic.ac.uk/phyre2/ 

p https://robetta.bakerlab.org/ 
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in the PDB database. The outputs from both servers were carefully compared and evaluated 

to ensure structural consistency and reliability, and the superior model was selected for 

subsequent refinement and validation. 

2.8.2. Model Validation 

The structural model obtained from RoseTTAFold was subjected to validation using the SAVES 

v6.1 serverq, which integrates multiple structural evaluation tools, including PROCHECK and 

ERRAT, to assess the stereochemical quality and structural reliability of protein models. 

PROCHECK server, which generates a Ramachandran plot to assess the stereochemical quality 

of the protein model. The Ramachandran plot illustrates the distribution of the backbone 

dihedral angles (phi (φ) and psi (ψ)) of amino acid residues, categorizing them into favored, 

allowed, and outlier regions50. The percentage of residues in these regions was analyzed to 

evaluate the quality of the predicted tertiary structure and to identify potential irregularities 

or structural deviations. 

Additionally, ERRAT was used to calculate the Overall Quality Factor, which reflects the 

model's structural reliability based on non-bonded atomic interactions. Higher ERRAT scores 

indicate better structural quality, with values above 90% generally considered excellent. 

2.8.3. Model Refinement 

To enhance the stability and structural accuracy of the predicted model, GalaxyRefiner was 

employed. This tool applies iterative structure perturbation and subsequent relaxation 

through molecular dynamics simulation, resulting in improved structural geometry and side-

chain packing51. Both pre- and post-refinement models were analyzed to ensure significant 

structural improvements.  Following refinement, the protein structure underwent validation 

using the ProSAs (Protein Structure Analysis), which is a widely accepted tool for identifying 

potential errors in 3D protein models by calculating the Z-score of the structure52. The Z-score 

indicates the overall quality of the protein structure by comparing its total energy deviation 

with a database of native protein conformations. Z-scores that fall outside the range 

characteristic of experimentally derived protein structures suggest potential structural 

anomalies. 

 

 

q https://saves.mbi.ucla.edu/ 

r https://galaxy.seoklab.org/ 

s https://prosa.services.came.sbg.ac.at/prosa.php 
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2.9. Defining Discontinuous B-cell Epitopes (Conformational) 

Conformational B-cell epitopes, essential for eliciting a humoral immune response, were 

identified from the refined 3D protein vaccine model using the Ellipro servert. Ellipro predicts 

discontinuous epitopes based on the protein's tertiary structure by combining geometric 

properties and protrusion indices to rank potential epitopic regions, enabling the selection of 

immunologically relevant conformational epitopes53. 

2.10. Immune Response Simulation 

The C-ImmSim serveru was employed to simulate the immune response of the multi-epitope 

vaccine construct. C-ImmSim models immune interactions across three anatomical 

compartments: the bone marrow, where B-cell production occurs; the thymus, responsible 

for T-cell maturation; and the lymph node, where antigen presentation and immune 

activation take place. The simulation integrates immunological parameters, including antigen 

concentration, cytokine release, and immune cell proliferation, to predict the vaccine's 

immunogenic profile over time (Rapin et al., 2010). 

  

 

 

t http://tools.iedb.org/ellipro/ 

u https://kraken.iac.rm.cnr.it/C-IMMSIM/index.php 
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2.11. Molecular Docking with TLR7&8 

2.11.1. Rationale for Docking with TLR7 and TLR8 

TLRs are critical components of the innate immune system, responsible for recognizing 

pathogen-associated molecular patterns (PAMPs) and initiating downstream signaling 

cascades that result in immune activation. Among these, TLR7 and TLR8 are intracellular 

receptors located primarily in endosomal compartments and are known to detect single-

stranded RNA (ssRNA) molecules. Their activation triggers the production of pro-

inflammatory cytokines and type I interferons, which are essential for orchestrating antiviral 

responses54. 

In the context of vaccine design, targeting TLR7 and TLR8 can enhance the immunogenicity of 

the vaccine construct, thereby improving the activation of both innate and adaptive 

immunity. Therefore, molecular docking was performed between the designed vaccine 

construct and TLR7 and TLR8 to predict and evaluate their potential interaction patterns, 

binding affinity, and structural stability55. 

2.11.2. Structure Retrieval of TLR7 and TLR8 

The 3D structures of TLR7 and TLR8 were retrieved from the PDB as they provide 

experimentally resolved high-resolution structures. TLR7 (PDB ID: 7CYN, CryoEM of TLR7 

complexed with ligand), TLR8 (PDB ID: 3W3G, Crystal structure of TLR8 unliganded form). The 

structures were downloaded in PDB format, and any non-essential ligands, water molecules, 

and ions were removed using Chimerav to prepare the receptors for docking. 

The 3D structure of the vaccine construct was previously modeled and refined, the top-ranked 

model was selected based on structural validation parameters. 

2.11.3. Docking Software Selection 

Molecular docking was performed using HDOCK w , a widely recognized docking tool for 

protein-protein interactions. HDOCK uses a hybrid algorithm that combines template-based 

modeling with ab initio docking, making it highly suitable for predicting receptor-ligand 

interactions. 

 

 

v https://www.cgl.ucsf.edu/chimera/ 

w http://hdock.phys.hust.edu.cn/ 
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2.11.4. Docking Procedure 

The prepared TLR7 and TLR8 receptor structures and the vaccine construct were uploaded to 

the HDOCK server. TLR7 and TLR8 were designated as receptors, while the vaccine construct 

was set as the ligand. Default parameters were selected, with a focus on global docking 

followed by local optimization. The docking process generated multiple poses ranked based 

on binding energy scores. 

2.11.5 Docking Results Analysis 

The docking results were analyzed based on the binding energy scores provided by HDOCK, 

where lower energy scores indicated more stable interactions. The top-ranked docking poses 

for TLR7-vaccine construct and TLR8-vaccine construct complexes were visualized and 

analyzed using PyMOLx. Key interaction features such as hydrogen bonds, and salt bridges, at 

the binding interface were identified and highlighted. 

2.12. Codon Optimization and In Silico Cloning 

The gene sequence encoding the recombinant vaccine construct was optimized using the 

GeneScript y  codon optimization tool to ensure efficient expression in the chosen host, 

Escherichia coli K12. Since the expression host differs from the natural host of the influenza 

virus, codon optimization was essential to address discrepancies in codon usage preference 

between these organisms. The optimization process adjusted the gene sequence based on 

the codon usage table for E. coli K12, enhancing translational efficiency and reducing the 

likelihood of translational errors or ribosomal stalling. 

Two primary metrics were considered during the codon optimization process. First, Codon 

Adaptation Index (CAI), which measures the similarity of codon usage between the optimized 

gene and the preferred codons of the expression host. A CAI value close to 1.0 indicates 

optimal adaptation, predicting higher levels of protein expression in the selected host56. 

Second, GC Content was adjusted to fall within the 30–70% range, an ideal window that 

ensures both efficient transcription and stable mRNA secondary structure, reducing the risk 

of translation inhibition57.  

To facilitate subsequent in-silico cloning, restriction enzyme sites for NdeI and XhoI were 

manually introduced at the 5′ and 3′ ends of the optimized gene sequence, respectively. These 

 

 

x https://pymol.org/ 

y https://www.genscript.com/ 
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restriction sites are compatible with the multiple cloning site (MCS) of the pET-26b(+) vector, 

enabling seamless directional cloning. 

The optimized gene sequence was cloned into the pET-26b(+) vector using SnapGene 

softwarez. The vector and gene insert were digested with NdeI and XhoI restriction enzymes, 

followed by ligation to ensure correct orientation and preservation of the open reading frame 

(ORF). The final construct was validated in silico by analyzing restriction digestion patterns 

and confirming sequence integrity, ensuring suitability for downstream expression and 

purification experiments.  

 

 

z https://www.snapgene.com/ 
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3. Results 

3.1. Chosen Dataset 

By applying the criteria mentioned in the methods, the search results were narrowed down 

to 11 proteins that met the inclusion standards. These proteins are detailed in Table 1, 

including their UniProt accession numbers, and associated metadata. 

