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Abstract 

COVID-19, caused by the SARS-CoV-2 virus, is a complex, multi-organ disease with effects 
extending beyond the respiratory system to other vital organs such as the heart. This thesis 
investigates the transcriptomic responses in different tissues to uncover the molecular mechanisms 
driving COVID-19’s systemic impact.  

RNA sequencing (RNA-seq) was used to systematically profile transcriptional changes of  
hPSC-derived cells/organoids caused by SARS-CoV-2 infection. This study investigates the multi-
organ impact of COVID-19. Using RNA sequencing, gene expression profiles were generated from 
cardiac and airway tissue samples obtained from infected and mock-treated controls. RNA-Seq 
analysis involved key steps such as Quality Control, Alignment to a reference genome, Gene 
quantification and Differential expression analysis to identify differentially expressed genes (DEGs).  

Broad differential expression datasets were generated to explore transcriptional responses, 
providing a comprehensive overview of gene expression changes. Visualizations such as volcano 
plots and heatmaps highlighted key patterns, guiding further refinement. To ensure high-
confidence results, stricter thresholds were applied, narrowing the datasets to focus on biologically 
significant genes. 

The results revealed distinct patterns of upregulated and downregulated genes in both 
tissues, with a subset of overlapping DEGs suggesting shared pathways contributing to systemic 
inflammation. Tissue-specific analysis highlighted the enrichment of pathways related to immune 
response, cytokine signaling, and cell death in airway samples, while cardiac tissue exhibited 
significant enrichment in pathways associated with oxidative stress, fibrosis, and mitochondrial 
dysfunction. Venn diagram analysis further emphasized the tissue-specific and overlapping gene 
expression changes, providing insight into the multi-faceted nature of COVID-19 pathology. 

This study highlights the utility of RNA-Seq in elucidating molecular mechanisms underlying 
COVID-19 as a multi-organ disease, offering valuable insights into potential therapeutic targets for 
mitigating its systemic effects.  

 

 

Keywords: RNA-Seq, COVID-19, SARS-CoV-2, Immune response, Differential Gene 

Expression (DEG), Read mapping, Alignment, Gene Ontology (GO) Enrichment, Biological Pathways, 
Gene Expression Patterns.   
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Gene Expression Responses to Viral Infection Using RNA-Sequencing: Differential Expression 

Analysis in SARS- CoV-2-Infected Organoids.  

 

1 Introduction  

1.1 Background on SARS-CoV-2 and Its Impact on Human Health 
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the 

COVID-19 pandemic, belongs to the virus family Coronaviridae, the SARS-CoV-2 virus spread rapidly 
across countries and the COVID-19 outbreak was declared a pandemic by the World Health 
Organization (WHO) on March 11th 2020 (World Health Organization, 2020). As of 30 January 2022, 
over 370 million confirmed COVID-19 cases and more than 5.6 million deaths have been reported to 
World Health Organization (WHO) (World Health Organization, 2022). 

Currently, SARS-CoV-2 has not disappeared and continues to prevail worldwide, with the 
ongoing risk of mutations and the potential for severe COVID-19.  

SARS-CoV-2 is a single positive-stranded RNA enveloped virus that replicates in epithelial 
cells. During SARS-CoV-2 infection SARS-CoV-2 binds the host ACE2 receptor through its spike 
protein, and enters the cells by fusion of the viral membrane with the epithelial cell membrane or 
by endocytosis. After binding, the spike protein can be cleaved by TMPRSS2, a host membrane 
serine protease, facilitating viral entry. Then, the virus replicates inside epithelial cells and produces 
newly synthetized viral particles that are secreted by the host cells the virus transforms the infected 
host cell into factories that produce new viral particles (Assou et al. 2023). As infection progresses, 
the infected cells undergo numerous changes in various pathways. One of these changes is the 
occurrence of a cytokine storm —a hyperinflammatory state characterized by the excessive release 
of pro-inflammatory cytokines —which leads to severe symptoms.  

The mortality is primarily linked to acute respiratory distress syndrome (ARDS) a severe 
complication that arises from an uncontrolled immune response. and the long-term effects of 
infection are still not known. However, COVID-19 is not limited to respiratory involvement— 
Coronavirus disease 19 (COVID-19) is a multi-organ disease caused by infection of severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) (Nakayama et al. 2023). Although SARS-CoV-2 
primarily infects the respiratory tract infecting epithelial cells in the lungs, patients with COVID-19 
present with a wide range of disease indications, including the gastrointestinal, cardiovascular and 
neurological systems, likely through the angiotensin-converting enzyme 2 (ACE2) receptor, which is 
highly expressed in many tissues (Rabaan et al. 2023).  
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1.2 RNA Sequencing and Its Relevance to Viral Infection Studies  
High-throughput next-generation sequencing has revolutionized analysis of both the 

genome and transcriptome in biologic research. RNA-Seq has become a routinely and extensively 
applied approach for transcriptome profiling that relies on high-throughput sequencing (HTS) 
technologies, which provides a far more profound and precise measurement at the transcript level 
than microarray and other traditional gene expression analysis methods (Deshpande et al. 2023). 

RNA-seq allows complete annotation of structures of transcripts (5′, 3′ ends, as well as splice 
junctions), quantification of expressions of transcripts, measurement of extent of alternative 
splicing, and allele-specific expression, typical RNA-Seq workflow involves a complex process of 
extracting RNA from fresh or formalin-fixed paraffin-embedded tissue, conversion of RNA to 
complimentary DNA (cDNA), library preparation, sequencing (Li, Varghese, and Ressom 2024) 

First, reads are mapped to the genome or transcriptome. Second, mapped reads for each 
sample are assembled into gene-level, exon-level or transcript-level expression summaries, 
depending on the aims of the experiment. Next, the summarized data are normalized in concert 
with the statistical testing of DE, leading to a ranked list of genes with associated P-values and fold 
changes. Finally, biological insight from these lists can be gained by performing systems biology 
approaches (Jiang et al. 2024) 

 RNA-Seq has been instrumental in understanding the molecular mechanisms and 
pathogenesis of COVID-19. By analyzing the transcriptomic changes in COVID-19 patients, 
researchers have identified key genes, pathways, and potential biomarkers associated with the 
disease's progression and severity. This approach has provided insights into the host immune 
response, the impact of SARS-CoV-2 on different cell types, and the identification of potential 
therapeutic targets (Erb et al. 2022).  

 

1.3 Research Questions and Objectives. 
This project aims to investigate the transcriptional changes induced by SARS-CoV-2 infection 

across different organoid models, addressing the following key research questions: 

1. How does SARS-CoV-2 infection alter gene expression in different organoids? 

This question focuses on uncovering the tissue-specific transcriptional responses to SARS-
CoV-2 infection. By leveraging RNA-Seq data from multiple organoid models, the study will 
identify differentially expressed genes (DEGs) in infected versus non-infected organoids. The 
findings will provide insights into the molecular mechanisms underlying tissue-specific re-
sponses to the virus. 

2. What are the common and unique gene expression signatures of SARS-CoV-2 across differ-
ent human tissues? 

This question investigates the shared and distinct molecular responses to SARS-CoV-2 infec-
tion across various human tissues. By comparing gene expression profiles among different 
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organoid types, the study seeks to identify common pathways involved in the viral response, 
as well as unique tissue-specific transcriptional signatures. These differences may offer ex-
planations for the varying susceptibility and outcomes of SARS-CoV-2 infection in different 
organs. 

2 Methodology 

2.1 Dataset Description 
To investigate the host response to SARS-CoV-2 infection, we selected bulk RNA-seq samples 

derived from human pluripotent stem cell (hPSC)-derived organoids, including lung AWOs 
organoids (AWOs), and cardiomyocytes (CMs) that were infected with SARS-CoV-2. 

The Bulk RNA-Sequencing data used in this study was generated previously and is described 
exhaustively in (Tang et al. 2023). RNA-Seq samples were selected for both mock-treated wild-type 
(WT), included as controls and SARS-CoV-2-infected cells as the experimental group. WT samples 
served as the baseline behavior of cells in response to infections, which is crucial for understanding 
viral mechanisms and developing potential treatments by comparing the natural response of these 
cells to viral infections, such as SARS-CoV-2, without the influence of genetic manipulations. 

  The tissues in this study were generated from human pluripotent stem cells (hPSCs) Cell 
line of “H1”, a well-known human embryonic stem cell line often used in scientific research because 
of its ability to differentiate into various cell types including AWOs and CMs.  

Specifically, the H1 stem cells were differentiated to form organoid structures. Organoids 
are complex 3D multicellular constructs that can be derived from either induced pluripotent stem 
cells (iPSCs)or adult stem cells and grown in a supportive extracellular matrix (e.g. Matrigel) to 
mimic in particular basement membrane components. Cells grown in this 3D culture system have 
been found to resemble more closely the in vivo environment, where cells spontaneously self-
organize into hierarchies of stem/progenitor cells and create a continuum of more differentiated 
and functional cell types. (Ekanger et al. 2022)  

 Several research groups have been successful in the development of adult stem cell derived 
human AWOs and lung organoids. These organoids mimic the physiology of AWOs tissue, allowing 
to study respiratory infections (like SARS-CoV-2) and other organs’ responses in a more human-like 
environment (“Organoids as a Novel Tool in Modelling Infectious Diseases” 2023).   

The RNA-Seq data with number (SRA) were retrieved from the NCBI Sequence Read Archive (SRA) 
database, under identifiers:  

SRA: SRP375109 
BioProject: PRJNA837900 
GEO: GSE202963  

 

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA837900
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE202963
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The specific characteristics and metadata of the selected samples are detailed in the following 
table: 

Tissue Type 
Source 
Name Cell Line Cell Type Genotype Treatment 

Sample 
Count 

Airway H1 H1 Airway 
Organoids 

WT Mock 5 

Airway H1 H1 Airway 
Organoids 

WT SARS-CoV-2 
Infection 

5 

Cardio H1 H1 Cardiomyoc
ytes 

WT Mock 5 

Cardio H1 H1 Cardiomyoc
ytes 

WT SARS-CoV-2 
Infection 

5 

 
• Organisms: Homo sapiens (human). 

• Sample Types: Organoids representing different human tissues (e.g., lung, heart, kidney) 
infected with SARS-CoV-2 and corresponding non-infected controls. 

• RNA Sequencing Platform: Illumina NovaSeq 6000, providing high-resolution transcriptomic 

data. 
• Infection Time Point: The dataset includes RNA-Seq data from organoids harvested at 48 hours 

post-infection with SARS-CoV-2. 
 

2.2 Data Retrieval and Prepossessing 

2.2.1 Retrieval of RNA-Seq Data from NCBI SRA 

The Paired-End Bulk RNA-Sequencing data was retrieved using a Bash script that employs 
SRA toolkit specifically using the prefetch: 3.0.3. function. 

The Bash script automates the download and preprocessing of RNA sequencing data for the 
project. It reads a list of Sequence Read Archive (SRA) accession numbers, provided in a text file, 
and systematically downloads each dataset from the NCBI SRA database.  

Raw Paired-End RNA-Seq data stored in the FASTQ format were processed to generate the 
forward and reverse reads of paired-end RNA-Seq samples, as required by certain analysis tools. 
Using Fastq-dump command within the bash script, with the --split-3 parameter, the spots are split 
into (biological ) reads, for each read : 4 lines of FASTQ or 2 lines are written. For spots having 2 
reads, the reads are written into the *_1.fastq and *_2.fastq files.  

The resulting FASTQ files are stored in a designated directory, ready for quality assessment and 
downstream analysis. 
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“ .fastq”  file format is used for storing sequence reads generated from  NGS (next-
generation sequencing) instruments. as it not only contains the sequence data similar to FASTA file 
format but also includes quality information. Each record in a FASTQ file (sequence read) is 
structured with four lines; viewing the first 20 rows of SRR19196375_1.fastq. 

1. Identifier Line (Header) 

• Begins with @, followed by a unique identifier for the sequence. 

• SRR19196375.1 is the identifier for this particular read (in this case, from an NCBI 
sequence run). 

