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Abstract (Arabic Version)
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Abstract

DNA methylation is a key mechanism in epigenetics, influenced by environmental factors
and disorders that cause changes in methylation patterns across DNA strands. These changes
can affect phenotype without altering nucleotide sequences, often silencing genes through
hypermethylation at promoter regions. Persistent methylation alterations may lead to
mutations, prompting researchers to study DNA methylation biomarkers associated with
diseases, with cancers being the most extensively investigated. Other disorders receive much
less attention, and so do environmental factors. The motive of this study originates from the
principle that prevention is better than treatment, particularly when the mechanisms of
certain disorders remain unclear, with no established risk factors. Psychiatric conditions and
behavioural disorders exemplify this issue, as most lack definitive treatments. Moreover, the
diversity and overlap of symptoms complicate diagnosis further. Available medications for
these conditions often come with side effects, especially when used long-term. This has
inspired us to explore potential environmental contributions to such disorders, with the goal
of improving individuals' quality of life without necessarily relying on medication, or at least
minimizing its use. In addition, identifying potential environmental factors or epigenetic
biomarkers can raise awareness about disease prognosis and ultimately help reduce incidence
rates. Micro array data for 9 different phenotypes (Total 145 Subjects) were analysed for
significant DMRs, with the results being gene-enriched prior to cross-comparison. From a
technical standpoint, a comprehensive literature review on data preprocessing methods was
conducted. Consequently, the tools used for analysis were selected based on recent
advancements and literature recommendations. SeSAMe from R Bioconductor was employed
for its modern p-value calculation method and comprehensive QC masking. This was
followed by additional customized QC steps to minimize imputation of masked values and
ensure high data quality. DMRs were detected using the Limma package, with FDR
correction applied. While the alteration in methylation levels detected in this study was
generally limited to single-probe differentiation, several DMPs were shared at the gene level.
Both CD81 and MADI1L1 exhibit hypomethylation associated with DLD and one or two
Alzheimer's groups. Interestingly, CD81 has been reported as upregulated in Alzheimer's
candidates in a study using prefrontal cortex tissue samples. Therefore, our research, along
with other studies, provides further evidence supporting the potential of peripheral blood
biomarkers in reflecting neurological symptomatology. MAD1L1, on the other hand, has
been frequently discussed in existing literature regarding the methylation of the same gene in
psychiatric and environmental contexts. These findings should encourage further
investigation of MAD1L1 to explore its potential role in neuropsychiatric symptoms. The
study also emphasizes the need for standardized methods tailored to specific cell types or
phenotypes. Such standardization would improve result consistency and enhance the
reliability of DNA methylation analysis, particularly for diseases that lacks global
methylation changes.
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Introduction

1. Importance of DNA Methylation

DNA methylation plays a pivotal role in epigenetics. Environmental factors and disorders
can contribute to alterations in methylation levels over the DNA strand, more specifically on
cytosines molecules. This alteration can change phenotype without changing a single
nucleotide. In general, a typical mechanism to explain the effect methylation in functional
biology is the down regulation (silencing) of genes as a result of covalently bonded — methyl
groups with cytosines (Figure 1), especially when binding occurs at the promoter site.

CH,| CH,) [(CH,
1T TTTTTTTTTT
1Ll LLLLLLELLL

DNA Methylation =» Inactivation of Genes

Figure 1. An example of gene inactivation resulting from epigenetic modification.

The alteration of methyl levels over cytosines are not limited to hypermethylation but also
representing in hypomethylation. For example, hypomethylation of tandem repeats
contribute to carcinogenesis and chromosomal rearrangements (Choi et al., 2009). While
these alterations are tissue-specific, scientists often seek associations between different
tissues. This is crucial for leveraging feasible tissues, such as blood or buccal cells, to
identify reliable markers (e.g., differential genes or regions) associated with disorders
affecting less accessible tissues, such as those in neuro disorders. However, the scope of
DNA methylation is not limited to disorders, but also extends to environmental factors and
overall quality of life. Studies have investigated sleep, stress, diet, exercise and other factors
to check if a factor can contribute or prevent certain disorder. Therefore, most of the studies
follows case-control study design.