Table 1 Chosen proteins from UniProt with their references and accession number 

Accession Nr Protein Names Organism PubMed ID 

Q6DPL2 Neuraminidase Influenza A virus (strain A/Vietnam/1203/2004 
H5N1) 

15241415 

16318689 

15681421 

16915235 

18480754 

Q710U6 Neuraminidase 

 

Influenza A virus (strain A/Chicken/Scotland/1959 
H5N1) 

16439620 

15567494 

16192481 

15744059 

Q809V0 Neuraminidase 

 

Influenza A virus (strain A/Silky Chicken/Hong 
Kong/SF189/2001 H5N1 genotype A) 

12077307 

Q809V2 Neuraminidase 

 

Influenza A virus (strain A/Chicken/Hong 
Kong/FY150/2001 H5N1 genotype D) 

12077307 

Q809U7 Neuraminidase 

 

Influenza A virus (strain A/Chicken/Hong 
Kong/715.5/2001 H5N1 genotype E) 

12077307 

Q9W7Y7 Neuraminidase 

 

Influenza A virus (strain A/Hong Kong/156/1997 
H5N1 genotype Gs/Gd) 

9482438 

9430591 

9658115 

15567494 

16192481 

15744059 

P09345 Hemagglutinin Influenza A virus (strain A/Chicken/Scotland/1959 
H5N1) 

3375087 

16439620 

Q8QPL1 Hemagglutinin Influenza A virus (strain A/Duck/Hong 
Kong/2986.1/2000 H5N1 genotype C) 

11878904 

https://www.uniprot.org/uniprotkb/Q6DPL2/entry
https://www.uniprot.org/taxonomy/284218
https://www.uniprot.org/taxonomy/284218
https://www.uniprot.org/citations/15241415
https://www.uniprot.org/citations/16318689
https://www.uniprot.org/citations/15681421
https://www.uniprot.org/citations/16915235
https://www.uniprot.org/citations/18480754
https://www.uniprot.org/uniprotkb/Q710U6/entry
https://www.uniprot.org/taxonomy/402527
https://www.uniprot.org/taxonomy/402527
https://www.uniprot.org/citations/16439620
https://www.uniprot.org/citations/15567494
https://www.uniprot.org/citations/16192481
https://www.uniprot.org/citations/15744059
https://www.uniprot.org/uniprotkb/Q809V0/entry
https://www.uniprot.org/taxonomy/196430
https://www.uniprot.org/taxonomy/196430
https://www.uniprot.org/citations/12077307
https://www.uniprot.org/uniprotkb/Q809V2/entry
https://www.uniprot.org/taxonomy/222142
https://www.uniprot.org/taxonomy/222142
https://www.uniprot.org/citations/12077307
https://www.uniprot.org/uniprotkb/Q809U7/entry
https://www.uniprot.org/taxonomy/196434
https://www.uniprot.org/taxonomy/196434
https://www.uniprot.org/citations/12077307
https://www.uniprot.org/uniprotkb/Q9W7Y7/entry
https://www.uniprot.org/taxonomy/130763
https://www.uniprot.org/taxonomy/130763
https://www.uniprot.org/citations/9482438
https://www.uniprot.org/citations/9430591
https://www.uniprot.org/citations/9658115
https://www.uniprot.org/citations/15567494
https://www.uniprot.org/citations/16192481
https://www.uniprot.org/citations/15744059
https://www.uniprot.org/uniprotkb/P09345/entry
https://www.uniprot.org/taxonomy/402527
https://www.uniprot.org/taxonomy/402527
https://www.uniprot.org/citations/3375087
https://www.uniprot.org/citations/16439620
https://www.uniprot.org/uniprotkb/Q8QPL1/entry
https://www.uniprot.org/taxonomy/176674
https://www.uniprot.org/taxonomy/176674
https://www.uniprot.org/citations/11878904
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O56140 Hemagglutinin 

 

Influenza A virus (strain A/Hong Kong/156/1997 
H5N1 genotype Gs/Gd) 

9482438 

9658115 

9430591 

Q9Q0U6 Hemagglutinin 

 

Influenza A virus (strain 
A/Goose/Guangdong/1/1996 H5N1 genotype 
Gs/Gd) 

10484749 

O89746 Hemagglutinin 

 

Influenza A virus (strain A/Chicken/Hong 
Kong/220/1997 H5N1 genotype Gs/Gd) 

9658115 

The antigenicity of all selected proteins was evaluated using ANTIGENpro and VaxiJen, and all 

proteins scored above 0.92 in ANTIGENpro and above 0.48 in VaxiJen, indicating strong 

antigenic potential as antigenic candidates for vaccine design. 

  

https://www.uniprot.org/uniprotkb/O56140/entry
https://www.uniprot.org/taxonomy/130763
https://www.uniprot.org/taxonomy/130763
https://www.uniprot.org/citations/9482438
https://www.uniprot.org/citations/9658115
https://www.uniprot.org/citations/9430591
https://www.uniprot.org/uniprotkb/Q9Q0U6/entry
https://www.uniprot.org/taxonomy/93838
https://www.uniprot.org/taxonomy/93838
https://www.uniprot.org/taxonomy/93838
https://www.uniprot.org/citations/10484749
https://www.uniprot.org/uniprotkb/O89746/entry
https://www.uniprot.org/taxonomy/100834
https://www.uniprot.org/taxonomy/100834
https://www.uniprot.org/citations/9658115
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3.2. Epitope Prediction 

3.2.1. MHC-I Epitope Prediction 

High-affinity MHC-I binding peptides were identified for both HA and NA proteins using the 

NetMHCpan_el prediction method. For hemagglutinin and neuraminidase proteins, many 

peptides were identified with high binding scores >0.9 across multiple HLA alleles, as 

summarized in Table 2 and 3. These peptides exhibited strong binding affinities and low 

percentile ranks (≤ 0.05), indicating their potential to elicit robust CTL responses. Notably, 

several peptides were conserved across multiple protein sequences, underscoring their 

relevance as cross-strain vaccine targets. The antigenicity and toxicity of all selected epitopes 

was evaluated using VaxiJen and ToxinPred, and all results shown in Tables 2&3. 

Table 2 High-Affinity MHC-I Binding Peptides Predicted for Hemagglutinin Proteins with their Antigenicity and Toxicity prediction. Seq 
Num refers to the corresponding HA proteins: (Seq 1: O56140, Seq 2: O89746, Seq 3: P09345, Seq 4: Q8QPL1, Seq 5: Q9Q0U6) 

 Peptide Score Percentile Rank Seq Num Antigenicity Probability Toxicity 

RSIPEIATR 0.953 0.01 3 0.7685 Antigen Non-Toxin 

NTQFEAVGR 0.918 0.06 1,2,4,5 1.2894 Antigen Non-Toxin 

TLNQRLVPK 0.897 0.03 4 0.7616  Antigen Non-Toxin 

REEISGVKL 0.979 0.01 1,2,3,4,5 0.6846 Antigen Non-Toxin 

LYDKVRLQL 0.906 0.01 1,2,3,4,5 0.6437  Antigen Non-Toxin 

CPYHGRSSF 0.924 0.04 5 1.8587 Antigen Non-Toxin 

CPYIGRSSF 0.898 0.04 3 1.9088 Antigen Non-Toxin 

CPYLGRSSF 0.921 0.04 1 1.921 Antigen Non-Toxin 

CPYQGKSSF 0.954 0.02 4 1.7085 Antigen Non-Toxin 

MPFHNIHPL 0.946 0.02 1 1.2633  Antigen Non-Toxin 

QSGRMEFFW 0.966 0.05 1 1.0528 Antigen Non-Toxin 

RLVPKIATR 0.963 0.01 4 1.0086  Antigen Non-Toxin 

TIMEKNVTV 0.942 0.02 1 0.716 Antigen Non-Toxin 

VLATGLRNV 0.943 0.02 3 0.8085  Antigen Non-Toxin 

AIMKSGLAY 0.925 0.01 3 -0.1689 Non-Antigen Non-Toxin 

SSFFRNVVW 0.980 0.03 1 -0.0903 Non-Antigen Non-Toxin 

WLIKKNSTY 0.905 0.02 2 0.362 Non-Antigen Non-Toxin 
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Table 3 High-Affinity MHC-I Binding Peptides for Neuraminidase Proteins with their Antigenicity and Toxicity prediction. Seq Num refer 
to the corresponding HA proteins: (Seq1: Q6DPL2, Seq2: Q710U6, Seq3: Q809U7, Seq4: Q809V0, Seq5: Q809V2, Seq6: Q9W7Y7) 