• The string A00814:269:HTWLTDMXX:2:1101:1832:1000 contains sequencing 
instrument information, including the flow cell ID, lane, tile, and position on the flow cell. 

• length=51 indicates the length of the read (51 bases in this example). 
2. Sequence Line 

• This line contains the nucleotide sequence for the read. 

• In this sequence, N represents an unknown or ambiguous base. 
3. Separator Line 

  +SRR19196375.1 A00814:269:HTWLTDMXX:2:1101:1832:1000 length=51 

• Begins with a + symbol and may repeat the header information. It serves as a separator 
between the sequence and quality score lines. 

4. Quality Score Line 

  #FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 
• The fourth line is made of ASCII 33-126 symbols where each character represents a quality score 

for a corresponding base in the sequence line.  

• Each symbol corresponds to an ASCII value, which represents the base quality score (e.g., F is a 
high-quality score)., representing the quality of the sequence reported in the second line. The 
range of the quality depends by the technology and by the chemistry of the sequencing 

• # and F characters reflect Phred quality scores, with higher scores indicating more reliable base 
calling. Quality scores help indicate the confidence level in identifying each base. 

to verify the completeness of the downloaded sequencing data, ensuring there were no 
errors or interruptions during the download and conversion process, (Shen, Sipos, and Zhao 2024) 
with its “stats” function was utilized to understand key statistics on the FASTQ files and ensure data 
integrity prior to downstream analyses. The results displayed in the output .txt file provided key 
metrics such as the number of sequences (reads) in each FASTQ file. For instance, in the 
SRR19196360 sample, both files in the pair (R1 and R2) contain 14,675,807 sequences, with an 
average sequence length of 51 bases.  

 

This step confirms consistency across paired-end reads, as the number of sequences in 
paired files must match since they originate from the same template.  

    file               format  type    num_seqs        sum_len  min_len  avg_len  max_len 
SRR19196360_1.fastq  FASTQ   DNA   14,675,807    748,466,157       51       51       51 
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SRR19196361_1.fastq  FASTQ   DNA   16,950,233    864,461,883       51       51       51 

SRR19196362_1.fastq  FASTQ   DNA   21,230,628  1,082,762,028       51       51       51 

SRR19196372_1.fastq  FASTQ   DNA   32,294,781  1,647,033,831       51       51       51 

SRR19196373_1.fastq  FASTQ   DNA   47,483,910  2,421,679,410       51       51       51 

SRR19196374_1.fastq  FASTQ   DNA   25,668,372  1,309,086,972       51       51       51 

SRR19196375_1.fastq  FASTQ   DNA   79,960,920  4,078,006,920       51       51       51 

 

According to general recommendations for gene expression using RNA-Seq, Paired-end sequencing 
enhances splice junction identification by providing two reads from each DNA fragment, which 
helps in accurately mapping the reads to the reference genome. This dual-read approach allows for 
better resolution of complex transcript structures.  

Short read, like 50 bp, can effectively capture the overall expression levels of genes, especially in 
well-annotated genomes. They can provide a general overview of which genes are being expressed 
and at what levels. However, the ability to resolve splice junctions and alternative splicing events 
may be compromised with shorter reads. Longer reads are generally better for identifying these 
features, as they can span across exons and introns more effectively, providing clearer insights into 
transcript diversity and complexity. especially in well-annotated genomes, number of reads per 
sample should exceed 5 million reads (Zhao 2014).   

2.2.2 Quality Control of raw reads 

2.2.2.i Importance of Quality Control in RNA-Sequencing Experiments. 

The sequencing process using NGS methods is complex and can introduce various errors.  
Starting from a possible poor quality of starting material, improper library preparation (e.g., 
inefficient adapter ligation or PCR amplification bias), even incorrect base calls and technical 
sequencing errors. 

Thus, raw RNA-Seq data may have quality issues, which can significantly distort analytical 
results and lead to erroneous conclusions. Therefore, the raw data must be subjected to vigorous 
quality control (QC) procedures before downstream analysis for successful RNA-seq experiments as 
the QC process improves the reproducibility of the biological results (Sheng et al. 2016). 

A comprehensive framework for conducting QC for RNA-seq would be examining four 
critical perspectives: (1) RNA quality, (2) raw read data (FASTQ), (3) alignment and (4) gene 
quantification. While the QC processes for RNA-seq share similarities with those used for DNA 
sequencing data, there are several unique characteristics inherent to RNA-seq data that necessitate 
tailored approaches to ensure the integrity and reliability of the results (Zhou et al. 2018). 

For sRNA-seq, the standard read length is 50 nucleotides (single-end 50 cycles), and as the 
majority of the sRNA-seq is <50 nucleotides, this increases the likelihood of sequencing of the 
attached adapter sequence. Thus, adapter trimming is required for sRNA-seq data analysis (Hu et al. 
2024). 
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To correctly evaluate the quality of the data and the results, a multi-perspective QC strategy 
needs to be applied, which extends throughout the full data processing course. Specifically, strong 
emphasis is given to focusing raw data QC on the initial stage of high-throughput sequencing 
technology, for example, QC on the raw data do not guarantee a good alignment rate, and QC on 
the alignment data can detect library construction issues, but does not identify cross-sample 
contamination (Sheng et al. 2016). 

 

2.2.2.ii Initial Quality assessment and RNA data specifications. Tools used (FastQC, MultiQC) 
To understand what information is stored in all FASTQ files of the samples, FastQC tool was 

used to examine quality metrics for data.  

FastQC measures several quality metrics about sequenced reads at the raw data level in the 
FASTQ file, providing information about read length, average quality score at each sequenced base, 
GC content, presence of any overrepresented sequences (k-mers), the quality score distribution 
across reads, per base sequence content (%A/T/G/C), adapter contamination and overrepresented 
sequences.  

The output from FastQC, after analysing a FASTQ file of sequence reads, is an HTML file that 
may be viewed in browser. To facilitate a comprehensive quality assessment across multiple 
samples, we employed MultiQC version 0.4 (Ewels et al. 2016) to aggregate and summarize the 
individual FastQC reports. This tool generates an HTML report that visually represents key quality 
metrics across all samples, alongside tab-delimited files containing detailed FastQC statistics.  

 

2.2.2.iii RNA-Sequencing library specifications for FastQC reports. 

The interpretation of the quality plots can vary depending on the nature and context of 
sequencing data. Given the unique characteristics of RNA-Seq libraries, it is essential to interpret 
FastQC metrics in context. 

Libraries flagged for issues such as sequence duplication or GC bias may still be suitable for analysis. 
For example: 

• High levels of duplication are often observed in RNA-Seq due to the amplification of highly 
expressed genes. 

• Overrepresented sequences are expected for highly expressed genes such as ribosomal or 
housekeeping genes. While flagged by FastQC, this is an inherent feature of RNA-Seq and not a 
quality issue. 

The key metric to monitor is the graph representing the average quality scores, along with 
the distribution of scores at each base across the length of the reads. Additionally, the Adapter 
Content plot is crucial, as libraries containing small RNA fragments tend to retain sequencing 
adapters more frequently, resulting in elevated adapter content in FastQC assessments. 
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2.2.2.iv Interpretation of Specific FastQC Plots 

The plots below provide examples from a FastQC HTML report, highlighting key metrics and 
unique characteristics specific to RNA-Seq libraries: 

 

2.1 The "Per base sequence content" plot displays the proportion of each DNA base at each position 
across the sequence reads. In RNA-seq data, this plot typically results in a FAIL due to the non-
random nature of hexamer priming during library preparation, leading to an enrichment of specific 
bases in the initial nucleotides (first 10-12 bases). While this bias cannot be corrected through 
processing, it does not adversely affect the measurement of gene expression. 



DGE using RNA-Seq    13 

 

   

 

 

2.2 The Duplicate Sequences plot illustrates the distribution of duplicate reads in RNA-Seq libraries, 
highlighting the prevalence of over-sequenced transcripts, particularly in high-expression regions. 
The Overrepresented Sequences plot reveals the presence of identical sequences, common in small 
RNA libraries, which can arise from unintentional sequencing of short RNA molecules or repetitive 
regions.  
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2.3 The Overrepresented Sequences Table and Adapter Plot in the FastQC report highlight the 
presence of identical sequences and potential adapter contamination in the sequencing data. The 
table highlights sequences that are significantly more abundant than expected, often indicating 
overrepresented short RNA molecules such as tRNAs or degraded fragments. This can occur due to 
non-random fragmentation and inadequate library preparation that fails to remove smaller 
fragments. Meanwhile, the Adapter Plot provides insight into the frequency of adapter sequences, 
which can also contribute to the observed overrepresentation, particularly in cases where library 
preparation does not effectively eliminate these contaminants. 
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2.4 The Per Base Quality Plot in the FastQC report displays the average quality scores across all 
bases in the sequencing reads. X-axis represents a different read position, with the y-axis indicating 
the Phred quality score. A higher score reflects better quality, while a drop in quality at specific 
positions may suggest issues such as sequencing errors or declining read quality towards the end of 
reads. This plot is crucial for assessing the overall reliability of the sequencing data and identifying 
any potential regions that may require further investigation or filtering before downstream analysis. 

 

2.2.2.v Observations from specific FastQC plots for the infected samples: 

When Analyzing RNA-seq data from SARS-CoV-2 infected samples, FastQC may show some 
distinct patterns compared to mock (uninfected) samples due to the presence of viral RNA 
(Westermann and Vogel 2018) for example:  

• Overrepresented sequences in infected samples will likely include viral RNA fragments, 
especially highly expressed viral genes (e.g., N, S, M, and ORF1ab genes). 

• Infected samples are likely to show higher levels of sequence duplication if viral transcripts are 
highly expressed, as the same viral reads could appear frequently. 

• Infected samples with a high viral load might show a wider distribution of sequence quality 
scores, as viral sequences can differ in quality compared to host reads, depending on 
sequencing depth and library composition. 
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2.2.2.vi Steps for assessing and improving data quality: 

After the evaluation of the MultiQC report, failed sampled in Adapters Plot and 
Overrepresented Sequences Table were filtered for further processing to completely remove ploy 
A, Ploy G and TruSeq Adapter and contaminant sequences identified.  Steps taken: 

• Blast Overrepresented Sequences:  Overrepresented sequences were extracted directly from 
the MultiQC report and submitted to the NCBI BLAST website (Basic Local Alignment Search 
Tool) using Blastn to check their origin and remove reads that match contaminant RNA 
fragments like tRNA and rRNA, and confirm the viral sequences flagged as Overrepresented in 
infected samples. Ribosomal RNA and tRNA are considered an internal contamination since they 
are from the target sequencing species 
 

• Trimming with Trimmomatic: Trimming of specified Poly G, Poly A, and contaminant sequences 
was conducted using the Trimmomatic tool, which is widely used for read preprocessing in 
high-throughput sequencing (Bolger, Lohse, and Usadel 2014). The trimming step targeted 
adapter sequences, and specific contaminant sequences such as Poly G and Poly A that were 
identified during the FastQC evaluation. Custom parameters were set in Trimmomatic to 
effectively remove these undesired sequences while retaining the maximum usable portion of 
the reads.  

After trimming, FastqC was performed on the trimmed FASTQ files, to confirm and evaluate 
the step of quality control the quality control. Key metrics, including the removal of 
overrepresented sequences and improved adapter content scores, were inspected to confirm that 
the trimming had resolved previously identified issues.  

 

2.2.3 Alignment to reference genome 

To use RNA-seq data to compare expression between samples, it is necessary to turn 
millions of short reads into a quantification of expression. The first step in this procedure is the 
Read Mapping or Alignment to determine where in the genome the reads originated from. 

Once the reads are in trimmed FastQ format, the RNA-seq reads were aligned to a combined 
reference genome comprising both the human genome (GRCh38_113) and the viral genome and 
the SARS-CoV-2 genome (NC_045512.2).  

The task of mapping is to find the unique location where a short read is identical to the 
reference. However, in reality the reference is never a perfect representation of the actual 
biological source of RNA being sequenced. In addition to sample-specific attributes such as SNPs 
and indels (insertions or deletions), there is also the consideration that the reads arise from a 
spliced transcriptome rather than a genome. 