2. DMRs

When studying a case versus control group in terms of methylation levels, the researcher
aims to find differential methylated regions (DMRs) or differentially methylated probes
(DMPs) in case group that expresses either hypermethylation or hypomethylation compared
to control group. If a differentiation is detected, these regions undergo gene enrichment
analysis and other mapping steps in order to interpret the results and extract meaningful
findings that can relate to the differences between phenotypes (case versus control). DMRs
can be expressed as
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Introduction

global changes in methylation levels as it is the case for cancers, or as a localized alteration
within specific part of DNA such as it is the case with behavioural disorders.

3. Sequencing Technique (BS-Seq)

A frequent occurrence of Cytosine and Guanine over a part of DNA is called CpG site (p
stands for phosphate which represents the phosphodiester between C and G), and clusters of
these CpG sites are called CpG islands (Takeshima & Ushijima, 2018). These islands are
often located near the promoter regions in 40% - 50% of human genes and therefore plays an
important regulatory role (Juo et al., 2014, Elango & Yi, 2011).

To detect DMRSs, a differentiation between methylated cytosine and unmethylated cytosine
needs to take place. Therefore, a technique known as bisulfite sequencing (BS-Seq) is used
to add sodium bisulfite to DNA sample to convert unmethylated cytosines into Uracil.
Methylated cytosines on the other hand remains unconverted. This conversion allows for
detecting methylation patterns on single base pair resolution (Bibb et al., 2017). BS-Seq
technique is considered gold standard in DNA methylation studies. After conversion of
unmethylated cytosines into Uracil, PCR is taking place and the Uracil eventually converted
to Thymine. It is important to understand that the original Thymine (T) can be distinguished
from the Cytosine-converted Thymine through comparing the untreated DNA with the
treated DNA.

4, Platforms and Application

After bisulfite conversion, scanners with fluorescence technology are used to detect the
methylated and unmethylated cytosines. In general, methylation micro arrays have gained
popularity due to their cost and time efficiency compared to Whole-Genome Bisulfite
Sequencing (WGBS). Majority of experiments are performed using Illumina Infinium
platforms (Table 1). Examples of other less common platforms are Agilent arrays, ex:
Agilent-023795 Human DNA Methylation Microarray 244k (platfrom id: GPL10878). There
are also custom platforms which are built to target specific regions based on the study
interest, ex: UHN Microarray Centre Human 8.1K CpG island microarray (Platform id:
GPL10342). Among the previous platforms, Infinium by Illumina, specifically 450K and
EPIC (v1.0) are the most common. In this study, the literature focuses on human methylation
using Infinium by Hlumina (specifically 450K and EPIC v1.0) unless stated otherwise. The
numbers (27K, 244K, 450K, etc..) represents the number of probes used in each platform.
And of course, higher number of probes corresponds to wider coverage.
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Platform MEIST | [RElse Reference
Count Year
. : www.illumina.com,
Infinium Hur_nan Methylation 27K 2008 | HumanMethylation27 product
27K BeadChip markers .
support files
. : www.illumina.com, Infinium
Infinium Humgn Methylation 450K 2011 | HumanMethylation450K V1.2
450K BeadChip markers ;
Product Files, n.d.
~ 850K www.illumina.com, Infinium
Infinium MethylationEPIC v1.0 2016 | MethylationEPIC v1.0 product
markers :
Files, n.d.
~ 930K www.illumina.com, Infinium
Infinium MethylationEPIC v2.0 2024 | MethylationEPIC v2.0 Product
markers :
Files
Table 1. Infinium platforms

The widest coverage among current platforms is provided by IHlumina Infinium Methylation
EPIC v2.0 which is recently released (in 2024) and therefore it is still not quite available
compared to EPIC v1.0. Therefore, in this study, all EPIC platforms refer to EPIC v1.0
version (850K) unless stated otherwise.

5. Signal Reads (IDAT files)

The output of scanners represents in methylation signal (M) and unmethylated signal for
each probe. In Illumina platforms, these signals are directly stored in IDAT format. The
output of methylation array experiment is two IDAT files per sample (2 IDATs for each
individual), one for the green channel that measures the methylated signal
(samplelD_Grn.idat), and the other for red channel which measures the unmethylated signal
(samplelD_Red.idat) (Introduction to DNA Methylation Analysis — methylprep 1.6.5
documentation, n.d). Therefore, if an experiment includes samples from 8 individuals, the
output of the experiment would be 16 IDAT files. Fig. 2 shows how methylation signals look
like after processing pair of IDAT files for one sample. As shown in Fig. 2, each probe has 4
columns that represents methylation signals:

1- MG =>» Methylated signal from the green channel (retrieved from _Grn.idat)
2- UG =» Unmethylated signal from the green channel (retrieved from _Grn.idat)
3- MR =>» Methylated signal from the red cannel (retrieved from _Red.idat)

4- UR =>» Unmethylated signal from the red channel (retrieved from _Red.idat)
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Introduction

6. Beta Values

For easier statistical analysis, methylation intensities are converted into either:

o M values = ranges between -1 and +1 where 0 means the probe is 50%
methylated.
Or:
o Beta Values =» ranges between 0 — 1 where 0 means fully hypomethylated, and 1

means fully hypermethylated.

1- Example of downloading random pair of IDATs from a repository:

BIOSTUDIES ARRAYEXPRESS E-MTAB-13583 SAMPLES AND DATA

Sample Attributes Variables Assay

@ Display full sample-data table

Show 38 s o
Source . developmental organism . .
*  organism disease disease Label - Assay Name Raw © Processed
Name stage part
Homo . .
C034 ) juvenile blood normal normal Cy5 203141320045_R05C01_C034_Red & R
sapiens -
Homo . .
C034 ) juvenile blood normal normal Cy3 203141320045_R05C01_C034_Grn & R
sapiens E
H devel tal | devel tal | ; v
DLDOO1 omo juvenile blood evelopmental language cvelopmentallanguage o o 503141320045 RO1CO1_DLDOO1. ERE
sapiens disorder disorder -
H devel tal | devel tal L v
DLDOO1 ome juvenile blood evelopmental language cvelopmentallanguage o 5 903141320045_Ro1C01_DLD00L G £ &
sapiens disorder disorder -

2- Locate the path of downloaded IDATs and read it (R Studio):

Tibrary(sesame)

Folder <- "~/Target/Sesame/Sample”
idat_files <- searchIDATprefixes(Folder)
idat = readIDATpair(idat_files)

head(idat)
3- Output:

Probe_ID MG MR UG UR col mask
1 cg00000029 NA NA 2890 1685 2 FALSE
2 cg00000103 NA NA 5573 618 2 FALSE
3 cg00000109 NA NA 5327 664 2 FALSE
4 cg00000155 NA NA 8023 837 2 FALSE
5 cg00000158 NA NA 10422 1165 2 FALSE
6 cg00000165 NA NA 1155 8043 2 FALSE
>

Figure 2. A simple example to download and read IDATSs

In general, beta values are more commonly used due to their ease of interpretation and
intuitive biological meaning. However, M values offer greater statistical validity (Du et al.,
2010). Du et al. (2010) offers a complete guide to compare between both methods. Fig. 3
demonstrate
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the calculation process for each method, where M represents the maximum methylation
signal, and U represents the maximum unmethylated signal detected.

M Muval = logg((M + a)

(M + U + a) (U+a))

B =

Figure 3. Calculation of Beta, & M values. Typically, a is a constant which is set to 100
for f and 1 for Mval.

The terminology (Beta) is derived from the distribution curve which is similar to beta
distribution (Du et al., 2010). This is because by nature, majority of CpG sites are either
hyper methylated (betas are close to 1) or hypo methylated (betas close to 0) (Fig. 4).

3.0 %
2.54

0.0 0.2 0.4 0.6 08 1.0
Beta Value

Figure 4. Multiple curves correspond to multiple samples.
Platform used: Epic Array

7. Motive of the study

° Literature abundance

While DNA methylation research is abundant in cancer studies, psychiatric and behavioural
disorders have received comparatively less attention. However, the increasing observations
of shared epigenetic markers among psychiatric disorders has sparked interest in recent
studies.

) Ambiguity of risk factors

The mechanism for many psychiatric disorders is still unknown. As a result, no specific
biomarkers are available to monitor the risk of developing the disease, which makes
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complete prevention is unfeasible. On the other hand, investigating the role of environmental
factors in developing or even reversing such conditions is important, as this approach can
reduce reliance on medical intervention and ultimately avoid the side effects often associated
with prolonged use of medication.

a. Increasing rate of developmental/ behavioural disorders among children

This research is further motivated by the rising rates of behavioural disorders like ADHD,
and Autism among children, especially in the recent years. The developmental challenges in
children are not limited to the existence of well-defined disorder, but also extends to general
developmental delays that often overlap with each other’s or with other psychiatric
conditions (ex: language and learning delays, social anxiety, depression, attention deficit,
sleep deprivation etc..). While some conditions may improve as children grow older, their
impact on schooling and social life can persist into adulthood, potentially lowering overall
quality of life.

d. Complexity of behavioural disorders

The overlapping symptoms among behavioural disorders, especially those that occur during
developmental ages in children, pose challenges in diagnostic accuracy. As a result, one
disorder can be confused with another, particularly when symptoms are unclear or do not
appear persistently.