Peptide Score Percentile Rank Seq Num Antigenicity Probability Toxicity 

LQIGNIISV 0.969 0.01 6 1.2507 Antigen Non-Toxin 

NSDTVGWSW 0.930 0.04 1,2,3,4,5,6 0.6144 Antigen Non-Toxin 

VQHPELTGV 0.908 0.03 3 1.305 Antigen Non-Toxin 

MVIGIVSLM 0.897 0.02 3,4,5 1.1294  Antigen Non-Toxin 

AYGIKGFSF 0.928 0.02 5 1.2968  Antigen Non-Toxin 

AYGVKGFSF 0.932 0.02 1,2,4,6 1.2975  Antigen Non-Toxin 

SPSPYNSRF 0.907 0.04 2 0.9266 Antigen Non-Toxin 

TETDSSFSL 0.983 0.01 6 1.275 Antigen Non-Toxin 

EAPSPYNSR 0.911 0.07 1,3,4,5,6 0.5467 Antigen Non-Toxin 

ESPSPYNSR 0.908 0.07 2 0.6920  Antigen Non-Toxin 

CPINGWAVY 0.922 0.03 1 -0.24 Non-Antigen Non-Toxin 

CPISGWAVY 0.945 0.02 3 0.2021 Non-Antigen Non-Toxin 

ELDAPNYHY 0.955 0.02 1 0.2911  Non-Antigen Non-Toxin 

IITDTIKSW 0.936 0.08 1 -0.432 Non-Antigen Non-Toxin 

NPNQKIITI 0.916 0.02 1 0.3888 Non-Antigen Non-Toxin 

SACHDGISW 0.944 0.04 6 -0.2518 Non-Antigen Non-Toxin 

SSLCPINGW 0.942 0.07 1 0.1678  Non-Antigen Non-Toxin 

3.2.2. MHC-II epitope prediction 

The MHC-II binding prediction revealed several high-affinity peptides across the selected HA 

and NA proteins. Each peptide predicted for MHC-II binding is characterized by its unique 

sequence, a core binding region responsible for interaction with HLA molecules, and a binding 

score, where higher values >0.9 indicate stronger binding. The percentile rank reflects the 

relative affinity of the peptide, with ranks ≤2% indicating high-affinity binders. Peptides were 

associated with specific proteins and HLA-DR alleles, emphasizing their relevance for vaccine 

design. These key details are summarized in Tables 4 and 5. Also, the antigenicity and toxicity 

of all selected epitopes were evaluated using VaxiJen and ToxinPred. 

Table 4 High-Affinity, Antigenic, and Non-Toxic MHC-II Binding Peptides Predicted for Hemagglutinin Proteins with their Antigenicity 
score. Seq Num refers to the corresponding HA proteins: (Seq1: O56140, Seq2: O89746, Seq3: P09345, Seq4: Q8QPL1, Seq5: Q9Q0U6) 

Peptide Seq Num Score rank Antigenicity Probability Toxicity 

SSMPFHNIHPLTIGE 1 0.9381 0.08 1.3426  Antigen Non-Toxin 
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APEYAYKIVKKGDST 1,2 0.9793 0.01 0.6221  Antigen Non-Toxin 

APEYAYKIVKKGDST 1,2 0.966 0.01 0.6221  Antigen Non-Toxin 

SSMPFHNIHPHTIGE 3 0.944 0.07 0.7154  Antigen Non-Toxin 

IAPEYAYKIVKKGDS 1,2,3,4,5 0.9292 0.04 0.7989  Antigen Non-Toxin 

NSSMPFHNIHPHTIG 3 0.9024 0.15 0.8068  Antigen Non-Toxin 

NTQFEAVGREFNNLE 1,2,4,5 0.916 0.31 1.1300  Antigen Non-Toxin 

NTQFKAVGKEFNNLE 3 0.9481 0.13 1.0860  Antigen Non-Toxin 

GKEFNNLERRVENLN 3 0.9184 0.29 0.8247  Antigen Non-Toxin 

EWSYIVEKASPANDL 1,2,4,5 0.9875 0.01 0.5948  Antigen Non-Toxin 

GREFNNLERRIENLN 1,2,4,5 0.897 0.47 0.8032  Antigen Non-Toxin 

APEYAYKIVKKGDSA 3 0.9812 0.01 0.6399  Antigen Non-Toxin 

EYAYKIVKKGDSAIM 3 0.9851 0.01 0.6036  Antigen Non-Toxin 

MNTQFKAVGKEFNNL 3 0.9144 0.32 0.9841  Antigen Non-Toxin 

PEWSYIVEKASPAND 1 0.9894 0.01 0.6112  Antigen Non-Toxin 

PEYAYKIVKKGDSAI 3 0.9861 0.01 0.7066  Antigen Non-Toxin 

PTTYVSVGTSTLNQR 3 0.9077 0.15 1.0272  Antigen Non-Toxin 

Table 5 High-Affinity, Antigenic, and Non-Toxic MHC-II Binding Peptides Predicted for Neuraminidase Proteins with their Antigenicity 
score. Seq Num refer to the HA proteins: (Seq1: Q6DPL2, Seq2: Q710U6, Seq3: Q809U7, Seq4: Q809V0, Seq5: Q809V2, Seq6: Q9W7Y7) 

Peptide Seq Num Score Rank Antigenicity Probability Toxicity 

SNTNFLTEKAVASVK 1 0.9504 0.21 0.5086 Antigen Non-Toxin 

NTNFLTEKAVASVKL 1 0.9369 0.29 0.5184 Antigen Non-Toxin 

WAVYSKDNGIRIGSK 3,5 0.891 0.11 0.8890  Antigen Non-Toxin 

WAIYSKDNSIRIGSK 6 0.9115 0.1 1.1726  Antigen Non-Toxin 

WAVYSKDNSIRIGSK 1 0.9214 0.08 1.0797  Antigen Non-Toxin 

3.2.3. Linear B-cell Epitopes Prediction 

The ABCpred server identified several 16-mer linear B-cell epitopes from the HA and NA 

proteins of the vaccine candidates. These epitopes were ranked based on their scores, with 

higher scores >0.9 reflecting a greater probability of being immunogenic. The predicted 

epitopes are summarized in Table 6, including their protein source, sequence, associated 

scores, and antigenicity and toxicity of all selected epitopes was evaluated using VaxiJen and 

ToxinPred.  
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Table 6 High-Affinity Linear B Lymphocyte (LBL) Epitopes Predicted for HA and NA Proteins, with antigenicity and toxicity prediction. 

Accession Protein Sequence Score Antigenicity Probability Toxicity 

Q6DPL2 NA AGEITCVCRDNWHGSN 0.90 0.84 Antigen Non-Toxin 

Q809U7 NA SHSIQTGNQHQAEPCN 0.93 0.6402  Antigen Non-Toxin 

Q809U7 NA YHYEECSCYPDAGEIT 0.91 0.5496  Antigen Non-Toxin 

Q710U6 NA SCPIGESPSPYNSRFE 0.91 0.5699 Antigen Non-Toxin 

O89746 HA DSTIMKSELEYGNCNT 0.93 0.6012 Antigen Non-Toxin 

P09345 HA ICIGYHANKSTKQVDT 0.91 0.9065  Antigen Non-Toxin 

O56140 HA VDTIMEKNVTVTHAQD 0.9 0.6865  Antigen Non-Toxin 

O56140 HA VLWGIHHPNDAAEQTK 0.86 0.5440  Antigen Non-Toxin 

P09345 HA CPYIGRSSFFRNVVWL 0.92 0.6270  Antigen Non-Toxin 

Q710U6 NA AGEIMCVCRDNWHGSN 0.92 0.4084 Non-Antigen Non-Toxin 

Q6DPL2 NA IGYICSGVFGDNPRPN 0.92 0.4733 Non-Antigen Non-Toxin 

Q6DPL2 NA NQHQSEPISNTNFLTE 0.9 0.4560  Non-Antigen Non-Toxin 

Q710U6 NA SHSIQTGNQNQPEICN 0.91 0.4604  Non-Antigen Non-Toxin 

Q710U6 NA CFTIMTDGPSNGQASY 0.92 0.0736 Non-Antigen Non-Toxin 

Q6DPL2 NA DGTGSCGPVSSNGAYG 0.91 0.3121 Non-Antigen Non-Toxin 

Q6DPL2 NA FEMIWDPNGWTETDSS 0.92 0.1037 Non-Antigen Non-Toxin 

P09345 HA PHTIGECPKYVKSDRL 0.9 0.2492  Non-Antigen Non-Toxin 

O56140 HA TKLYQNPTTYISVGTS 0.97 0.2942  Non-Antigen Non-Toxin 

P09345 HA VPEWSYIVEKDNPINS 0.91 0.3740  Non-Antigen Non-Toxin 

Q9Q0U6 HA ESTQKAIDGVTNKVNS 0.88 0.2418  Non-Antigen Non-Toxin 
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3.3. Epitope Screening and Characterization 

 The screening and characterization of epitopes yielded promising candidates, detailed in the 

corresponding tables below. Antigenicity and toxicity analysis of all epitopes are included in 

the previous tables 1-6. These epitopes were selected for allergenicity test too, table 7-9. 