 Furthermore, short reads can sometimes align perfectly to multiple locations and can 
contain sequencing errors that have to be accounted for. Therefore, the real task is to find the 
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location where each short read best matches the reference, while allowing for errors and structural 
variation (Chung et al. 2021). 

Mapping RNA-seq data requires splicing-aware mappers to align transcriptomic reads to a 
reference genome accurately. As these reads originate from mRNA, it is expected that 
transcriptomic reads will cross exon/intron boundaries when aligned to the reference genome. 
Counting the number of times, a read mapped to a specific gene gives us information about how 
“high” or “low” a gene was being expressed.  

The STAR (Spliced Transcripts Alignment to a Reference) aligner was employed, along with 
Bash scripting to capture both viral and human transcripts simultaneously (Dobin et al. 2013). 

The alignment process consists of two steps: 
1. Indexing the reference genome, Indexing allows the aligner to quickly find potential alignment 

sites for query sequences in a genome, which accelerates the search for potential alignment 
sites during mapping. Indexing the reference only has to be run once. 

2. Aligning the reads to the reference genome. Following indexing, each read from the trimmed 
FastQ files is aligned to the reference genome. This process determines the genomic 
coordinates corresponding to each mRNA fragment, enabling the quantification of gene 
expression levels. 

 

2.2.3.i Downloading reference genome (FASTA) and GTF annotation files. 

The reads for this study were aligned to the Ensembl release GRCh38.p14 
(GCA_000001405.29) human reference genome. https://ftp.ensembl.org/pub/release-
113/gtf/homo_sapiens/ combined with the reference assembly for the Wuhan-Hu-1 isolate which 
has been imported from ENA (ASM985889v3, GCA_009858895.3, MN908947.3). 

http://ftp.ensemblgenomes.org/pub/viruses/fasta/sars_cov_2/dna/. 

2.2.3.ii Building the genome index 

The initial step in read alignment involves constructing a genome index.  An index serves as 
a genome’s “table of contents,” allowing the aligner to pinpoint relevant genomic regions quickly, 
significantly reducing computational time. This step only needs to be performed once for a given 
reference genome. 

To build the genome index, it is required to select compatible reference genome sequences 
(FASTA) and gene annotation files (GTF or GFF3) which indicates the locations of all genes within 
the reference genome (provided as a FASTA file), i.e. the same version number and from the same 
source (Ensembl, UCSC or NCBI). the FASTA and corresponding annotation files (GTF files) were 
downloaded from the Ensembl website to maintain compatibility across versions, ensuring 
consistency in chromosome names across the reference genome and annotation files.  



DGE using RNA-Seq    18 

 

   

 

To build the genome index, we employed the STAR aligner (Spliced Transcripts Alignment to a 
Reference) in --genomeGenerate mode and supply it with the human reference genome sequence 
(FASTA) and corresponding annotation (GTF) file that were sourced from Ensembl (release 75).  

the output from successfully running the command was as the following:  

STAR version: 2.7.11b   compiled: 2024-07-03T14:39:20+0000 
:/opt/conda/conda-bld/star_1720017372352/work/source 
Nov 21 00:47:45 ..... started STAR run 
Nov 21 00:47:45 ... starting to generate Genome files 
Nov 21 00:48:24 ..... processing annotations GTF 
Nov 21 00:48:52 ... starting to sort Suffix Array. This may take a long 
time... 
Nov 21 00:49:03 ... sorting Suffix Array chunks and saving them to 
disk... 
Nov 21 01:25:55 ... loading chunks from disk, packing SA... 
Nov 21 01:27:34 ... finished generating suffix array 
Nov 21 01:27:34 ... generating Suffix Array index 
Nov 21 01:31:43 ... completed Suffix Array index 
Nov 21 01:31:44 ..... inserting junctions into the genome indices 

 

2.2.3.iii Mapping RNA-Seq reads to the reference genome using STAR  

The mapping process aligns each read from the trimmed FASTQ file (line 3) to the reference 
genome. This involves identifying the location within the reference genome that corresponds to the 
mRNA fragment represented by each read. The alignment reveals which gene was transcribed to 
produce the original mRNA and allows for quantification of gene expression levels by counting the 
number of reads aligned to each gene (Dobin and Gingeras 2015)  . 

Key considerations during alignment included: 

• Read Type: Single-end or paired-end sequencing data. 

• Strandedness: Whether the library was stranded and, if so, whether the standard dUTP method was 

used (detected automatically by STAR). 

Additionally, the aligner requires the GTF that was downloaded earlier and corresponds precisely to 
the reference genome version. According to the NCBI SRA platform from which the data was 
retrieved:  

“The RNA-Seq dataset (for this project BioProject: PRJNA837900 was generated on the Illumina 
NovaSeq 6000 platform using a paired-end strategy. libraries were prepared with the TruSeq 
Stranded mRNA Library Kit (Illumina), ensuring high-quality, reverse-stranded data. Paired-end 
sequencing enabled accurate alignment and detection of complex transcript structures, while 
stranded preparation preserved transcript directionality for precise mapping.”  

The following output is displayed during the mapping process when running STAR. 
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   STAR version: 2.7.11b   compiled: 2024-07-03T14:39:20+0000 
:/opt/conda/conda-bld/star_1720017372352/work/source 
Nov 24 21:08:47 ..... started STAR run 
Nov 24 21:08:47 ..... loading genome 
Nov 24 21:09:14 ..... started mapping 
Nov 24 21:10:45 ..... finished mapping 
Nov 24 21:10:49 ..... started sorting BAM 
Nov 24 21:10:57 ..... finished successfully 

In the defined output directory, the following files are output from the paired-end reads mapped to 
the reference genome. including the prefix added by the code for every specific sample: 

SRR19196375_Cardio_CoV_Aligned.sortedByCoord.out.bam 
SRR19196375_Cardio_CoV_Aligned.toTranscriptome.out.bam 
SRR19196375_Cardio_CoV_Log.final.out 
SRR19196375_Cardio_CoV_Log.out 
SRR19196375_Cardio_CoV_Log.progress.out 
SRR19196375_Cardio_CoV_ReadsPerGene.out.tab 
SRR19196375_Cardio_CoV_SJ.out.tab 
SRR19196375_Cardio_CoV_STARgenome 

The following table outlines key output files generated during the STAR mapping process, along 
with their respective descriptions. 

File Description 

_ReadsPerGene.out.tab. contains the number of reads that were 
mapped to each gene in the transcriptome. 

_Aligned.sortedByCoord.out.bam Alignment in BAM format (sorted by 
coordinate) 

_Log.final.out Alignment summary statistics such as uniquely 
mapped reads, percent mapping, number of 
unmapped reads, etc. 

_Log.out Alignment log for commands and parameters 
(useful in troubleshooting) 

_Log.progress.out Alignment progress report (e.g. number of 
reads processed during particular span of time, 
mapped and unmapped reads, etc.) 

_sampleSJ.out.tab Filtered splice junctions found during the 
mapping stage 
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2.2.3.iv Quality assessment of aligned reads 

STAR can align spliced sequences of any length with moderate error rates when using 
optimized parameters, providing scalability for emerging sequencing technologies. However, QC on 
the alignment result file—Sequencing Alignment Map (SAM) or its equivalent compressed format of 
the Binary Alignment Map (BAM)—can yield additional insight into the quality of the sample and 
capture bad quality samples not detectable by raw data QC.  

For example, it can capture efficiency and contamination of RNA from an unwanted source 
(other than an adapter sequence) which cannot be easily detected during raw data QC. 

The command flagstat from SAMtools can also produce a quick summary of mapped, 
unmapped, discordantly mapped and properly paired reads from the BAM files (Danecek et al. 
2021). These assessments include multiple aspects: 

1. Reads: 

• Number of total reads and mapped reads; 

• Number of reads mapped to each specific genomic region (such as CDS and exon), which is 
defined in the user-specified gene model (GTF or GFF) file; 

• Number of reads mapped outside the genomic regions specified in the gene model 
(GFF/GTF) file. 

2. Coverage (gene is called “expressed” when 50% of its sequence are mapped by reads): 

• Number of expressed gene and its proportion out of all genes; 

• Coverage of each gene and the overall coverage distribution; 

• Distribution of mapped reads. 

3. Mapping: 

• Gene coverage bias: average mapping coverage of each base position over the genes (scale 
all of the transcripts into 100 bp windows); 

• Strand specificity: reads mapped to positive/negative strands, respectively; 

• Library complexity: number of reads with varied mapping starting point. 

4. Pair-ended read mapping: 

• Number of paired mapped reads; 

• Number of discordantly mapped pairs; 

• Insert size distribution of mapped read pairs. 

The following table summarizes the alignment statistics extracted from the alignment_stats.txt file:  
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cat  alignment_stats.txt 
96736489 + 0 in total (QC-passed reads + QC-failed reads) 
87725114 + 0 primary 
9011375 + 0 secondary 
0 + 0 supplementary 
0 + 0 duplicates 
0 + 0 primary duplicates 
93711980 + 0 mapped (96.87% : N/A) 
84700605 + 0 primary mapped (96.55% : N/A) 
87725114 + 0 paired in sequencing 
43862557 + 0 read1 
43862557 + 0 read2 
84120286 + 0 properly paired (95.89% : N/A) 
84120286 + 0 with itself and mate mapped 
580319 + 0 singletons (0.66% : N/A) 
0 + 0 with mate mapped to a different chr 
0 + 0 with mate mapped to a different chr (mapQ>=5) 
 
Additionally, the alignment summary file _Log.final.out provides a comprehensive overview of the 
final mapping statistics. It includes detailed metrics such as the total number of input reads, aver-
age read lengths, counts and percentages of uniquely mapped reads, spliced reads, chimeric reads, 
and the number of unmapped reads.  
Following is an example of a component from _Log.final.out file:  
 
Started job on | Dec 16 17:44:29 

Started mapping on | Dec 16 17:47:18 Fin-

ished on | Dec 16 17:51:00 

Mapping speed, Million of reads per hour | 274.87 

Number of input reads | 16950233  

Average input read length | 102 

UNIQUE READS: 

Uniquely mapped reads number | 15055480 

Uniquely mapped reads % | 88.82%  

Average mapped length | 95.36 

Number of splices: Total | 4688986  

Number of splices: Annotated (sjdb) |4669106 

Number of splices: GT/AG | 4651066  

Number of splices: GC/AG | 32513  

Number of splices: AT/AC | 3514 

Number of splices: Non-canonical | 1893 Mis-

match rate per base, % | 0.20% 
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Deletion rate per base | 0.00% Dele-

tion average length | 1.57  

Insertion rate per base | 0.00%  

Insertion average length | 1.30 

MULTI-MAPPING READS: 

Number of reads mapped to multiple loci | 1692962 

% of reads mapped to multiple loci | 9.99%  

Number of reads mapped to too many loci | 138313 

% of reads mapped to too many loci | 0.82% 

                   UNMAPPED READS: 

Number of reads unmapped: too many mismatches | 776 

% of reads unmapped: too many mismatches | 0.00%  

Number of reads unmapped: too short | 55891 

% of reads unmapped: too short | 0.33% Number 

of reads unmapped: other | 6811 

% of reads unmapped: other | 0.04%  

CHIMERIC READS: 

Number of chimeric reads | 0 

                      % of chimeric reads | 0.00% 

 

Key alignment metrics and summary:  

• Number of Input Reads: Reflects the total reads processed, serving as a baseline for 
assessing sequencing completeness. Discrepancies may indicate sequencing or data transfer 
issues. 

• Average Read Length: Confirms consistency with experimental design. Deviations may 
signal incomplete sequencing or library preparation problems. 

• Uniquely Mapped Reads (Counts/Percentages): Indicates reads aligned to a single genomic 
location. High percentages suggest quality alignment; low percentages may indicate 
contamination or sequencing issues. 

• Spliced Reads: Represents reads spanning exon-exon junctions, crucial for validating RNA-
Seq data and ensuring proper transcript assembly. 

• Chimeric Reads: Align to multiple regions, linked to structural variations, fusion transcripts, 
or artifacts, aiding in detecting genomic rearrangements. 