8. Study Objective

To investigate possible epigenetic markers that may play a role in developing of certain
behavioural disorders.
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The literature review for this study can be divided into 4 sections:

1- Behavioural Disorders:
A review of behavioural disorders in terms environmental risk factors and overlapping
symptoms.

2-  Analysis Workflow:
Exploring the latest recommendations in terms of preprocessing methods and differential
analysis.

3- Comparison of Pipelines
As an exploratory approach, comparing the resulted beta distribution curve among different
R Bioconductor packages to confirm that different methods have profound effects on the
results.

4- Comparison of Detection p value Calculation Methods
Four different methods are tested to check how many values are masked in each method.

The study intends to compare DMRs among multiple experiments and explore possible
shared DMRs among certain phenotypes. Therefore, the majority part of the study is
technical and involves statistical applications. There are numerous methods and tools to
choose when performing micro array data analysis. Therefore, it was crucial to select
methods that are up to date. Another challenge was the un abundance of one specific
workflow of which analyse and compare multiple experiments in the domain of DNA
methylation. As a result, a comprehensive review of the latest guides and protocols is carried
to select the most appropriate tools that best serves our study design. Confounding factors
like sex, age, race, lab conditions, can all contribute unreliability of the results. Therefore, in
order to make sure that the retrieved results are related to biological differences rather than
confounding factors, a conservative approach was chosen in every step of the analysis.

Several studies have concluded that using different preprocessing methods can result in
significant effects on downstream analysis (Marabita et al., 2013). As a result, part of our
literature review was dedicated to review the documentation of common Bioconductor
libraries, apply the recommended pipeline by each library, and finally compare the beta value
distribution in each one as an exploratory procedure to observe the differences on overall
beta distribution. On the other hand, to evaluate the potential benefits and validity of
comparing epigenetic markers across psychiatric conditions, it was also necessary to review
the existing literature on these conditions. Furthermore, it was also necessary to review the
relationship between environmental factors and psychiatric conditions.
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1- Behavioural disorders

The interest in connecting behavioural disorders with environmental factors is not novel. For
example, a review by Cassoff, J., et al. (2012) highlighted several studies suggesting
potential associations between ADHD and sleep deprivation or general sleep disturbances
(Cassoff, J., et al. 2012). Studies also demonstrates that effects of having inadequate sleep in
childhood are not limited only to be associated solely with ADHD, but more importantly
with general conditions that represents in overall cognitive function and academic
performance (O’Callaghan et al., 2010). These symptoms are often observed in other
disorders like ASD. For example, children with ASD often struggles in focussing on things
they don’t like, and also expresses impaired reasoning ability in problem solving. Other
findings were presented in a study done by Van Der Heijden, K. B. et al. (2005), which
highlights the effects of maladjusted circadian rhythms on children that somehow mimics
ADHD symptoms such as, late nighttime, daytime fatigue, and consequently sleep
disturbances (Van Der Heijden et al., 2005). On the other hand, according to National
Institute of General Medical Sciences (NIGMS), circadian genes itself can be triggered by
food intake, stress, and social environment (National Institute of General Medical Sciences
[NIGMS], n.d.). A recent study by Han, Y. et al. (2024) has pointed that low protein diet
altered peripheral clock regulation. Compared to typical developing children, children with
autism (ASD) on the other hand has shown higher frequency of association with other
psychiatric comorbidities like mood disorder, anxiety, depression, and even ADHD (Gurney
et al., 2006, Magnuson & Constantino, 2011). Unlike ASD and ADHD disorders, anxiety and
depressive symptomology was easier to correlate with environmental factors. For example,
the increasing rates of depression and anxiety among US population was obvious in the
period of COVID pandemic Fig. 5 (Vahratian et al., 2021). The increased prevalence of
anxiety disorder during COVID pandemic was further validated in the meta-analysis
conducted by Delpino, F. M. et al. (2022).