Non-allergenic epitopes selected for further cytokine inducibility analysis. IFN-γ Inducibility 

for MHC-II epitopes was evaluated using the IFN-γ Epitope Server, while IL-4 Inducibility of 

the MHC-II epitopes were determined using IL4pred, the results are presented in Table 8. The 

immunogenicity analysis for MHC-I epitopes using the Class I Immunogenicity tool indicated 

several high-potential CTL-activating peptides, score > 0, as detailed in Table 7. The multi-step 

screening and characterization process ensured the selection of epitopes with high antigenic 

potential, immunogenicity, and safety profiles, laying the foundation for further development 

steps. The final selected epitopes after filtration and screening were put in table 10.  

Table 7 Antigenic, and non-toxic MHC-I Epitopes with Allergenicity and Class I immunogenicity. 

Protein peptide Antigenicity Allergenicity Class I Immunogenicity 

HA RSIPEIATR 0.7685 Non-Allergen 0.31052 

HA NTQFEAVGR 1.2894 Non-Allergen 0.26917 

HA TLNQRLVPK 0.7616  Non-Allergen -0.05034 

HA REEISGVKL 0.6846 Non-Allergen -0.05394 

HA LYDKVRLQL 0.6437  Non-Allergen -0.19792 

HA CPYHGRSSF 1.8587 Allergen -0.12321 

HA CPYIGRSSF 1.9088 Allergen -0.02184 

HA CPYLGRSSF 1.921 Allergen -0.16692 

HA CPYQGKSSF 1.7085 Allergen -0.52404 

HA MPFHNIHPL 1.2633  Allergen 0.21035 

HA QSGRMEFFW 1.0528 Allergen 0.15353 

HA RLVPKIATR 1.0086  Allergen -0.02678 

HA TIMEKNVTV 0.716 Allergen -0.11482 

HA VLATGLRNV 0.8085  Allergen 0.11422 

NA LQIGNIISV 1.2507 Non-Allergen 0.21194 

NA NSDTVGWSW 0.6144 Non-Allergen 0.20864 

NA VQHPELTGV 1.305 Allergen 0.13896 

NA MVIGIVSLM 1.1294  Non-Allergen 0.09966 

NA AYGIKGFSF 1.2968  Non-Allergen -0.03104 
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NA AYGVKGFSF 1.2975  Non-Allergen -0.12342 

NA SPSPYNSRF 0.9266 Non-Allergen -0.18393 

NA TETDSSFSL 1.275 Allergen -0.27977 

NA EAPSPYNSR 0.5467 Non-Allergen -0.28647 

NA ESPSPYNSR 0.6920  Non-Allergen -0.28647 

Table 8 Antigenic, non-allergenic, and non-toxic MHC-I Epitopes, with IFN- and IL4-inducibility Prediction for Na and HA Proteins. 

Protein peptide Allergenicity IFN Score IFN Result SVM Score IL4 inducer 

HA APEYAYKIVKKGDST Non-Allergen 0.4336381 Positive -0.13 Non inducer 

HA APEYAYKIVKKGDST Non-Allergen 0.344 Positive -0.13 Non inducer 

HA EWSYIVEKASPANDL Non-Allergen -0.6118637 Negative 1.07 IL4 inducer 

HA GKEFNNLERRVENLN Non-Allergen -0.4815333 Negative 0.61 IL4 inducer 

HA GREFNNLERRIENLN Non-Allergen -0.6482728 Negative 0.33 IL4 inducer 

HA IAPEYAYKIVKKGDS Non-Allergen 0.196069 Positive -0.18 Non inducer 

HA NSSMPFHNIHPHTIG Non-Allergen 0.07632 Positive 0.24 IL4 inducer 

NA NTNFLTEKAVASVKL Non-Allergen 0.5315287 Positive -0.12 Non inducer 

HA NTQFEAVGREFNNLE Non-Allergen -0.2251253 Negative 0.38 IL4 inducer 

HA NTQFKAVGKEFNNLE Non-Allergen -0.3013475 Negative 1.28 IL4 inducer 

NA SNTNFLTEKAVASVK Non-Allergen 0.5896483 Positive -0.08 Non inducer 

HA SSMPFHNIHPHTIGE Non-Allergen 0.3417935 Positive 0.24 IL4 inducer 

HA SSMPFHNIHPLTIGE Non-Allergen 0.4984038 Positive -0.03 Non inducer 

NA WAIYSKDNSIRIGSK Non-Allergen -0.1124776 Negative 0.28 IL4 inducer 

NA WAVYSKDNGIRIGSK Non-Allergen -0.2008197 Negative 0.24 IL4 inducer 

HA APEYAYKIVKKGDSA Allergen         

HA EYAYKIVKKGDSAIM Allergen         

HA MNTQFKAVGKEFNNL Allergen         

HA PEWSYIVEKASPAND Allergen         

HA PEYAYKIVKKGDSAI Allergen         

HA PTTYVSVGTSTLNQR Allergen         

NA WAVYSKDNSIRIGSK Allergen         
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Table 9 Antigenic, non-toxic, non-allergenic, and high-affinity Linear B Lymphocyte Binding Peptides Predicted for NA and HA Proteins 

Accession Protein Sequence Probablity Allergenicity 

O89746 HA DSTIMKSELEYGNCNT Probable Antigen NON-ALLERGEN 

P09345 HA ICIGYHANKSTKQVDT Probable Antigen NON-ALLERGEN 

O56140 HA VDTIMEKNVTVTHAQD Probable Antigen NON-ALLERGEN 

O56140 HA VLWGIHHPNDAAEQTK Probable Antigen NON-ALLERGEN 

Q6DPL2 NA AGEITCVCRDNWHGSN Probable Antigen NON-ALLERGEN 

Q809U7 NA SHSIQTGNQHQAEPCN Probable Antigen NON-ALLERGEN 

Q809U7 NA YHYEECSCYPDAGEIT Probable Antigen NON-ALLERGEN 

Table 10 Final selected epitopes after filtration, considering high-affinity, safety, ability to inducing strong immunity and the production 
of cytokines (epitopes highlighted in red can induce both IFN and IL4) 

Protein Seq Nr Peptide Eptiope Type 

HA P09345 RSIPEIATR MHC-I 

HA O56140 
O89746 
Q8QPL1 
Q9Q0U6 

NTQFEAVGR MHC-I 

NA Q9W7Y7 LQIGNIISV MHC-I 

NA All NSDTVGWSW MHC-I 

NA Q809V2 
Q809V0 
Q809U7 

MVIGIVSLM MHC-I 

HA O56140 
O89746 

APEYAYKIVKKGDST MHC-II 

HA All IAPEYAYKIVKKGDS MHC-II 

HA P09345 NSSMPFHNIHPHTIG MHC-II 

NA Q6DPL2 NTNFLTEKAVASVKL MHC-II 

NA Q6DPL2 SNTNFLTEKAVASVK MHC-II 

HA P09345 SSMPFHNIHPHTIGE MHC-II 

HA O56140 SSMPFHNIHPLTIGE MHC-II 

HA O89746 DSTIMKSELEYGNCNT Linear B-Cell 

HA P09345 ICIGYHANKSTKQVDT Linear B-Cell 

HA O56140 VDTIMEKNVTVTHAQD Linear B-Cell 

HA O56140 VLWGIHHPNDAAEQTK Linear B-Cell 

NA Q6DPL2 AGEITCVCRDNWHGSN Linear B-Cell 

NA Q809U7 SHSIQTGNQHQAEPCN Linear B-Cell 

NA Q809U7 YHYEECSCYPDAGEIT Linear B-Cell 
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3.4. Population Coverage Calculation 

The global population coverage for MHC class I epitopes was 99.3%.  The average hit was 

14.42, indicating that individuals recognize, on average, over 14 epitope-HLA combinations. 