• Unmapped Reads: Includes reads failing alignment due to mismatches, insufficient matching 
bases, or lack of suitable alignment, highlighting potential contamination or reference 
genome issues. 
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The quality summary indicates an average input of 16950233 reads per sample with an 

average read length of 102 bases. The proportion of uniquely mapped reads ranged from 88.82%, 

while multi-mapped reads accounted for 9.99%. Chimeric reads were absent (0.00%), ensuring the 

specificity of alignments. Spliced reads, totaling 6,355,032, included 4669106 annotated splices, 

with the majority being canonical GT/AG splices (32513) and minimal non-canonical splices (1893). 
These metrics validate the alignment process, confirm transcriptome coverage, and demonstrate 
the suitability of the data for downstream analyses. 

 

2.2.4 Gene Count Generation and Data Normalization  

Once it is determined that the alignment step was successful, the next step is to count how 
many times each “feature” is observed in each sample in order to enumerate the number of reads 
associated with the genes (Jiang et al. 2024).  

The goal of this step is to produce a count table using FeatureCounts to collect the raw gene 
count information in order to test for differential expression (Liao, Smyth, and Shi 2014); RNA 
aligners, e.g. STAR, will output multiple best alignments of a single read by default in the SAM/BAM 
file.  

Therefore, counting reads directly from the SAM/BAM file will inflate the aligned read 
number because of this multiple alignment. To solve this, some tools, such as FeatureCounts, count 
a read by a fraction, so if a read has two best alignments, 0.5 will be added to both of the loci’s read 
counts.  

FeatureCounts tool will require the alignment file (BAM), and the associated gene 
annotation file (GTF). The main output of FeatureCounts is a table with the counts, i.e. the number 
of reads (or fragments in the case of paired-end reads) mapped to each gene (in rows, with their ID 
in the first column) in the provided annotation. FeatureCount generates also the feature length 
output datasets. The following is a summary of gene counts for the sample SRR19196360 
generated with FeatureCounts:   

cat 
SRR19196360_Cardio_Mock_Aligned.sortedByCoord.out_gene_counts.txt.summary 
Status  /home/RNA-Sequencing-project/fastq-
files/mapped_try/SRR19196360_Cardio_Mock_Aligned.sortedByCoord.out.bam 
Assigned    11393926 
Unassigned_Unmapped 266615 
Unassigned_Read_Type    0 
Unassigned_Singleton    0 
Unassigned_MappingQuality   0 
Unassigned_Chimera  0 
Unassigned_FragmentLength   0 
Unassigned_Duplicate    0 
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Unassigned_MultiMapping 2840758 
Unassigned_Secondary    0 
Unassigned_NonSplit 0 
Unassigned_NoFeatures   3015747 
Unassigned_Overlapping_Length   0 
Unassigned_Ambiguity    452107  

a total of 11,393,926 reads were successfully assigned to genes. However, there are notable 
numbers of unassigned reads, including 266,615 that were unmapped and 2,840,758 that mapped 
to multiple locations. Additionally, 3,015,747 reads did not overlap with any known features in the 
reference genome. Other categories of unassigned reads, such as those related to read type, 
mapping quality, and duplicates, showed no occurrences. Overall, a significant number of reads 
were assigned and is considered sufficient for differential analysis testing.  

 

2.3 Differential Gene Expression Analysis 
The goal of a DE (differential expression) analysis is to highlight genes that have changed 

significantly in abundance across experimental conditions. In general, this means taking a table of 
summarized count data for each library and performing statistical testing between samples (Babu 
and Nobel 2022).   

In this study, raw count data generated during RNA-seq processing is prepared for 
differential gene expression analysis using DESeq2. The count-based statistical methods, such as 
DESeq2 (Love, Huber, and Anders 2014), expect input data as obtained, e.g., from RNA-seq or 
another high-throughput sequencing experiment, in the form of a matrix of un-normalized counts 
where rows represent genes and columns represent samples. Each cell contains the count of 
sequencing reads mapped to. 

After generating the gene counts using featureCounts function (Liao, Smyth, and Shi 2013) 
in the Rsubread package, the matrix of read counts can be directly provided from the "counts.txt" 
element in the list output. The count matrix and column data were typically loaded to R using base 
R function read.delim. 

2.3.1.i Pre-filtering of the count matrix.  

To refine the dataset for accurate differential expression analysis, several pre-filtering steps 
were applied to the count matrix, reducing noise and improving the relevance of the dataset for 
downstream analysis. These steps included: 

1. Exclusion of Viral and Non-Relevant Genes 
The initial filtering step removed viral genes and any genes with zero counts across all samples. 
Genes with no expression in any condition (mock or infected) lack variability, which is crucial for 
statistical comparisons in differential expression analysis. By excluding these genes, the focus 
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remains on those that provide relevant insights into the biological response to SARS-CoV-2 
infection. 

2. Filtering Based on Expression Levels 
Genes with very low expression levels were excluded, as they are unlikely to contribute meaningful 
biological information, particularly in bulk RNA-Seq datasets. To achieve this, genes with fewer than 
10 counts in at least five samples of the same condition were filtered out. This step prioritized 
genes with consistent expression patterns, increasing the reliability and interpretability of 
downstream results. 

3. Removal of Genes with Consistently Low Expression 
Genes exhibiting consistently low expression across all samples were removed. These genes provide 
minimal statistical power and are unlikely to reveal significant patterns of differential expression.  

After applying this filter, 12,586 genes remained from the original 56,637, ensuring the dataset was 
focused on genes with the potential to yield meaningful insights. 

4. Verification and Alignment of Metadata 
The count matrix was aligned with metadata detailing experimental conditions, including Condition 
(Mock vs. SARS-CoV-2 Infection) and Tissue (AWOs vs. CMs). Ensuring proper alignment between 
the count matrix and metadata is required for accurately modeling differential expression.  

2.3.1.ii Creation of the DESeqDataSet Object 

Using the filtered count matrix and metadata, a DESeqDataSet object was constructed to serve as 
the foundation for differential expression analysis. 

 

2.3.2 Overview of exploratory data analysis (EDA) 

2.3.2.i Visualize Library Size 

EDA was performed to assess the RNA-Seq datasets from AWOs and CMs tissues, to 
visualize whether there is a difference in the distribution of raw counts after filtering, the count per 
million (CPM) values for each gene were calculated using the cpm function (Shreffler and Huecker 
2025). These values were log-transformed to normalize the data and reduce the influence of 
extreme values. To visually assess the distribution of expression levels, the log2-transformed CPM 
values were organized and plotted as boxplots grouped by tissue type (AWOs and CMs) and 
experimental condition (Mock and CoV).  
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2.5 Boxplot showing the distribution of log2-transformed counts per million (CPM) values across 
tissues (AWOs and CMs) and experimental conditions (SARS-CoV-2 infected [CoV] and Mock). 
The plot highlights the overall expression levels for each group, with comparable median values 
and interquartile ranges, indicating consistent sequencing depth and data quality between 
conditions and tissue types. Points outside the whiskers represent genes with exceptionally high 
or low expression in the corresponding group. differences in median and spread between CoV 
and Mock can indicate how much infection alters gene expression. 

2.3.2.ii Heatmap Visualizations 

Sample Distance Heatmap 

The distance heatmap calculates the Euclidean distance between the expression values for each 
individual sample. This is a way to identify which samples are most closely related in terms of their 
gene expression patterns. 
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2.6 Sample Distance Heatmap Using Euclidean Distance, The heatmap illustrates pairwise Euclidean 
distances between samples based on their gene expression profiles. Samples are hierarchically 
clustered along both axes, allowing visualization of grouping patterns according to tissue types 
(AWOs or CMs) and conditions (Mock or Infected). The color gradient from blue (shorter distances, 
higher similarity) to red (longer distances, lower similarity) highlights the degree of similarity 
between samples. This clustering analysis provides a valuable overview of data structure, helping to 
identify biologically meaningful groupings, detect potential outliers, and ensure consistency across 
replicates within experimental groups. 

We observe that all the Infected samples cluster together and all the Mock samples cluster 
together. Within each Tissue type, these clustering patterns make sense, suggesting that the 
experiment was successful. 

 

Count Matrix Heatmap 

A count matrix heatmap provides a global view of raw or normalized gene expression counts across 
all genes and samples. It helps detect overall trends, technical artifacts, or batch effects, and 
ensures normalization methods yield balanced results. This heatmap is particularly valuable for 
inspecting data quality before downstream analyses. 
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2.7 Count Matrix Heatmap illustrating global gene expression counts across samples grouped by 
tissue type (AWOs vs. CMs) and condition (Infected vs. Mock). Rows represent genes, while columns 
correspond to samples. The color scale indicates expression levels, with blue representing lower 
expression and red representing higher expression. Hierarchical clustering of both samples and 
genes reveals trends in expression patterns and potential group-specific variations. 

 

 

 

Top Variable Genes Heatmap 

The following heatmap highlights the most variable genes across samples, selected based on 
their variance. It clusters both genes and samples to reveal patterns of expression that differ 
significantly across conditions or tissues. It is ideal for exploring genes driving biological differences 
and identifying co-expression or unique expression patterns. 
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2.8 Heatmap for identifying genes driving biological differences and co-expression patterns, 
highlighting the most variable genes across samples, selected based on variance. Samples are 
clustered based on expression similarity. Genes that are associated with each cluster on the right-
hand side. the genes are simply chosen based on variability across samples. 

 

2.3.2.iii PCA Plot 

Principle component analysis (PCA) allows for the unbiased identification of batch effects, which 
then need to be taken into account in the experimental design, and potentially reveals samples to 
exclude, if only one or two are “grouping” the wrong way. 

In the context of differential expression analysis, we expect that most of the variability in 
our data is explained by the conditions we perturbed (i.e Infected vs Mock, AWOs vs CMs). If this is 
not the case, and distinct samples are grouped together, this indicates that a differential expression 
analysis is likely to be unreliable, since this analysis specifically looks at the variance in the 
expression of genes in the different libraries. 
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2.9 The PCA plot is shown in Figure. The horizontal axis (Dim1) is the one that captures the most 
variance or separation (54.2%) in samples. Dim2 on the vertical axis captures the second most 
variance or separation (28.5%). We see that along Dim1, the AWOs and CMs samples are clearly 
separated. Along Dim2, while the AWOs samples cluster closely, we see that some Airway_ mock 
and Airway_Cov samples are off by themselves (away from the other 6 samples in this group). This 
could indicate some underlying biology of AWOs Tissue or maybe it’s caused by some technical 
factor. 

 

 

2.3.3 Differential Expression Analysis  

To identify tissue-specific gene expression changes in response to infection, differential 
expression analysis was conducted using the DESeq2 package to identify genes significantly altered 
between mock and infected conditions for both AWOs and CMs tissue samples.  

A two-phase differential expression analysis was used. This methodological approach 
combined an initial comprehensive exploration of gene expression changes with subsequent 
refinement to focus on high-confidence differentially expressed genes (DEGs).  

Initial DE analysis with consistent thresholds across tissues was generated to identify genes 
significantly altered between mock and infected conditions for both AWOs and CMs tissue samples. 
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The initial phase of analysis aimed to provide a comprehensive view of differential gene expression 
in AWOs and CMs tissues under infection. Using an adjusted p-value threshold of <0.1 and no fold- 

 

 

 

change cutoff (LFC=0), This ensured that all genes with statistically significant differences in 
expression were identified regardless of the magnitude of change. 

For the AWOs tissue, 263 upregulated and 210 downregulated genes were identified, 
reflecting localized immune responses to infection. In contrast, the CMs tissue exhibited a broader 
transcriptional response, with 3067 upregulated and 4130 downregulated genes, indicative of 
systemic physiological adjustments. This comprehensive overview formed the foundation for the 
subsequent focused analysis. 

 To visually summarize the results, several plots depicting the initial broader datasets were 
generated, highlighting the distribution of genes based on their log2 fold-change and statistical 
significance. These include volcano plots, MA plots, and heatmaps. 