On the other hand, the overlap of symptoms among various psychiatric disorders is quite
common (Bourque et al., 2024). Alomari. N. A., et al. (2022) presented several psychiatric
conditions that overlap with social anxiety disorder, which often poses challenges in
diagnosis. For example, the differential diagnosis of PTSD (post traumatic disorder) is very
difficult as its symptoms overlap with other anxiety and mood disorders (Alomari et al.,
2022). One of the recent systematic reviews has investigated the genetic and phenotypic
similarities among the major psychiatric disorders (Schizophrenia, Bipolar Disorder, Major
Depressive Disorder, Autism Spectrum Disorder, and Attention Deficit Hyperactivity
Disorder) (Bourque et al., 2024). The review has included significant findings related to the
heritability of the previously mentioned disorders, but more importantly that nearly 75% of-
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the significant genetic loci where shared by at least two disorders (Bourque et al., 2024,
Polderman et al., 2015, Anttila et al., 2018).
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Figure 5. Increasing rate of depressive and anxiety disorders during COVID pandemic
during 2020. Image from Morbidity and Mortality Weekly Report (MMWR; Vahratian et
al., 2021).

2- Analysis Workflow

Sahoo, K., and Sundararajan, V. (2024) conducted the most recent comprehensive review on
DNA methylation analysis methods. the review not only outlines the steps in a general DNA
methylation analysis workflow but also evaluates commonly used methods at each stage.
Notably, it provides a comparison for different libraries and tools used to detect DMRs.
Following data collection, preprocessing raw IDAT files is identified as the initial step in the
analysis workflow. Sahoo and Sundararajan (2024) highlights some common quality control
procedures:

a. Filtering probes.
Ex: probes with P val > 0.05, probes with many low-quality samples, SNPs, probe with cross
hybridization potential.

b. Quality control that includes background subtraction and filtering outliers.

C. Batch correction and FDR correction.
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The other fundamental part of the workflow is sample normalization. According to the
review, here are some common preprocessing algorithms used for sample normalization,
along with their corresponding Bioconductor libraries (Table 2):

: . Bioconductor
# | Preprocessing Algorithm Library Software
1 | Beta mixture quantile normalization (BMIQ) wateRmelon R :
programming
2 | Quantile normalization Limma R :
programming
Noob (Normal-exponential convolution using out-of- . R
3 Minfi :
band probe) programming
4 | SQN: Subset-quantile normalization ENmix R :
programming
[Hlumina
5 | lllumina (genome studio) NA (genome
studio)
6 | Functional normalization (funNorm) Minfi R :
programming
7 | SWAN: Subset-quantile normalization Minfi R :
programming
Table 2. Commonly used algorithms in normalization process

A comparison table is available in supplementary material of Sahoo and Sundararajan (2024)
review that provides general information for different algorithms. There are many
recommendations about which normalization method to choose (Sahoo & Sundararajan,
2024, Wang et al., 2018). For example, FunNorm() is often recommended in case of global
methylation changes (Cancer versus Normal) (Fortin et al., 2014, K. D. Hansen & Fortin,
Minfi User Guide). PreprocessQuantile() is the opposite where global changes are not
expected (K. D. Hansen & Fortin, Minfi User Guide).

The available literature also highlights the advantages and disadvantages for different
methods. For example, Illumina did not recommend quantile and loess normalization
methods as it can remove biological signal (www.illumina.com ,A Patient-Centric
Methylation Pipeline). Notably, Quantile-based methods are reported to be the worst in
Welsh et al. (2023) study, which performs a systematic evaluation of normalization methods
specifically on EPIC arrays. Welsh et al. (2023) stated that the SeSAME pipeline was the best
among the investigated methods. Figure 6 from the same study clearly shows the variance
between replicates for each method. According to Figure 6, NOOB, NOOB+BMIQ, and the
SeSAME pipeline had the best results.
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Interestingly, the standard pipeline in SeSAME uses normalization exponential (Norm-Exp)
deconvolution parametrized by out-of-band probes. In simple terms, this method is similar to

NOOB normalization.

Correlations between duplicates

N
_ | =

0.998 -

Correlation

0.997 -

0.996 -

Quantie 1 Raw 1 BMIQ 1 SWAN 1 llumina 1 Funnorm 1 Noob 1 SeSAMe1  Noob+BMIQ1  SeSAMe2
Method

Figure 6. A comparison among different preprocessing methods. Image from (Welsh et al.,
2023).