The PC90 value was 10.12, showing the minimum number of combinations recognized by 90% 

of the population. The population coverage for MHC class II epitopes was 81.81%. The average 

hit was 7.75, with a PC90 value of 3.85. When both MHC class I and MHC class II epitopes 

were analyzed together, the global combined coverage reached 99.87%, indicating nearly 

universal coverage. The average hit for combined coverage was 22.17, and the PC90 was 

13.31. 

These results, as summarized in table 11, demonstrate that the designed multi-epitope 

vaccine has exceptionally high population coverage, confirming its potential to elicit immune 

responses across a broad spectrum of individuals worldwide. The graphs presented in figures 

3,4, and 5 illustrate the cumulative distribution of epitope hits/HLA combinations recognized, 

further validating the broad coverage achieved for MHC class I, MHC class II, and the 

combined classes. 

Table 11 Population Coverage Calculation Result 

population/area 
Class I Class II Class combined 

coverage Average hit pc90 coverage Average hit pc90 coverage Average hit pc90 

World 99.3% 14.42 10.12 81.81% 7.75 3.85 99.87% 22.17 13.31 

 

 

 

 

 

 

 

Figure 4 Class I coverage of the selected epitopes Figure 3 Class II coverage of the selected epitopes 
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3.5. Epitope Conservancy Analysis 

The conservancy of predicted epitopes for the HA and NA proteins was assessed using the 

IEDB Conservancy Analysis Tool. The analysis provided the percentage of sequence matches 

across related sequences at a specified identity threshold, along with the minimum identity 

level. 

A total of 11 epitopes were analyzed for their degree of conservancy as shown in Table 12. 

Two epitopes demonstrated 100% conservation across all sequences. The remaining epitopes 

displayed varying levels of conservation, but one epitope RSIPEIATR exhibits low identity and 

conservation compared to the others, while SSMPFHNIHPHTIGE excluded due it’s high 

similarity with NSSMPFHNIHPHTIG, to reduce the redundancy of epitopes. 

Table 12 Epitope Conservancy Analysis results for HA proteins epitopes. 

Epitope sequence Epitope 
length 

Percent of protein sequence matches at 
identity <= 100% 

Minimum 
identity 

RSIPEIATR 9 20.00% (1/5) 66.67% 

NTQFEAVGR 9 80.00% (4/5) 77.78% 

APEYAYKIVKKGDST 15 40.00% (2/5) 93.33% 

IAPEYAYKIVKKGDS 15 100.00% (5/5) 100.00% 

NSSMPFHNIHPHTIG 15 20.00% (1/5) 93.33% 

SSMPFHNIHPHTIGE 15 20.00% (1/5) 93.33% 

SSMPFHNIHPLTIGE 15 80.00% (4/5) 93.33% 

DSTIMKSELEYGNCNT 16 40.00% (2/5) 75.00% 

ICIGYHANKSTKQVDT 16 20.00% (1/5) 87.50% 

Figure 5 Class combined coverage of the selected epitopes 
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VDTIMEKNVTVTHAQD 16 100.00% (5/5) 100.00% 

VLWGIHHPNDAAEQTK 16 60.00% (3/5) 93.75% 

For the NA protein, 8 epitopes were evaluated as shown in Table 13, One epitope showed 

100% conservation across all sequences (6/6) with a minimum identity of 100%, Two epitopes 

displayed relatively high conservation levels with 93.75% minimum identity. Other epitopes 

demonstrated moderate to low conservancy, while SNTNFLTEKAVASVK excluded due its high 

similarity with NTNFLTEKAVASVKL and low Min. identity, to reduce the redundancy of 

epitopes. 

Table 13 Epitope Conservancy Analysis results for NA proteins epitopes. 

Epitope sequence Epitope 
length 

Percent of protein sequence 
matches at identity <= 100% 

Minimum identity 

LQIGNIISV 9 16.67% (1/6) 77.78% 

NSDTVGWSW 9 100.00% (6/6) 100.00% 

MVIGIVSLM 9 50.00% (3/6) 55.56% 

NTNFLTEKAVASVKL 15 16.67% (1/6) 60.00% 

SNTNFLTEKAVASVK 15 16.67% (1/6) 53.33% 

AGEITCVCRDNWHGSN 16 83.33% (5/6) 93.75% 

SHSIQTGNQHQAEPCN 16 33.33% (2/6) 62.50% 

YHYEECSCYPDAGEIT 16 66.67% (4/6) 93.75% 

3.6. Construction of the Multi-Epitope Vaccine: 

The designed multi-epitope vaccine construct integrates 17 epitopes comprising 5 CTLs, 5 

HTL, and 7 LBL epitopes, strategically connected using specific linkers and adjuvants to ensure 

immunogenicity, structural stability, and efficient antigen presentation. 

Two potent immune-stimulatory adjuvants were incorporated in the vaccine construct: MDA5 

(MGPGQGPAKGLVLQEKYLGRL) at the N-terminus, H9E (FIEGGWTGMIDGWYG) at the C-

terminus. The two adjuvants were linked using a rigid EAAAK linker to maintain structural 

independence, ensuring functional separation and proper folding of the vaccine construct. 

To optimize the immunological processing and presentation of epitopes, specific linkers were 

employed between different epitope categories: AAY Linker used to connect the CTL 

epitopes, GPGPG Linker applied between the HTL epitopes. KK Linker used to connect the LBL 

epitopes. 
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The resulting primary sequence of the vaccine is as follows: 

MGPGQGPAKGLVLQEKYLGRLEAAAKRSIPEIATRAAYNTQFEAVGRAAYLQIGNIISVAAYNSDTVGWS

WAAYMVIGIVSLMGPGPGAPEYAYKIVKKGDSTGPGPGNTNFLTEKAVASVKLGPGPGNSSMPFHNIH

PHTIGGPGPGSSMPFHNIHPLTIGEGPGPGIAPEYAYKIVKKGDSKKICIGYHANKSTKQVDTKKDSTIMKS

ELEYGNCNTKKYHYEECSCYPDAGEITKKVLWGIHHPNDAAEQTKKKAGEITCVCRDNWHGSNKKSHSI

QTGNQHQAEPCNKKVDTIMEKNVTVTHAQDEAAAKFIEGGWTGMIDGWYGGGGGSHHHHHH 

The designed multi-epitope vaccine construct integrates adjuvants and linkers to optimize 

innate and adaptive immune responses. The inclusion of MDA5 and H9E, in conjunction with 

the specific linkers as shown in figure 2, ensures efficient epitope processing, presentation, 

and immune activation, and a 6 Histidine tag was added at the C-terminal part with linker 

GGGGS to improve protein purification and identification. 
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3.7. Specifications Prediction of the Vaccine Construct: 

3.7.1. Physicochemical Properties 

The vaccine construct comprised 340 amino acids with a molecular weight of 36480 Da and a 

theoretical isoelectric point (pI) of 8.76. The extinction coefficient was calculated to be 55350 

M⁻¹cm⁻¹, and the chemical formula was determined as: 

C1612H2489N457O483S15 

The construct exhibited a computed instability index of 35.67, classifying the protein as stable. 

The aliphatic index, a measure of thermal stability, was 62.62, indicating moderate 

thermostability. Additionally, the grand average of hydropathicity (GRAVY) was calculated as 

-0.570, suggesting that the protein has a hydrophilic nature. 

3.7.2. Solubility Prediction 

The solubility of the vaccine construct was evaluated using multiple tools. 

The Protein-Sol server predicted a scaled solubility value of 0.406, which 

is below the average population threshold, indicating moderate 

solubility. However, the SOLpro tool predicted the vaccine construct to 

be soluble with a high probability of 0.930, demonstrating its suitability 

for overexpression in Escherichia coli. 