 

 

2.3.3.i AWOs Tissue: 

The MA plot (Figure 2.10) for AWOs depicts the relationship between the log2 fold-change 
and the mean expression level (baseMean), providing a comprehensive view of transcriptional 
changes across the full range of expression levels. In parallel, the volcano plot (Figure 2.11) for the 
same dataset illustrates the distribution of genes based on their log2 fold-change and adjusted p-
value, highlighting the genes that are significantly upregulated or downregulated in response to 
infection.  Finally, the heatmap (Figure 1C) summarizes the expression profiles of the top 
differentially expressed genes in AWOs tissue, highlighting distinct clusters of upregulated and 
downregulated genes between mock and infected conditions.  
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 2.10 MA-plot showcasing the distribution of estimated coefficients across all genes. The y-axis 
represents "M" (minus) - the log of the ratio, while the x-axis denotes "A" (average). Each point 
signifies an individual gene, with axes showing overall expression level and magnitude of 
difference. Significant genes are highlighted, with a fanning effect visible at low expression 
levels due to high relative fold-change. This plot is also known as a mean-difference plot or 
Bland-Altman plot. 

2.11 The plot displays the log2 fold change (x-axis) against the -log10 false discovery rate (FDR) (y-
axis) for all genes analyzed. Genes significantly upregulated in infected airway samples are 
represented in red (Up), while significantly downregulated genes are shown in blue (Down). Non-
significant genes (NS) are depicted in gray. Selected key DEGs, including EGR1, NR4A3, FOSB, and 
PDE10A, are labeled for emphasis. Vertical dashed lines indicate the log2 fold change cutoff, and 

the horizontal dashed line represents the FDR threshold for significance. 
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The AWOs tissue is the primary site of infection, where smaller changes in gene expression 
can have significant biological impacts. Using a broad threshold allowed for the detection of subtle 
yet potentially meaningful changes in response to infection. 

2.3.3.ii Cardiac Tissue: 

Similarly, for CMs tissue, the MA plot (Figure 2B) highlights the broader range of expression 
changes, particularly among highly expressed genes. Complementing these visualizations, the 
volcano plot (Figure 2A) showcases the distribution of genes with a higher number of significant 
genes compared to AWOs tissue, reflecting the dynamic transcriptional profile observed in CMs 
tissue. The corresponding, the heatmap (Figure 2C) captures the differential expression patterns of 
the top genes, demonstrating clear separation between mock and infected samples.  

. 

 

2.12 The MA plot visualizes the relationship between the mean of normalized counts (x-axis, shown 
on a logarithmic scale) and the log2 fold change (y-axis) for each gene. Blue points represent 
statistically significant differentially expressed genes (adjusted p-value < 0.1), with positive log2 fold 
changes indicating upregulated genes and negative values indicating downregulated genes. Black 
points represent non-significant genes (adjusted p-value ≥ 0.1). Open triangles denote genes with 
log2 fold changes exceeding the y-axis limits, highlighting extreme expression changes. The plot 
illustrates global expression trends and highlights genes with substantial changes, aiding in the 
identification of candidates for further analysis. 
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Cardiac tissue showed broader changes due to its involvement in systemic responses to 
infection, such as stress, inflammation, and metabolic shifts. The larger number of DEGs reflects the 

complexity and diversity of pathways activated or suppressed in the heart under infectious stress. 

 

Subsequently, stringent filtering criteria were applied to narrow down the lists of 
differentially expressed genes (DEGs) for pathway and enrichment analysis. Due to inherent 
differences in tissue-specific transcriptional dynamics, sequencing depth, and baseline expression 
levels, it was necessary to apply slightly differing thresholds for each tissue during data filtering to 
ensure biologically meaningful and robust results.  

For the AWOs tissue, the broader dataset presented a constrained transcriptional profile, 
with few genes meeting stringent thresholds due to low overall differential expression levels. 

2.13 The volcano plot displays the log2 fold change (x-axis) against the -log10 FDR (y-axis) 
for each gene. Red points represent significantly upregulated genes, and blue points 
represent significantly downregulated genes (adjusted p-value < 0.1). Gray points denote 
genes that are not statistically significant (adjusted p-value ≥ 0.1). Notable upregulated 
genes such as FOS, EGR1, and HIVEP2 and downregulated genes like PPP1R14C, SMPX, and 
TMEM245 are labeled. The vertical dashed lines mark the threshold log2 fold change 
values, and the horizontal dashed line indicates the FDR significance threshold, highlighting 
genes with substantial expression changes between the two conditions. 
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Therefore, differential expression analysis was initially performed without a fold-change threshold, 
identifying all genes with significant expression differences (LFC = 0) and genes with a padj < 0.05 
will be retained after the multiple-testing adjustment. Post-analysis filtering was applied to retain 
only those genes with substantial changes (∣LFC∣>1) and sufficient expression (baseMean>20). This 
approach was chosen to capture small but potentially meaningful changes, reflecting the tissue's 
critical role in the immune response to infection. 

In contrast, for the CMs dataset, a moderately stringent filtering criteria was applied fold-
change threshold (∣LFC∣>1) incorporated directly during statistical testing, a false discovery rate 
(FDR) cutoff of 0.05, and a minimum baseMean of 20. The CMs tissue exhibited dynamic 
transcriptional responses with a relatively larger number of significantly expressed genes, 
necessitating an explicit LFC threshold to focus on genes with substantial changes in expression. 
This allowed for the retention of biologically relevant genes while reducing potential false positives 
and reflected the focus on major pathways like muscle contraction and tissue remodeling, which 
are biologically central in the context of infection-induced stress. 

This strategy of adapting thresholds ensures that the analysis captures meaningful biological 
insights while accounting for tissue-specific variability and maximizing the number of shared 
significant genes between the two tissues (Love, Huber, and Anders 2014). 

Volcano plots, figures (2.14, 2.15) were regenerated for the two datasets to visualize the 
distribution and significance of differentially expressed genes in the AWOs and CMs tissues, 
highlighting the refined set of significant genes identified through the second, more stringent 
analytical approach. 
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2.14 Volcano plot of differential gene expression in CMs samples. Significantly upregulated 
(red) and downregulated (blue) genes are plotted based on log2 fold change (x-axis) and -
log10 FDR (y-axis). Notable genes include FOS, EGR1, HIVEP2 (upregulated), and ACTA1, 
NPPB, MYL2 (downregulated). Thresholds are marked by dashed lines. 

2.15 Volcano plot of differential gene expression in AWOs samples. Significantly 
upregulated (red) and downregulated (blue) genes are plotted based on log2 fold change 
(x-axis) and -log10 FDR (y-axis). Notable genes include GATA3, EGR1 (upregulated), and 
LIPC, HOGA1 (downregulated). Thresholds are marked by dashed lines. 
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A Venn diagram was utilized to identify common differentially expressed genes (DEGs) 
between the AWOs and CMs datasets, following the application of stringent filtering criteria. The 
overlap between the two datasets resulted in the identification of four common genes, which likely 
represent core transcriptional responses conserved across both tissues. These genes were 
prioritized for downstream analysis, including pathway and enrichment studies, to explore shared 
mechanisms and tissue-specific functional differences during SARS-CoV-2 infection. 

 

2.16 Venn 
diagram 
of 

differentially expressed genes (DEGs) in cardiac and airway samples. 
The diagram shows 131 unique DEGs in CMs samples, 63 unique DEGs in AWOs samples, and 4 
overlapping DEGs shared between the two conditions. 

 

2.3.4 Enrichment Analysis- Gene Ontology (GO) and pathway 
analysis.  

creating lists of DE genes is not the final step of the analysis; further biological insight into an 
experimental system can be gained by looking at the expression changes of sets of genes.  To 
explore the functional relevance of differentially expressed genes (DEGs) and determine whether a 
specific category of terms is over-represented in this analysis, Gene Ontology (GO) enrichment 
analysis was performed using the clusterProfiler package (Yu et al. 2012). The analysis focused on 
Biological Processes (BP), utilizing Entrez gene identifiers annotated with the org.Hs.eg.db database. 

To determine whether a specific category of terms is over-represented in this analysis, and 
identify tissue-specific biological processes and pathways impacted by infection, a GO-term and 
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pathway enrichment analysis of all differentially expressed genes was performed to identify 
enriched GO-terms and pathways in this list. 

Gene Ontology (GO) and pathway enrichment analyses provide essential insights into the 
biological functions and pathways represented by differentially expressed genes (DEGs). The Gene 
Ontology (GO) provides a framework and set of concepts for describing the functions of gene 
products from all organisms (Thomas 2017). 

Functional enrichment analysis was performed using both overlapping and unique DEGs 
from each tissue identified through the venn diagram comparison to identify enriched GO-terms 
and pathways in this analysis  

For this study, ClusterProfiler was employed to investigate both Gene Ontology (GO) terms 
and KEGG pathways. ClusterProfiler, integrated with the org.Hs.eg.db database, was particularly 
employed for its advanced visualization capabilities and ability to identify enriched GO terms across 
the Biological Process (BP), Molecular Function (MF), and Cellular Component (CC) categories. 
Additionally, it was used to map DEGs to KEGG pathways, facilitating a comprehensive 
understanding of the biological pathways implicated in the study.  

The input for these analyses consisted of significant DEGs identified through the differential 
expression analysis pipeline. We removed duplicated genes and the values lacked specific gene 
symbols from whole datasets.  

 The enrichGO function was used to identify enriched GO terms within the Biological Process 
(BP) category for each tissue. GO terms were considered significant if they met a Benjamini-
Hochberg adjusted p-value threshold of 0.01 and a false discovery rate (q-value) threshold of 0.05. 
The results were visualized using a dot plot, highlighting the top 20 enriched biological processes, 
ranked by significance and gene ratio. 

Additionally, the gseKEGG function was utilized for gene set enrichment analysis (GSEA) of 
KEGG pathways, specifically targeting enriched pathways in the CMs and AWOs tissues. The 
parameters for this analysis included a p-value cutoff of 0.05, a minimum gene set size of 3, and a 
maximum gene set size tailored to the DEG list size (136 for CMs and 67 for AWOs datasets).  

The analysis revealed ranked lists of enriched GO terms and KEGG pathways including key 
biological pathways potentially associated with the AWOs-specific and cardio-specific responses to 
infection. The significant GO terms enriched in this dataset provide insights into critical processes 
such as immune response regulation, cellular signaling pathways, and inflammation.  

To focus on the most biologically relevant pathways, we applied a Fold Enrichment 
threshold of 2 to the GO enrichment results. This threshold ensures that the selected terms are at 
least twice as enriched in the test set compared to the background, highlighting the most significant 
biological processes. After filtering, 13 terms remained for the AWOs dataset and 21 terms for the 
CMs dataset, which were subsequently visualized to identify tissue-specific and shared pathways.  

The dot plot (Figure X) for the AWOs samples and (Figure X) summarize the enriched GO terms, 
offering a visual overview of the functional landscape of the DEGs in both tissues. 
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2.17 GO enrichment analysis of differentially expressed airway genes. Key processes include antiviral 
responses such as "response to virus" and "defense response to virus," as well as pathways related 
to interferon signaling and miRNA transcription regulation. Dot size represents the gene count, and 
the color gradient indicates the adjusted p-value, with darker red indicating higher significance. 
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2.18 GO enrichment analysis of differentially expressed cardiac genes. The analysis highlights key 
biological processes and pathways, such as muscle contraction, heart contraction, and cardiac 
muscle tissue development, involved in cardiac function. The dot size represents the gene count, and 
the color gradient indicates the adjusted p-value, with darker red signifying higher significance. 

 

3 Results 

3.1 Differential Expression in Organoids 
Following differential expression analysis using stringent filtering, genes lacking annotations 

were excluded. 131 significant DEGs were retained for CMs tissue, and 63 significant DEGs were 
retained for the AWOs tissue.  

The results of the differential expression analysis reveal significant differences in the 
number and nature of differentially expressed genes (DEGs) between CMs and AWOs tissues 
following infection. This disparity is expected, as the baseline transcriptome of these tissues differs 
markedly. Cardiac tissue predominantly expresses genes essential for contraction, metabolism, and 
structural repair, whereas AWOs tissue is characterized by genes involved in cilia function, mucus 
production, and barrier integrity. The higher number of DEGs in CMs tissue may be attributed to its 
greater metabolic and structural complexity, which renders it more susceptible to transcriptional 
perturbations by viral infection. Additionally, CMs tissue exhibits heightened sensitivity to 
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inflammation, often responding to even low levels of insult with systemic changes in gene 
expression.  