For the calculation of detection p-values, it is interesting to note that the pPOOBAH method,
originally provided by SeSAME, is the most up-to-date method. This method uses out-of-
band probes to substantially remove technical variation while preserving biological variation
(Zhou et al., 2018). Interestingly, pPOOBAH is now also available within the Rnbeads

package (RNBeads Reference Manual, 2024).
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Furthermore, using pOOBAH twice in Welsh et al. (2023) comparison achieved the highest
correlation among replicates compared to other methods. Based on the available information,
it appears that several independent studies agree on the superiority of the pPOOBAH method
and the SeSAME npipeline in general. Another parameter that differs among different
Bioconductor packages is the method used for dye bias correction. For example, similar to
SeSAME's novel method (pOOBAH), the Enmix standard pipeline uses a novel dye bias
correction method called RELIC, compared to the traditional methods used in other libraries
(e.g., Minfi and SeSAME, which use non-linear dye bias correction). Xu et al. (2017)
demonstrated the advantage of using RELIC compared to other methods. However, unlike
SeSAME, we could not find additional papers that further support this novel method, and it
seems that it is still not quite common among researchers.

When using the standard pipeline provided by certain packages, there are several common
parameters considered to improve data quality. Table 3 lists the most important parameters
that researchers need to know how to use. Table 4 lists two examples of pipelines from
different packages.

Parameter Description

Removes samples with low-quality probes count
greater than the chosen threshold.

Removes probes with low-quality methylation values
count (samples) greater than the chosen threshold.
An optional argument usually set as True or False. If

Samples threshold

Probe threshold

Imputation of true, the function will replace masked (or missing)

missing/unreliable values with various imputation methods (mean

values average, k nearest neighbour, using machine learning,
etc.).

Outliers are detected and may or may not be replaced
by other values.

P value threshold The researcher has the option to set it to 0.05, 0.01, etc.

Outliers’ detection

Table 3. Common parameters to be set by the researcher. (K. D. Hansen & Fortin,
Minfi User Guide, SeSSAME User Guide, 2024, Enmix User Guide, 2024, Sahoo
& Sundararajan, 2024).
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Package Example of Pipeline
Minfi preprocessQuantile(data, fixOutliers = TRUE,
reference removeBadSamples = TRUE, badSampleCutoff = 0.5,
manual quantileNormalize = TRUE, stratified = TRUE)
SeSAME openSesame( X, prep = "QCDPB", func = getBetas,
reference - _

min_beads=1) *

manual

Table 4. Examples of Standard pipelines with parameters distinguished in
bold. (K. D. Hansen & Fortin, [Minfi User Guide], (SeSAME User Guide,
2024)

* Choosing "QCDPB" parameter in SeSAME makes the function works as
a wrapper for NOOB normalization + nonlinear dye bias correction +
pOOBAH masking.

Typically, the output of preprocessing and QC steps is a beta value (or M value) matrix,
where the header contains the probe IDs in the first column, followed by the sample IDs
(Table 5). The rest of the matrix contains the corresponding beta values for each sample.
These values are often calculated within the preprocessing step using the methylated (M) and
unmethylated (U) signal intensities.

ProbelD Zggﬂg\fﬁg;ggfzgg FTP_MAPT_2032824 | FTP_MAPT_2032824

tas - 50165 _R06C01_Betas | 50206_R06C01_Betas
cg00000321 0.93185736 0.452552278 0.170955216
cg00000363 0.956787254 0.245961765 0.195561541
cg00000540 0.595062545 0.814777269 0.957632846
cg00000596 0.035264643 0.407019545 0.49373275
cg00000776 0.093778138 0.236755558 0.430315058
cg00001099 0.737510528 0.530688509 0.851287559

Table 5. Example of beta value file (first 6 probes)

The matrix may or may not contain missing values, depending on the pipeline and
parameters chosen. For p-values, packages like SeSAME, provide the ability to extract them
if the researcher chooses to, which is not the case for other packages like Minfi, where p-

values are calculated without the ability to convert them into a data frame.
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As a result, p-values cannot be obtained as a standalone dataset after preprocessing. Once
preprocessing and QC is done, beta values can be analysed for DMRs. For DMRs detection,
Limma package is considered among the packages that prove its effectiveness (Sahoo &
Sundararajan, 2024). The algorithm uses empirical Bayes approach.