3.7.3. Secondary Structure Analysis 

The secondary structure of the construct was analyzed using SOPMA and visualized using 

NetSurfP-2.0 shown in figure 6, revealing the following distribution: Alpha helices 63 residues 

(18.53%), Extended strands 94 residues (27.65%), Beta turns 23 residues (6.76%), Random 

coils: 160 residues (47.06%). This suggests that the protein predominantly consists of random 

coils, with moderate proportions of alpha helices and extended strands contributing to its 

structural integrity.  

Structure Residues Percentage 

Alpha helices 63 18.53% 

Extended strands 94 27.65% 

Beta turns 23 6.76% 

Random coils 160 47.06% 
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The distribution of secondary structure elements indicates that the vaccine construct 

possesses a flexible yet stable conformation, with sufficient surface accessibility for antibody 

recognition and antigenic presentation. The balance between structural stability (alpha 

helices and extended strands) and flexibility (random coils and beta turns) supports the 

construct's suitability as an effective vaccine candidate. 

3.7.4. Antigenicity, Allergenicity, and Toxicity Predictions 

The antigenicity of the construct was predicted using Vaxijen, yielding a score of 0.5737, 

classifying it as a probable antigen. The construct was also predicted to be a non-allergen 

according to AllerTOP and non-toxic as determined by the ToxDL server, which reported a low 

toxicity score with no toxic domains detected. 

3.7.5. Homology Analysis 

The homology analysis of the vaccine construct was performed using the BLASTp tool against 

the Homo sapiens protein database to evaluate the potential for cross-reactivity and 

unintended adverse immune responses. Two regions of alignment were detected, as follows: 

Table 14 Homology analysis results 

Range Residues Score Expect 
Value 

Identity Positives Gaps 

1 221–314 47.8 bits 9e-05 32% 
(38/119) 

42% 
(50/119) 

21% 
(26/119) 

2 256–366 39.7 bits 0.038 28% 
(49/175) 

33% 
(59/175) 

36% 
(64/175) 

The sequence identities in both alignment ranges (32% and 28%) are well below the 35% 

threshold, which is generally considered the cutoff for predicting significant structural or 

Figure 6 Secondary Structure from NetSurfP-2.0 shows Helix, Strand, Coil. 
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functional similarity that could result in autoimmunity or adverse reactions 58 . Sequence 

homology below this threshold typically indicates a low risk of molecular mimicry, reducing 

the likelihood of immune cross-reactivity with human proteins59. 

Furthermore, the observed sequence gaps and relatively low positive match percentages 

suggest poor structural conservation, supporting the safety profile of the vaccine construct60. 

This low homology reduces concerns regarding unintended host protein targeting or 

autoimmune reactions, which are critical considerations in vaccine safety evaluation61. 

  

Figure 7 The homologous sequences form BLASTp 
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3.8. Tertiary Structure Prediction and Validation  

3.8.1. 3D Structure Prediction 

The tertiary structure of the multi-epitope vaccine was initially predicted using PHYRE2, 

yielding a model with 99.5% confidence, shown in figure 8. However, the predicted structure 

exhibited a low sequence coverage of only 30%, corresponding to 102 amino acids out of the 

total 340 residues. This limited coverage indicates that a substantial portion of the protein 

sequence was not accurately modeled, potentially compromising the structural and 

functional representation of the full vaccine construct. Consequently, the PHYRE2-derived 

model was excluded from further analysis to ensure structural reliability and downstream 

accuracy. 

In contrast, RoseTTAFold successfully generated five distinct predicted structural models for 

the multi-epitope vaccine, one of them shown in figure 9. These models were selected for 

further validation and refinement steps to assess their stereochemical quality, structural 

consistency, and overall reliability. The use of multiple models from RoseTTAFold allowed a 

comparative evaluation, increasing the likelihood of identifying the most accurate and stable 

structural representation of the vaccine candidate. 

Figure 9 3D model generated with PHYRE2 with 30% coverage Figure 8 3D model generated with RoseTTAFold with 100% coverage 
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3.8.2. Model Validation 

The five predicted 3D models generated by 

RoseTTAFold were subjected to validation using the 

SAVES v6.1 server, which integrates multiple 

structural evaluation tools, including PROCHECK 

and ERRAT, to assess the stereochemical quality 

and structural reliability of protein models. 

PROCHECK was employed to generate 

Ramachandran plots, and ERRAT was used to 

calculate the Overall Quality Factor. Among the five 

models, two exhibited superior structural 

characteristics and were selected for further 

refinement: 

Model 1: ERRAT Score: 93.67. Ramachandran Plot: 

Residues in most favored regions: 83.8%. Residues 

in additional allowed regions: 14.3%. Residues in 

generously allowed regions: 1.5%. Residues in 

disallowed regions: 0.4%, see figure 10. 

Model 2: ERRAT Score: 88.92. Ramachandran Plot: 

Residues in most favored regions: 85.7%. Residues 

in additional allowed regions: 11.4%. Residues in 

generously allowed regions: 1.5%. Residues in 

disallowed regions: 1.5%, see figure 11. 

The results from PROCHECK and ERRAT collectively 

indicate that Model 1 demonstrated slightly better 

stereochemical quality and atomic interaction reliability compared to Model 2, despite Model 

2 showing a higher percentage of residues in favored regions. Both models were deemed 

suitable for the subsequent refinement step to further optimize their structural properties. 

  

Figure 10 Model 1 Ramachandran Plot 

Figure 11 Model 2 Ramachandran Plot 
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3.8.3. Model Refinement 

The initial validation results from PROCHECK and ERRAT indicated that while the selected 

models exhibited satisfactory stereochemical quality and structural reliability, certain 

geometric inconsistencies and atomic interactions required refinement to enhance their 

stability and overall quality. To address these issues, the selected structures were submitted 

to the GalaxyRefine server, a widely used tool for protein structure refinement. 

The GalaxyRefine server generated five refined versions of each selected model structure, 

providing 10 improved models ranked based on structural quality and refinement scores. 

Each refined model underwent further validation using PROCHECK and ERRAT to ensure 

structural improvements were effectively achieved. 

The refined models exhibited enhancements in stereochemical geometry, with increased 

percentages of residues in favored regions of the Ramachandran plot 89.7, figure 12, and 

higher ERRAT score 89.13, reflecting improved structural consistency and reduced atomic 

energy conflicts. The best-refined structure demonstrated significant improvements in 

stability and quality metrics, making it suitable for subsequent docking analysis. 

The z-score of the vaccine candidate after refinement - 4.72 is slightly in range of native 

protein conformation. It is depicted in figure 13 in a large black spot. z-Score plot consists of 

z-scores of all experimental protein chains in PDB defined by NMR spectroscopy (dark blue) 

and X-ray crystallography (light blue). The validated and refined tertiary structure was 

visualized using PyMOL (The PyMOL Molecular Graphics System, Version 2.0) to facilitate 

Figure 12 the Overall model quality calculated by ProSA 
server, showing z-Score -4.72 

Figure 13 Ramachandran Plot for the validated and refined model. 
Favored: 89.7, Allowed: 8.1, Generosly allowed: 1.5, Disallowed: 0.7 
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further interpretation of the protein’s structural properties, including secondary structure 

composition, ligand-binding sites, and spatial arrangement of epitopes, figure 14. 

  

Figure 14 The 3d structure of validated and refined model visualized with PyMOL 



40 

3.9. Defining Discontinuous B-cell Epitopes (Conformational) 

The refined 3D vaccine model was analyzed using the Ellipro server to predict discontinuous 

B-cell epitopes based on the protein's tertiary structure, shown in figure 15. The server 

identified several conformational B-cell epitopes with scores ranging from 0.869 to 0.533. 

These scores reflect the relative protrusion and spatial accessibility of the predicted epitopes 

on the protein surface, indicating their potential immunogenicity. The amino acid residues, 

sequence locations, and Ellipro scores of the identified epitopes are summarized in table 15. 