3.1.1 DEG Overview for AWOs and Cardiac Tissues Under Infection Conditions 

3.1.1.i AWOs-Specific DEGs 

Differential expression analysis of AWOs tissues identified 67 differentially expressed genes 
(DEGs), comprising 11 upregulated genes and 56 downregulated genes. Among the upregulated 
genes, the top five were NR4A3, EGR1, GATA3, IFIT2, and IRF1, with log2 fold changes (LFC) of 3.06, 
1.45, 1.39, 1.28, and 1.18, respectively. For the downregulated genes, the most significant included 
ITGB1P1 (LFC = -2.58), PCBP2P2 (LFC = -2.03), MORF4L1P1 (LFC = -1.99), FTH1P20 (LFC = -1.82), and 
LIPC (LFC = -1.75). 

The upregulated genes predominantly represented transcription factors and immune-
related regulators. These included genes such as GATA3, EGR1, and NR4A3, which are involved in 
transcriptional activation and immune signaling, as well as IRF1, SOCS1, and HERC5, which 
contribute to immune modulation and antiviral responses. A significant portion of the upregulated 
genes were interferon-stimulated genes (ISGs), reflecting an active antiviral response. Key ISGs 
included IFIT1, IFIT2, IFIT3, IFI16, and IFI27, which are known for inhibiting viral replication. Other 
ISGs such as MX2 and BST2 also contributed to antiviral activity through diverse mechanisms. 
Additionally, genes involved in cytokine and chemokine signaling, such as CXCL11 and TNFSF10 
(TRAIL), were upregulated, indicative of heightened immune cell recruitment and apoptosis. Genes 
associated with cellular stress and apoptosis, including TIPARP, TXNIP, and ZFP36, were also 
elevated, suggesting cellular adaptation to stress and tissue remodeling. Furthermore, several 
upregulated genes related to chromatin organization and cell structure, such as H2AC15, H2BC8, 
MDGA1, and PCDH17, pointed to changes in chromatin remodeling and structural integrity. 

In contrast, the downregulated genes were largely dominated by pseudogenes and genes 
involved in translation and protein synthesis. For example, multiple downregulated DEGs, including 
EEF1A1P10, EEF1A1P14, EEF1A1P4, and EEF1A1P8, were pseudogenes of EEF1A1, which is 
implicated in elongation during translation. Additionally, downregulated genes such as LIPC and 
FTH1P20 suggested a reduction in lipid metabolism and iron homeostasis, respectively. Many of the 
downregulated pseudogenes, including ITGB1P1, PCBP2P2, and MORF4L1P1, had less clearly 
defined roles in AWOs responses but were markedly suppressed in this dataset. 

Overall, the AWOs-specific DEGs demonstrated distinct patterns of transcriptional 
regulation, with upregulated genes reflecting immune activation and antiviral responses, while 
downregulated genes indicated a decline in translation-related processes and metabolic activity. 

3.1.1.ii CMs-Specific DEGs  

In the analysis of CMs tissue, a total of 142 differentially expressed genes (DEGs) were 
identified, consisting of 16 upregulated genes and 126 downregulated genes. Among the 
upregulated genes, FOS exhibited the highest fold change (log2FoldChange, LFC = 2.20), followed by 
EGR1 (LFC = 1.90) and HIVEP2 (LFC = 1.80). The most significant statistics for these genes include a 
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base mean expression of 966 for FOS, with a p-value of 4.57e-10 and an adjusted p-value (padj) of 
0.00000553, indicating strong statistical significance in its upregulation. Similarly, EGR1 had a base 
mean of 3551, with a p-value of 6.19e-7 and padj of 0.00107. 

Conversely, the most significantly downregulated genes included MYL2 (LFC = -5.10), NPPB 
(LFC = -4.70), and ACTA1 (LFC = -4.50). Notably, NPPB had a base mean expression of 10411, with a 
p-value of 5.14e-7 and padj of 0.00107, while ACTA1 showed a base mean of 5089, with a p-value 
of 9.16e-8 and padj of 0.000277.  

A large proportion of downregulated genes are associated with CMs structure and 
contractile function, reflecting potential tissue remodeling or loss of normal CMs activity during 
infection. 

A closer examination of the downregulated DEGs revealed several notable patterns. A 
significant portion of these genes is linked to muscle contraction and structural integrity, with key 
examples including MYL2, MYL3, MYL7, MYH6, MYH7, and ACTC1, which encode essential myosin 
and actin isoforms. The downregulation of these structural proteins may contribute to impaired 
contractility in CMs tissues. 

Additionally, genes that play critical roles in calcium signaling and regulation, such as CASQ1, 
PLN, and SLC8A1, were found to be downregulated. These genes are vital for calcium storage, 
release, and exchange within CMs tissues. The downregulation of these calcium handling genes 
could lead to dysregulation of intracellular calcium levels, potentially resulting in arrhythmias or 
heart failure. 

Furthermore, downregulated genes associated with energy metabolism and mitochondrial 
function were identified, including CKMT2 (LFC = -3.95; base mean = 1001; p-value = 6.02e-6; padj = 
0.00662), ATP5F1D, and NDUFB7, alongside ALDOA and ECH1, which are involved in glycolysis and 
fatty acid metabolism. The reduction in energy metabolism-related genes suggests a shift away 
from efficient ATP production, which is crucial for maintaining CMs function. 

The analysis also highlighted the downregulation of cytoskeletal and stress-response 
proteins; notable examples include CRYAB, DES, and HSPB7, which are crucial for maintaining 
cytoskeletal integrity and responding to cellular stress. Moreover, several transcription factors and 
signaling pathway regulators were observed to be downregulated, including NKX2-5, IRX4, and the 
cell cycle regulator CDKN1A. This suggests a broader impact on gene regulatory networks within the 
CMs tissue. 

Immune-related genes such as MIF, C7, and MASP1 were also found to be downregulated, 
indicating potential alterations in immune system modulation. 

On the other hand, the upregulated DEGs predominantly featured immediate early response 
genes such as FOS (base mean = 966; p-value = 4.57e-10; padj = 0.00000553), FOSB, EGR1, and 
EGR2, which are rapidly activated in response to stress and various cellular signals. Additionally, 
transcriptional regulators and signal transduction genes like HIVEP2 (LFC = 1.80) suggest a shift 
towards transcriptional reprogramming in response to stressors. 
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The upregulation of inflammatory and immune modulation genes such as SLPI and NFATC2 
further indicates a potential adaptive response to immune challenges. Moreover, genes involved in 
metabolic processes and stress responses were also upregulated; for instance, CYP24A1 (LFC = 
3.90; base mean = 428; p-value = 3.96e-6; padj = 0.00479)  and ARRDC3 play roles in regulating 
these processes. AVIL, a gene associated with actin filament dynamics, was among those that 
showed increased expression. Notably, H2BC8, a variant histone gene, may contribute to chromatin 
remodeling during infection. 

 Lastly, the upregulation of PER2, a core circadian rhythm gene, may indicate infection-
related alterations in circadian rhythm, potentially affecting metabolic and immune processes. 

3.1.1.iii Shared DEGs 

Four genes (EGR1, NFATC2, FOS, and H2BC8) were identified as shared DEGs between 
AWOs and CMs tissues. All four genes were upregulated in both tissues but exhibited tissue-specific 
variations in magnitude: 

• EGR1 had a slightly higher expression in CMs tissues (LFC = 1.90) compared to AWOs tissues 
(LFC = 1.45). 

• FOS showed a more pronounced upregulation in CMs tissues (LFC = 2.20) compared to 
AWOs tissues (LFC = 1.43). 

• H2BC8 and NFATC2 displayed consistent upregulation across both tissues with subtle differ-
ences in fold changes. 

The identification of these common DEGs suggests a conserved host response to SARS-CoV-2 infec-
tion across different tissue types. The statistical analysis of these genes indicates that while their 
expression is elevated in both AWOs and CMs tissues, the degree of upregulation varies, potentially 
reflecting distinct tissue responses to the viral infection. 

The common DEGs identified between AWOs and CMs tissues (“EGR1,” “NFATC2,” “FOS”, 
and “H2BC8”) point to a conserved host response to SARS-CoV-2 infection. These genes are heavily 
involved in transcriptional regulation and stress-response pathways, suggesting a central role in 
modulating the cellular response to viral invasion. Specifically: 

EGR1 (Early Growth Response 1): A transcription factor that is rapidly induced in response to 
cellular stress. Its role in regulating genes involved in inflammation and apoptosis highlights its 
importance in the initial response to SARS-CoV-2 infection. Dysregulation of EGR1 could exacerbate 
inflammatory responses, contributing to tissue damage. 

FOS (Fos Proto-Oncogene, AP-1 Transcription Factor): As part of the AP-1 complex, FOS 
regulates processes such as cell proliferation and differentiation. Its activation may reflect the 
cellular stress induced by SARS-CoV-2 and the need for reparative mechanisms in damaged tissues. 

NFATC2 (Nuclear Factor of Activated T-Cells 2): This gene’s involvement in immune 
regulation suggests its role in coordinating the antiviral response. It may also contribute to 
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inflammatory cascades, potentially linking to severe manifestations such as cytokine storms 
observed in some COVID-19 patients. 

H2BC8 (H2B Clustered Histone 8): As a histone protein, H2BC8’s role in nucleosome 
assembly and chromatin organization underscores its involvement in regulating gene expression 
during infection. Its association with the innate immune response in mucosa may reflect the host’s 
attempt to counteract viral replication.  

The DEG profiles highlighted distinct transcriptional responses in AWOs and CMs tissues to 
infection. While AWOs tissues predominantly exhibited immune-related and transcriptional gene 
changes, CMs tissues were characterized by extensive downregulation of genes related to structural 
and functional maintenance. 

 

3.2 Gene Ontology (GO)-Term Enrichment Analysis  

3.2.1 Identifying biological pathways and GO terms enriched in DEGs 

To investigate the pathways driving these distinctions, we performed gene set enrichment 
analyses9 (GSEA) on the genes differentially expressed (DE) between SARS-CoV-2 infected and mock 
samples of both tissues.  

3.2.1.i AWOs DEGs: 

Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis were performed to elucidate the biological processes and pathways 
significantly enriched in the differentially expressed genes (DEGs) of AWOs tissues in response to 
infection. The results provided insights into both the upregulated and downregulated genes, 
reflecting complex molecular changes in AWOs tissues (Rodrigues, Costa, and Henriques 2022). 

3.2.1.i.a GO Enrichment Analysis for Upregulated DEGs 

The upregulated DEGs were predominantly associated with immune-related processes and 
antiviral responses. Among the significantly enriched biological processes, the "response to 
interferon-alpha" (GO:0035455; adjusted p = 0.0042) and "response to interferon-beta" 
(GO:0035456; adjusted p = 0.0097) were highlighted, with enrichment factors of 59.4 and 31.4, 
respectively. These processes are supported by core genes such as 2625, 684, and 4600, which are 
key mediators of antiviral defense. Similarly, the "defense response to virus" (GO:0051607; 
adjusted p = 1.4 × 10⁻⁹) and "response to virus" (GO:0009615; adjusted p = 3.4 × 10⁻¹⁰) exhibited 
strong enrichment, with high gene participation (13 and 15 genes, respectively), indicating the 
activation of broad antiviral programs. 

Additional enriched GO terms included the "platelet-derived growth factor receptor 
signaling pathway" (GO:0048008; adjusted p = 0.0042), which may play a role in tissue remodeling 
and inflammation, and processes associated with microRNA (miRNA) regulation, such as "positive 
regulation of miRNA transcription" (GO:1902895; adjusted p = 0.0042) and "miRNA transcription" 

https://pmc.ncbi.nlm.nih.gov/articles/PMC7273244/#R9
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(GO:0061614; adjusted p = 0.0071). These findings suggest a strong interplay between immune 
signaling and post-transcriptional regulation in the AWOs tissue response to infection. 

3.2.1.i.b GO Enrichment Analysis for Downregulated DEGs 

Downregulated DEGs were enriched in metabolic and biosynthetic processes, highlighting 
the suppression of key pathways in AWOs tissues during infection. Notably, terms related to 
"monocarboxylic acid biosynthetic process" (GO:0072330; adjusted p = 0.0228) and "carboxylic 
acid biosynthetic process" (GO:0046394; adjusted p = 0.0228) were identified, both with significant 
enrichment factors (41.9 and 28.3, respectively), indicating broad downregulation of organic acid 
biosynthesis. Core genes involved in these pathways included 3990 and 112817. 

Processes related to lipid metabolism were also suppressed, as evidenced by the enrichment 
of "triglyceride-rich lipoprotein particle remodeling" (GO:0034370; adjusted p = 0.0228) and 
"very-low-density lipoprotein particle remodeling" (GO:0034372; adjusted p = 0.0228), each 
involving key genes such as 3990. Additionally, pathways like "aldehyde catabolic process" 
(GO:0046185; adjusted p = 0.0228) and "amino sugar catabolic process" (GO:0046348; adjusted p = 
0.0228) were suppressed, suggesting impaired breakdown of small molecules and lipids. 

Further, structural and functional processes such as "ribosomal small subunit assembly" 
(GO:0000028; adjusted p = 0.0228) and "respiratory chain complex IV assembly" (GO:0008535; 
adjusted p = 0.0253) were also enriched, with core genes like 388524 and 51241, reflecting 
potential disruptions in protein synthesis and mitochondrial respiratory function. 

3.2.1.i.c KEGG Pathway Enrichment Analysis. 

KEGG pathway analysis of upregulated DEGs revealed modest enrichment in immune-
related pathways. For example, the pathway "Human T-cell leukemia virus 1 infection" (hsa05166; 
NES = 1.79, adjusted p = 0.17) was associated with immune modulation and involved core genes 
such as 2353, 4773, and 7538. Additional pathways, such as "Th1 and Th2 cell differentiation" 
(hsa04658; NES = 1.61, adjusted p = 0.17) and "Kaposi sarcoma-associated herpesvirus infection" 
(hsa05167; NES = 1.61, adjusted p = 0.17), were identified, albeit with borderline statistical 
significance. These results reflect immune signaling activation in AWOs tissues in response to 
infection. 

For downregulated DEGs, significant suppression was observed in two metabolic pathways: 
"Arginine and proline metabolism" (hsa00330; NES = -1.20, adjusted p = 0.0008) and "Glyoxylate 
and dicarboxylate metabolism" (hsa00630; NES = -1.20, adjusted p = 0.0008). Both pathways had 
strong enrichment scores, with 3990 and 112817 identified as key genes. These results underscore 
the metabolic reprogramming of AWOs tissues during infection, with downregulation of amino acid 
and organic acid metabolism pathways. 

These findings illustrate a dichotomy in the biological response of AWOs tissues to infection, 
with upregulated DEGs predominantly driving immune activation and viral defense, while 
downregulated DEGs reflect metabolic and biosynthetic suppression, potentially impacting the 
tissue's ability to maintain homeostasis during infection. 
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3.2.1.ii CMs DEGs: 

Gene Ontology (GO) and KEGG pathway enrichment analyses were performed to identify 
biological processes and pathways enriched in the differentially expressed genes (DEGs) of CMs 
tissues. These analyses were conducted separately for upregulated and downregulated genes to 
better understand the distinct biological responses of CMs tissues to infection. 

3.2.1.ii.a GO Enrichment Analysis for Upregulated DEGs 

The GO analysis of upregulated DEGs revealed four significantly enriched biological 
processes. Among these, "circadian regulation of gene expression" (GO:0032922) was the most 
enriched, with a GeneRatio of 3/13 and a fold enrichment of 62.3. This result highlights the 
potential involvement of circadian rhythm-related genes in the CMs response to infection. Another 
enriched process was "skeletal muscle cell differentiation" (GO:0035914), with a GeneRatio of 
3/13 and a fold enrichment of 56.6, emphasizing the role of genes associated with muscle 
differentiation and tissue adaptation in response to infection. 

The GO term "cellular response to calcium ion" (GO:0071277) was also significantly 
enriched, with a GeneRatio of 3/13 and a fold enrichment of 50.1. This result underscores the 
importance of calcium signaling in CMs tissue, particularly in regulating processes critical for cellular 
stress responses. Finally, the term "response to corticosterone" (GO:0051412) was enriched, with a 
fold enrichment of 170.9, suggesting potential activation of stress hormone-related pathways. 
These findings collectively indicate that the upregulated DEGs in CMs tissues are involved in 
processes related to stress response, muscle differentiation, and calcium ion regulation, which may 
contribute to tissue remodeling during infection. 

3.2.1.ii.b GO Enrichment Analysis for Downregulated DEGs 

The enrichment analysis of downregulated DEGs revealed a much larger number of 
significantly enriched biological processes, particularly those related to CMs structure, muscle 
contraction, and calcium signaling. The GO term "myofibril assembly" (GO:0030239) was the most 
enriched, with 16 DEGs and a fold enrichment of 36.34. Closely related terms, such as "striated 
muscle cell development" (GO:0055002) and "CMs myofibril assembly" (GO:0055003), were also 
highly enriched, each with 16 and 6 DEGs, respectively. These terms indicate significant suppression 
of genes involved in the structural integrity and development of CMs muscle, suggesting 
compromised myofibrillar organization in response to infection. 

Processes directly associated with CMs contraction were notably enriched among 
downregulated DEGs. For example, "regulation of the force of heart contraction" (GO:0002026) 
had a GeneRatio of 8/108 and a fold enrichment of 53.81, highlighting significant transcriptional 
suppression in genes responsible for modulating the contractile force of CMs tissue. Similarly, 
"actin-myosin filament sliding" (GO:0033275), with a fold enrichment of 54.65, underscores the 
impact of infection on the basic molecular machinery underlying CMs muscle contraction. 

Calcium signaling pathways, critical for excitation-contraction coupling, were also 
significantly enriched among downregulated genes. The GO term "regulation of cardio muscle 
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contraction by calcium ion signaling" (GO:0010882), with a GeneRatio of 5/108 and a fold 
enrichment of 33.63, points to the transcriptional suppression of genes involved in calcium 
regulation. Similarly, "release of sequestered calcium ion into cytosol by sarcoplasmic reticulum" 
(GO:0014808) and "regulation of release of sequestered calcium ion into cytosol by sarcoplasmic 
reticulum" (GO:0010880) were enriched, with fold enrichments of 24.29 and 28.20, respectively. 
These results suggest that calcium homeostasis is significantly impacted in CMs tissue during 
infection. 

Developmental and morphogenetic processes were also prominently represented. The 
terms "Cardio muscle tissue morphogenesis" (GO:0055008) and "ventricular cardio muscle tissue 
development" (GO:0003229) were enriched, with 11 and 10 DEGs, respectively, reflecting 
transcriptional suppression of genes involved in CMs tissue development and organization. 
Additionally, the term "response to muscle stretch" (GO:0035994), with a fold enrichment of 27.98, 
highlights alterations in mechanical stress responses in the CMs tissue. 

3.2.1.ii.c KEGG Pathway Enrichment Analysis 

The KEGG pathway enrichment analysis for upregulated and downregulated DEGs in CMs 
tissues provided distinct insights into the metabolic and signaling alterations induced by infection. 

For the upregulated DEGs, two pathways were identified, though neither reached the 
threshold for statistical significance. The pathway "Parathyroid hormone synthesis, secretion, and 
action" (hsa04928) had a normalized enrichment score (NES) of 1.25 and included the upregulated 
genes 1591 and 2353. Similarly, the pathway "Osteoclast differentiation" (hsa04380), which had an 
NES of 1.17, was associated with the genes 2353 and 2354. While these pathways were not strongly 
enriched, their presence suggests potential activation of calcium-regulatory and bone-resorptive 
signaling mechanisms, which might reflect systemic effects of infection on CMs tissues. 

In contrast, the downregulated DEGs revealed significant enrichment in key pathways, 
shedding light on suppressed biological processes. The most notable was the pathway "Metabolic 
pathways" (hsa01100), which had a set size of 15 genes, an NES of -1.72, and included genes 
involved in broad metabolic processes, such as 1158, 1152, 27124, and 4713. This result highlights a 
general downregulation of metabolic activity in CMs tissue, likely reflecting impaired energy 
production and utilization. Another enriched pathway was "Regulation of actin cytoskeleton" 
(hsa04810), which had an NES of -1.67 and included genes such as 4629, 730, and 4633. This finding 
underscores the disruption of actin cytoskeletal organization, which is critical for maintaining 
cellular structure and contractile function in CMs tissues. 

Additionally, the pathway "Motor proteins" (hsa04814), with an NES of -1.54, included 13 
genes such as 7134, 4625, and 7137, reflecting suppression of genes essential for intracellular 
transport and contractile activity. Another noteworthy pathway, "Prion disease" (hsa05020), with 
an NES of -1.51, highlighted three downregulated genes (513, 730) potentially linked to 
neurodegenerative-like mechanisms, though the relevance of this finding in CMs tissue remains 
unclear. 
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Together, these results reveal a clear divergence between upregulated and downregulated 
pathways in CMs tissues during infection. The upregulated pathways suggest modest activation of 
calcium and signaling-related processes, while the downregulated pathways highlight significant 
suppression of core metabolic pathways, cytoskeletal regulation, and contractile functions, 
providing mechanistic insights into the transcriptional remodeling of CMs tissues in response to 
infection.  

3.2.2 Shared Pathways and Biological Processes in AWOs and Cardiac Tissues Based 
on KEGG Analysis 

The results of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment 
analysis reveal several biological processes and signaling pathways that are commonly perturbed in 
AWOs and CMs tissues in response to infection. Among the shared pathways, four—Cytosolic DNA-
Sensing Pathway, RIG-I-Like Receptor Signaling Pathway, Viral Life Cycle - HIV-1, and Viral Protein 
Interaction with Cytokine and Cytokine Receptor—were significantly upregulated in both tissues, 
while Ascorbate and Aldarate Metabolism was consistently downregulated. 

The upregulation of the Cytosolic DNA-Sensing Pathway and RIG-I-Like Receptor Signaling 
Pathway highlights the activation of innate immune responses as a core mechanism of antiviral 
defense. These pathways play critical roles in recognizing viral or bacterial nucleic acids and 
initiating inflammatory responses through type I interferons and pro-inflammatory cytokines. 
Similarly, the activation of pathways associated with Viral Life Cycle - HIV-1 and Viral Protein 
Interaction with Cytokine and Cytokine Receptor underscores the immune system's efforts to 
combat infection while also reflecting the ability of viral pathogens to exploit host cellular 
machinery for replication and immune evasion. 

In contrast, the consistent downregulation of Ascorbate and Aldarate Metabolism in both 
tissues suggests a depletion of antioxidant defenses. This pathway, which is critical for the 
metabolism of vitamin C and related compounds, is essential for reducing oxidative stress and 
maintaining tissue integrity. Its downregulation indicates a potential increase in oxidative damage 
during infection, contributing to tissue injury and dysfunction in both AWOs and CMs systems. 
Oxidative stress is initially recognized as a means of combating viruses and protecting the host, 
contributing to apoptosis. However, with the development of research, more and more researchers 
found that oxidative stress promoted viral replication, which was a common mechanism used by 
some specific viruses (Wu et al. 2022).  

As for the GO enrichment analysis the most significant shared biological processes enriched in both 
AWOs and CMs tissues was the positive regulation of miRNA transcription. Dysregulation of miRNA 
expression has been linked to the pathogenesis of COVID-19, particularly in severe cases 
characterized by cytokine storm, acute respiratory distress syndrome (ARDS), and multi-organ 
damage, including myocarditis and CMs dysfunction. miRNAs can act as regulators of both host and 
viral gene expression, influencing critical pathways such as the cytokine response, oxidative stress, 
and the viral life cycle. The enrichment of this pathway in both tissues underscores the systemic 
role of miRNA-mediated regulation during COVID-19 (Rasizadeh et al. 2023).  
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These findings demonstrate the systemic nature of the infection's impact, with immune 
signaling and metabolic dysregulation being coordinated across multiple tissues. The KEGG analysis 
results emphasize the interconnectedness of these pathways, revealing shared biological processes 
that are integral to understanding how infections affect the body at a molecular level. This systemic 
perspective is critical for deciphering the interplay between immune responses, viral mechanisms, 
and metabolic changes across tissues, ultimately providing insights into potential therapeutic 
targets. 