Table 15 Predicted Discontinuous Epitopes 

No. Residues Number of 
residues 

Score 

1 A:M1, A:G2, A:P3, A:G4, A:Q5, A:G6, A:P7, A:A8, A:K9, A:G10, A:L11, A:V12, A:L13, A:Q14, 
A:E15, A:K16, A:Y17, A:L18, A:G19, A:R20, A:L21, A:E22, A:A23, A:A24, A:A25, A:K26, 
A:R27, A:S28, A:I29, A:P30, A:E31, A:I32, A:A33, A:T34, A:A36, A:A37, A:T40 

37 0.874 

2 A:V178, A:K179, A:K180, A:G181, A:D182, A:S183, A:K184, A:K185 8 0.751 

3 A:Y214, A:G215, A:N216, A:C217, A:N218, A:T219, A:K220, A:K221, A:Y222, A:H223, 
A:Y224, A:G259, A:E260, A:D267, A:N268, A:W269, A:H270, A:G271, A:S272, A:N273, 
A:Q280, A:T281, A:G282, A:N283, A:Q284, A:H285, A:Q286, A:A287, A:E288, A:P289, 
A:C290, A:N291, A:K292, A:K293, A:V294, A:D295, A:T296, A:I297, A:M298, A:E299, 
A:K300, A:N301, A:V302, A:T303, A:V304, A:T305, A:H306, A:A307, A:Q308, A:D309, 
A:E310, A:A311, A:A312, A:A313, A:K314, A:I316, A:E317 

57 0.735 

4 A:K99, A:G100, A:S102, A:T103, A:G104, A:P105, A:G106, A:P107, A:G108, A:N109, 
A:T110, A:N111, A:A117, A:V118, A:S120, A:K122, A:L123, A:G124, A:P125, A:G126, 
A:P127, A:G128, A:N129, A:S130 

24 0.684 

5 A:S334, A:H335, A:H338 3 0.664 

6 A:G54, A:N55, A:I57, A:S58, A:V59, A:A60, A:A61, A:Y62, A:N63, A:S64, A:D65, A:T66, 
A:I142, A:G143, A:G144, A:P145, A:G146, A:P147, A:G148, A:S149, A:S150, A:M151, 
A:A170, A:P171, A:E172, A:Y173, A:H191, A:A192, A:N193, A:K194, A:S195, A:T196, 
A:K197, A:Q198, A:V199, A:D200, A:K202, A:K203 

38 0.6 

Figure 15 3D visualization of discontinuous B cell epitopes in H5N1 construct. 
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3.10. Immune Response Simulation 

The immune response simulation of the multi-epitope vaccine construct was performed using 

the C-ImmSim server, which models immune dynamics across three anatomical 

compartments: the bone marrow, thymus, and lymph node. The simulation parameters 

included a volume of 10, HLA types (A0101, A0301, B3501, B4403, DRB1_0701, DRB1_0405), 

a random seed of 12345, 100 simulation steps, and a single injection set to 1. All other 

parameters were kept at their default values. 

The simulation results revealed a robust humoral and cellular immune response. High levels 

of IgG and IgM antibodies were observed, with a subsequent increase in IgG1 levels 

correlating with antigen clearance. A strong interleukin and cytokine response was detected, 

including a notable rise in IFN-gamma concentration, indicating a potent cell-mediated 

immune response. Additionally, Populations of B-cells and T-helper cells increased 

significantly following the antigen exposure, reinforcing the vaccine's ability to activate both 

humoral and cellular immunity, see figure 16. 
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These results suggest that the vaccine candidate successfully induced a protective immune 

response capable of antigen clearance and immunological memory formation, supporting its 

potential as an effective immunogen. 

  

Figure 16.C Figure 16.D 

Figure 16.A Figure 16.B 

Figure 16 Immune Simulation Results 
A: B lymphocytes: total count, memory cells, and sub-divided in isotypes IgM, IgG1 and IgG2. 
B: CD4 T-helper lymphocytes count. The plot shows total and memory counts. 
C: The immunoglobulins and the immunocomplexes 
D: Concentration of cytokines and interleukins. Inset plot shows danger signal together with leukocyte growth factor IL-2. 
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3.11. Molecular Docking with TLR7 and TLR8 

Molecular docking was performed to predict the interaction between the vaccine construct 

and the TLR7 and TLR8, figure 18, using the HDOCK server. The docking simulation generated 

ten possible binding poses for each receptor, ranked based on binding energy scores, shown 

in tables 16-17. The pose with the lowest binding energy and the highest docking confidence 

score was selected for further analysis. 

Table 16 Summary of the Top 10 Models for TLR7 with VC 

Rank 1 2 3 4 5 6 7 8 9 10 

Docking 

Score 

-357.18 -340.79 -330.98 -330.85 -328.95 -326.66 -325.60 -321.28 -319.38 -319.11 

Confidence 

Score 

0.9844 0.9785 0.9739 0.9738 0.9729 0.9716 0.9710 0.9685 0.9673 0.9671 

Ligand 

rmsd (Å) 

171.10 180.25 232.38 195.45 190.56 181.92 174.52 202.87 170.51 227.16 

Table 17 Summary of the Top 10 Models for TLR8 with VC 

Rank 1 2 3 4 5 6 7 8 9 10 

Docking 

Score 

-307.39 -291.07 -281.95 -278.26 -274.11 -267.80 -263.35 -262.21 -259.38 -259.36 

Confidence 

Score 

0.9588 0.9438 0.9333 0.9286 0.9229 0.9134 0.9061 0.9041 0.8991 0.8991 

Ligand 

rmsd (Å) 

45.08 72.89 101.13 62.88 49.73 83.33 88.72 64.92 78.12 84.18 

The vaccine construct demonstrated a strong binding affinity with TLR8, figure 17, with a 

docking score of -307.39. A detailed interaction analysis revealed the formation of 17 

hydrogen bonds and 4 salt bridges at the binding interface. These interactions suggest 

significant stability and specificity of the complex, highlighting the potential of the vaccine 

construct to effectively engage with TLR8. 

The docking results for the vaccine construct with TLR7, figure 20, showed a slightly higher 

binding affinity, with a docking score of -357.18. The analysis revealed 4 hydrogen bonds 

contributing to the stability of the receptor-ligand complex. Despite a lower number of 

hydrogen bonds compared to the TLR8 interaction, the stronger docking score suggests a 

favorable interaction driven by other stabilizing forces, potentially including hydrophobic 

interactions. 

The top-ranked docking poses for both TLR7 and TLR8 complexes were visualized using 

PyMOL. Key residues involved in hydrogen bonding and salt bridge formation were identified 

and highlighted at the interaction interface, figure 19. The differences in hydrogen bonding 

patterns and salt bridge interactions between TLR7 and TLR8 complexes reflect distinct 

binding mechanisms, which may influence the downstream immune signaling pathways 

triggered by each receptor. 
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Predicted Interaction for TLR8 and VC Predicted Interaction for TLR8 and VC 

TLR7  
TLR8 before removing water molecules 

Receptor-Ligand interactions 

between VC and TLR7 

Receptor-Ligand interactions 

between VC and TLR8  

Figure 17 3D Image of Predicted interaction between TLR7/8 with VC 

Figure 18 Structures of TLR7/8 retrieved from PDB 

Figure 19 Receptor-Ligand interactions between VC and TLR7/8, yellow lines refer to the different bonds exist, 
visualized with PyMOL 
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3.12. Codon Optimization and in-silico cloning 

The gene sequence encoding the recombinant vaccine construct, table 18, was successfully 

optimized for expression in Escherichia coli K12. The optimization process resulted in a Codon 

Adaptation Index (CAI) score of 1.0, indicating a highly favorable adaptation to the host's 

codon usage preferences. Additionally, the GC content of the optimized sequence was 

adjusted to 53.63%, falling within the optimal range for efficient transcription and stable 

mRNA structure. These metrics suggest a high potential for efficient and reliable protein 

expression in the selected host. 

Table 18 The gene sequence encoding the recombinant vaccine construct 

ATGGGTCCGGGTCAGGGTCCGGCTAAAGGTCTGGTTCTGCAGGAAAAATA 50 

CCTGGGTCGTCTGGAAGCTGCTGCTAAACGTTCTATCCCGGAAATCGCTA 100 

CCCGTGCTGCTTACAACACCCAGTTCGAAGCTGTTGGTCGTGCTGCTTAC 150 

CTGCAGATCGGTAACATCATCTCTGTTGCTGCTTACAACTCTGACACCGT 200 

TGGTTGGTCTTGGGCTGCTTACATGGTTATCGGTATCGTTTCTCTGATGG 250 

GTCCGGGTCCGGGTGCTCCGGAATACGCTTACAAAATCGTTAAAAAAGGT 300 

GACTCTACCGGTCCGGGTCCGGGTAACACCAACTTCCTGACCGAAAAAGC 350 

TGTTGCTTCTGTTAAACTGGGTCCGGGTCCGGGTAACTCTTCTATGCCGT 400 

TCCACAACATCCACCCGCACACCATCGGTGGTCCGGGTCCGGGTTCTTCT 450 

ATGCCGTTCCACAACATCCACCCGCTGACCATCGGTGAAGGTCCGGGTCC 500 

GGGTATCGCTCCGGAATACGCTTACAAAATCGTTAAAAAAGGTGACTCTA 550 

AAAAAATCTGCATCGGTTACCACGCTAACAAATCTACCAAACAGGTTGAC 600 

ACCAAAAAAGACTCTACCATCATGAAATCTGAACTGGAATACGGTAACTG 650 

CAACACCAAAAAATACCACTACGAAGAATGCTCTTGCTACCCGGACGCTG 700 

GTGAAATCACCAAAAAAGTTCTGTGGGGTATCCACCACCCGAACGACGCT 750 

GCTGAACAGACCAAAAAAAAAGCTGGTGAAATCACCTGCGTTTGCCGTGA 800 

CAACTGGCACGGTTCTAACAAAAAATCTCACTCTATCCAGACCGGTAACC 850 

AGCACCAGGCTGAACCGTGCAACAAAAAAGTTGACACCATCATGGAAAAA 900 

AACGTTACCGTTACCCACGCTCAGGACGAAGCTGCTGCTAAATTCATCGA 950 

AGGTGGTTGGACCGGTATGATCGACGGTTGGTACGGTGGTGGTGGTGGTT 1000 

CTCACCACCACCACCACCAC 1050 

 

To facilitate cloning into the pET-26b(+) vector, restriction enzyme sites for NdeI and XhoI 

were manually introduced at the 5′ and 3′ ends of the optimized gene sequence, respectively. 

The recombinant construct, shown in red color in figure 25, was successfully inserted into the 

vector using SnapGene software, with proper alignment and orientation confirmed in silico. 
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The final construct was validated through virtual restriction digestion and sequence analysis, 

confirming the integrity and correctness of the gene insertion. These results indicate that the 

optimized construct is ready for downstream expression and protein production experiments.  

Figure 20 In-silico cloning of the vaccine candidate into pET23d (+) expression vector using Snapgene software. The red arrow 
represents the coding sequence of the vaccine candidate, and the black circle represents the vector backbone. 
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4. Discussion 
The study aimed to design a multi-epitope vaccine targeting the H5N1 avian influenza virus 

using immunoinformatics tools. The results highlight the successful identification, 

characterization, and evaluation of conserved epitopes capable of eliciting robust humoral 

and cellular immune responses. This approach represents an efficient and cost-effective 

method to address the limitations of traditional vaccines, particularly in combating highly 

variable pathogens like avian influenza viruses. 

The initial epitope prediction for MHC-I, MHC-II, and linear B-cell epitopes resulted in the 

identification of several highly antigenic, non-toxic, and non-allergenic candidates. The 

selected epitopes demonstrated strong binding affinities with prevalent HLA alleles across 

global populations, as evidenced by high percentile ranks and IC50 values. Importantly, both 

CTL and HTL epitopes were identified to ensure comprehensive immune activation. Linear B-

cell epitopes further contributed to antibody-mediated immune responses, providing an 

additional layer of protection. 

The population coverage analysis revealed exceptional global coverage for the selected 

epitopes, with combined MHC-I and MHC-II epitopes covering nearly 99.87% of the global 

population. This indicates the vaccine's potential for universal applicability, an essential 

feature for pandemic preparedness. These results align with previous immunoinformatics-

driven vaccine studies, which emphasize the importance of broad HLA allele coverage in 

multi-epitope vaccine design9, 22. 

Epitope conservancy analysis demonstrated that a significant proportion of the selected 

epitopes were conserved across multiple H5N1 viral strains. Conserved epitopes are crucial 

for providing cross-strain immunity, especially for highly mutable viruses like H5N1. For 

instance, epitopes such as IAPEYAYKIVKKGDS and VDTIMEKNVTVTHAQD exhibited complete 

conservancy, underscoring their potential as universal vaccine targets. Similar findings have 

been reported in computational studies targeting conserved epitopes in other influenza 

subtypes37. 

However, certain epitopes displayed lower levels of conservancy, which may limit their 

effectiveness across different viral strains. Nevertheless, the overall inclusion of conserved 

epitopes enhances the robustness of the designed vaccine construct, offering broad-

spectrum protection. 

The multi-epitope vaccine construct was designed with carefully selected adjuvants (MDA5, 

H9E) and immunogenic linkers (AAY, GPGPG, KK) to enhance structural stability and facilitate 

efficient antigen presentation. Physicochemical analysis revealed favorable properties, 

including high stability, moderate hydrophilicity, and predicted solubility in bacterial 
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expression systems. These parameters are consistent with established criteria for protein-

based vaccines41, 44. 

Secondary structure analysis indicated a balance between α-helices, β-strands, and random 

coils, supporting the vaccine's structural integrity and immunogenic potential. The tertiary 

structure was successfully modeled and refined using RoseTTAFold and validated using 

multiple tools, including Ramachandran plot, ERRAT, and ProSA. The refined model exhibited 

high stereochemical quality and a Z-score within the range of native proteins, indicating 

structural reliability. 

Molecular docking studies with TLR7 and TLR8 revealed stable and specific interactions 

between the vaccine construct and the receptors. Both complexes demonstrated favorable 

docking scores, with TLR7 showing slightly higher binding affinity. Hydrogen bonding and salt 

bridge interactions were observed at the receptor-ligand interface, suggesting robust 

immunological signaling pathways. The differential binding patterns between TLR7 and TLR8 

may indicate distinct downstream immune responses, which warrant further experimental 

validation55. 

Immune response simulation using C-ImmSim provided critical insights into the vaccine's 

immunogenicity. The simulation predicted strong activation of both humoral (elevated IgG 

and IgM levels) and cellular immunity (increased T-helper and B-cell populations). High 

interferon-gamma (IFN-γ) concentrations further emphasized the construct's potential to 

elicit Th1-mediated immune responses, which are critical for combating viral infections. These 

observations align with previous immunoinformatics studies that have highlighted the 

importance of IFN-γ induction in vaccine efficacy35. 

Codon optimization was performed to ensure efficient expression of the vaccine construct in 

Escherichia coli. The optimized construct achieved a Codon Adaptation Index (CAI) of 1.0 and 

a GC content of 53.63%, both of which fall within the optimal range for bacterial expression 

systems56, 57. Virtual cloning into the pET-26b(+) expression vector confirmed proper 

orientation and integrity of the gene sequence, paving the way for future experimental 

validation. 
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Implications and Limitations 

This study demonstrates the power of immunoinformatics in accelerating vaccine design, 

offering a cost-effective and time-efficient alternative to traditional vaccine development 

pipelines. The incorporation of both CTL and HTL epitopes, along with linear and 

discontinuous B-cell epitopes, ensures a multi-faceted immune response, addressing the 

limitations of previous single-epitope vaccines. 

However, several limitations remain. The in-silico predictions, while highly informative, 

require experimental validation through in-vitro and in-vivo studies to confirm 

immunogenicity, safety, and efficacy. Additionally, the potential for post-translational 

modifications and glycosylation in the vaccine construct, which cannot be fully accounted for 

in silico, may influence its final immunogenic profile. 

Future Directions 

Future studies should focus on: 

1. Experimental validation of vaccine immunogenicity and safety in preclinical animal 

models. 

2. Expression and purification of the vaccine construct in bacterial systems. 

3. Evaluation of long-term immune memory responses post-vaccination. 

4. Assessment of cross-strain immunity against diverse H5N1 viral strains. 
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Conclusion 
The in-silico designed multi-epitope vaccine against H5N1 demonstrates promising 

immunogenic potential, broad population coverage, and structural stability. The integration 

of computational tools enabled efficient prediction and validation of critical vaccine 

parameters. With further experimental validation, this vaccine candidate could represent a 

significant advancement in avian influenza vaccine development, addressing current 

challenges in antigenic variability and rapid outbreak response.
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