4 Discussion  
COVID-19, caused by the SARS-CoV-2 virus, is a systemic disease characterized by its 

profound impact on multiple organ systems, particularly the respiratory and cardiovascular 
systems. Respiratory dysfunction is the leading cause of death in COVID-19 patients, with studies 
reporting that nearly 96.7% of fatal cases involve respiratory system damage, and about half exhibit 
multi-organ involvement, including cardiovascular complications. This highlights the systemic 
nature of the disease, which can trigger a cascade of inflammatory and immune responses that 
extend beyond the lungs. Cardiovascular dysfunction, the second most common organ system 
affected, has been linked to mechanisms such as myocardial inflammation, cytokine storms, and 
endothelial dysfunction, which may contribute to conditions such as myocarditis, heart failure, and 
arrhythmias. 

In this study, we examined the specific and shared molecular pathways and biological 
processes enriched in differentially expressed genes (DEGs) in AWOs and CMs tissues to better 
understand the mechanisms driving severe respiratory and CMs symptoms in COVID-19. 

 

4.1 Identification of tissue-specific responses to SARS-CoV-2 and 
Potential therapeutic targets.  

The AWOs epithelium serves as the first line of defense against respiratory pathogens, 
including SARS-CoV-2, and plays a pivotal role in orchestrating host immune responses. Our 
differential expression analysis of AWOs tissue revealed a distinct set of DEGs that reflect the 
tissue's critical functions in viral recognition, epithelial barrier maintenance, and immune signaling. 
Among these, the robust upregulation of interferon I (IFN-I) pathway genes indicates a strong 
antiviral immune response. Key interferon-stimulated genes (ISGs), such as IFIT2, BST2, and MX2, 
were significantly upregulated, underscoring their critical roles in restricting viral replication and 
enhancing epithelial resilience. These findings are consistent with prior studies highlighting that 
interferon pathways, particularly type I and type III interferons (e.g., IFN-λ), are central to the AWOs 
epithelium's antiviral defense (Busnadiego et al. 2020)  

 Notably, this potent interferon-driven immune response not only limits viral spread but also 
minimizes ACE2 expression, thereby reducing the susceptibility of AWOs cells to further viral entry. 
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However, this dual role of the AWOs epithelium—mounting antiviral defenses while contributing to 
inflammation—may also drive pathology in severe COVID-19 cases. This variety and complexity of 
immune responses is caused by the virus’s ability to evade or manipulate the IFN-mediated host 
responses, which might not be perfectly tuned to combat this novel pathogen. These observations 
validate the AWOs epithelium's critical function in SARS-CoV-2 infection and highlight interferon 
signaling pathways as promising therapeutic targets. Enhancing the activity of interferon, I (IFN-I) 
pathways could boost the antiviral response in organoids. This could involve the use of recombinant 
interferons or drugs that stimulate endogenous IFN production to improve immune defense against 
SARS-CoV-2 (Mihaescu et al. 2024).  

Our findings also emphasize the maladaptive aspects of AWOs immune responses, 
particularly in severe COVID-19, where hyperinflammatory conditions exacerbate tissue damage. 
For example, upregulation of SOCS1 and IRF1 in the AWOs dataset aligns with prior reports of 
excessive interferon signaling contributing to delayed viral clearance and immune dysregulation. 
This suggests that while the AWOs epithelium efficiently mounts antiviral defenses, dysregulated 
responses may perpetuate inflammation and impair recovery (Guo et al. 2023). 

 The AWOs tissue findings from this study also provide valuable insights into mechanisms 
that may contribute to the destruction of ciliated cells and impaired mucociliary clearance observed 
in COVID-19. Our findings elucidate mechanisms contributing to the loss of ciliated cells and 
impaired mucociliary clearance in COVID-19. The enrichment of negative regulation of cell 
adhesion suggests compromised epithelial integrity, leading to cell detachment and weakened 
barrier function, COVID-19 provokes the destruction of ciliated cells and leads to a reduction in 
mucociliary clearance, which in turn promotes the accumulation of mucus and debris in the airway, 
providing an optimal environment for the virus to replicate and spread (Gonzalez-Rubio et al. 2023).  

Additionally, synaptic membrane adhesion dysregulation may impair epithelial-neuronal 
communication, disrupting mucus clearance. The activation of cellular response to epidermal 
growth factor (EGF) stimulus reflects repair attempts, but these may be ineffective in the 
inflammatory environment of COVID-19 (Engler et al. 2023).   

Together, these disruptions align with clinical observations of mucus accumulation and 
increased viral replication in the AWOs.  

In contrast, CMs tissue DEGs revealed unique insights into myocardial involvement during 
SARS-CoV-2 infection, suggesting a less pronounced interferon-driven immune response compared 
to AWOs tissue. Instead, several key genes related to CMs function and homeostasis were found to 
be dysregulated (Madeddu 2020). 

 SARS-CoV-2 is known to cause myocarditis-like syndromes and cardiovascular 
complications, for instance, NPPB (B-type Natriuretic Peptide), a biomarker of CMs stress and 
dysfunction, was downregulated, suggesting direct myocardial effects or systemic factors 
contributing to impaired heart function (Sobreira and Nóbrega 2021). Similarly, the downregulation 
of ACTA1 and MYL2, which encode essential structural proteins of CMs muscle, indicates potential 
mechanisms of CMs injury, including disrupted contractility and cardiomyocyte damage. 
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Another notable finding was the downregulation of CYP2J2, a gene involved in the 
metabolism of arachidonic acid to epoxyeicosatrienoic acids (EETs). EETs are known for their 
cardioprotective properties, particularly in reducing CMs inflammation. The reduced expression of 
CYP2J2 in CMs tissue may exacerbate inflammatory processes, compounding myocardial damage 
during infection (Wang et al. 2022).  

These observations are consistent with clinical findings of myocarditis, arrhythmias, and 
heart failure in COVID-19 patients, highlighting the virus’s ability to induce both direct and indirect 
CMs damage. 

The contrast between the strong interferon-driven immune response in AWOs tissue and 
the metabolic and structural dysregulation in CMs tissue underscores the tissue-specific responses 
to SARS-CoV-2 infection. These differences align with clinical observations where respiratory system 
dysfunction is the primary driver of mortality, while cardiovascular complications, although less 
frequent, are critical contributors to multi-organ failure and severe disease outcomes. The 
identification of these tissue-specific molecular signatures advances our understanding of the 
systemic nature of COVID-19 and provides a foundation for developing targeted therapeutic 
strategies to address organ-specific complications. 

 

 

4.2 Shared molecular pathways across organoids  
The shared pathways identified in this study provide a molecular basis for understanding the 

systemic effects of COVID-19, particularly the link between severe respiratory symptoms and 
cardiac complications. The upregulated immune pathways correspond to clinical observations of 
hyperinflammation, cytokine storm, and immune-mediated damage in ARDS and myocarditis. This 
finding aligns with previous reports highlighting that respiratory dysfunction, primarily due to ARDS, 
is the leading cause of mortality in COVID-19 patients, often exacerbated by multi-organ damage 
and systemic inflammation. Conversely, the downregulation of antioxidant pathways is consistent 
with increased oxidative stress observed in patients with severe disease. These findings align with 
clinical reports of myocardial injury, arrhythmias, and long-term cardiovascular complications in 
COVID-19 patients. 

 

As the first line of host defense, the innate immune system plays a pivotal role in 
recognizing and responding to SARS-CoV-2 infection. Among the key pathways identified, the cGAS-
STING pathway, involved in the detection of cytosolic DNA, was significantly upregulated in both 
airway and cardiac tissues. This pathway is a key driver of type I interferon responses and antiviral 
immunity, but its overactivation in the context of COVID-19 has been implicated in sustained 
inflammation and tissue damage, particularly in severe cases. Evidence suggests that SARS-CoV-2 
can activate the cGAS-STING pathway, triggering an excessive immune response that contributes to 
the cytokine storm characteristic of severe COVID-19. Enhancing the activity of interferon, I (IFN-I) 



DGE using RNA-Seq    52 

 

   

 

pathways could boost the antiviral response in organoids. This could involve the use of recombinant 
interferons or drugs that stimulate endogenous IFN production to improve immune defense against 
SARS-CoV-2.  

 

In airway tissues, overactivation of the cytosolic DNA-sensing pathway likely exacerbates 
ARDS by promoting excessive inflammation and epithelial damage. In cardiac tissues, this same 
pathway has been linked to inflammatory conditions such as myocarditis and arrhythmogenic right 
ventricular cardiomyopathy (ARVC). Clinical reports of elevated interferon-stimulated gene (ISG) 
expression in COVID-19 patients further validate the systemic immune activation observed in this 
study. These findings underscore the need to balance immune activation to combat the virus while 
minimizing collateral tissue damage. 

Another notable finding was the downregulation of the ascorbate and aldarate metabolism 
pathway, which plays a critical role in vitamin C metabolism and antioxidant defense. This pathway 
is essential for neutralizing reactive oxygen species (ROS) and mitigating oxidative stress. In both 
airway and cardiac tissues, its downregulation suggests a depletion of antioxidant reserves, 
contributing to the accumulation of oxidative damage. 

In airway tissues, reduced antioxidant activity likely exacerbates epithelial damage and 
inflammation, worsening ARDS and impairing mucociliary clearance. In cardiac tissues, oxidative 
stress is a major driver of myocardial injury, arrhythmias, and long-term cardiac remodeling. These 
findings are consistent with clinical observations of elevated markers of oxidative stress and 
reduced antioxidant capacity in severe COVID-19 patients, emphasizing the critical need for 
therapeutic strategies aimed at restoring redox balance. 

Together, these shared pathways—immune activation via cGAS-STING signaling and reduced 
antioxidant defenses—highlight the interconnected nature of respiratory and cardiac complications 
in COVID-19. These findings provide a molecular framework for understanding the systemic effects 
of the disease and point toward potential therapeutic targets, including modulators of the cGAS-
STING pathway and strategies to enhance antioxidant defenses. 

 

5 Conclusion  
This study provides a comprehensive investigation into the molecular mechanisms 

underlying SARS-CoV-2 infection, with a focus on airway and cardiac tissues. RNA-Seq analysis 
revealed distinct tissue-specific responses that reflect the pathophysiology of COVID-19. 

In airway tissues, upregulation of interferon-stimulated genes (IFIT2, BST2, and MX2) 
highlights the critical role of interferon signaling in antiviral defense. However, disruptions in 
pathways such as negative regulation of cell adhesion and cellular response to epidermal growth 
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factor stimulus suggest mechanisms driving epithelial damage, impaired mucociliary clearance, and 
inflammation observed in severe COVID-19. 

In cardiac tissues, the downregulation of structural and functional genes (NPPB, ACTA1, 
MYL2, and CYP2J2) indicates myocardial injury, impaired contractility, and reduced cardioprotective 
mechanisms. These findings align with clinical observations of myocarditis, arrhythmias, and heart 
failure in COVID-19 patients, emphasizing the virus’s capacity for both direct and systemic cardiac 
damage. 

Shared pathways, including the RIG-I-like receptor signaling pathway, Cytosolic DNA-
sensing pathway, and positive regulation of miRNA transcription, underline the systemic nature of 
COVID-19 and its link to immune dysregulation and severe outcomes. Therapeutic targets such as 
interferon pathways, SOCS1, and antioxidant defenses hold promise for mitigating tissue damage 
and systemic inflammation. 

This study advances our understanding of COVID-19 pathogenesis, highlighting tissue-
specific and shared molecular responses as potential therapeutic avenues to address the systemic 
and organ-specific complications of the disease. 
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