3- Comparison of pipelines

To confirm the differences of different preprocessing methods, several attempts were made
on sample ID 203141320045 R04C01 DLDO004 from E-MTAB-13583 Experiment
(BioStudies, n.d.). E-MTAB-13583 raw and processed methylation data is publicly available
on ArrayExpress. As per the meta data provided with the experiment, the processed data is
obtained after several QC steps. This was followed with normalization using SWAN method.
In addition to raw and SWAN processed datasets provided by the experiment, we have
selected the following methods to process the same file and compare accordingly (Table 6):

Algorithm / parameters

Package | Pipeline used ke

preprocessQuantile(data, fixOutliers = TRUE,
removeBadSamples = TRUE,
badSampleCutoff = 0.5, quantileNormalize =
Minfi TRUE, stratified = TRUE)

Stratified quantile
normalization for an Illumina
methylation array.

Subset-quantile Within Array
preprocessSWAN() Normalisation (standard
pipeline from Minfi)

mpreprocess(data, nCores=2,
bgParaEst="o0ob", dyeCorr="RELIC",
Enmix | qc=TRUE, gnorm=TRUE,
gmethod="quantilel", fqcfilter=FALSE,
rmcr=FALSE, impute=TRUE)

RELIC is used for dye
correction. Background
correction + Quantile
normalization method

Table 6. Pipelines used in comparison against the processed and raw data published with
E-MTAB-13583 experiment.

Attempting to mimic the distribution curve in the pre-processed data provided with the
experiment, we used the same algorithm (preprocessSWAN). Interestingly, the comparison
results in different beta distributions, most likely due to different QC parameters (Figure 7).
All comparisons are available in the Appendices Chapter (Section 1, Pipelines Comparison).
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Fig 7. A comparison between preprocessSWAN() standard approach as per Minfi reference
manual versus the preprocessSWAN() pipeline used in E-MTAB-13583 experiment.

4- Comparison of detection p value calculation methods

This section is dedicated to exploring the differences associated with using pOOBAH
method which is originally provided by SeSAME package. Table 7 represent a comparison in
terms of the number of masked probes based on p value 0.05 using 4 different methods. The
same sample has different of number of failed probes in each method, which highlights the
profound effects that can results from different methods. The source code used to output the
Table 7 is available in the Appendices Chapter (Section 2, P-value Methods Comparison).

R01C01 | R02C01 | RO3CO01 R06CO
Method _DLDO | _DLDO0 | _DLDO0O | # # | 1.V18 RUASES | [RESICULL Average
01 > 3 3 V187 V188

'POOBAH'
Method by | 19008 9975 9716 /| Il | 10958 8560 20587 | 11666.21

SeSAME

'detectionP
(M+U)'
Method by
Minfi

617 345 282 i 508 261 530 465.9167

‘oob’
Method by 31538 12168 12251 /! /! 11563 7366 13482 | 12256.17

ENmix

'negative’
Method by 514 263 214 i n 428 216 424 383.1667

ENmix

Table 7. A comparison of calculating dectection p value methods. P value threshold set
to 0.05 in all methods across samples from the experiment E-MTAB-13583.
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1. Data Collection:

Data is collected from GEO and ArrayExpress. Experiments have been selected using the
following keywords: [brain, behavior, behaviour, child, psychiat, adhd, asd, attention,
autism, impulsive, sleep, stress, adversity, developmental, language, abuse]. To limit the
confounding variables especially in terms of tissues, and make the included experiments
compatible for cross comparison, the search was restricted to the following parameters:

Tissue: blood, or peripheral blood
Species: Homo Sapiens
Study type: Methylation Profiling by Array.

2. Platform Compatibility

Since this study attempts to compare methylation levels across different experiments, it was
Important to evaluate the compatibility of platforms that are provided by different
manufacturers before including the corresponding experiments. Upon checking the manifests
for different platforms (ex: Illumina, Agilent, etc..), it was observed that important
information must be considered when comparing different platforms.

a. All Hlumina Infinium platforms (27K, 450K, EPIC) uses the same length of probes
(50 bp per probe).

b. A considerable number of probes are shared among different Infinium platforms.
Furthermore, these probes correspond to the same genomic locations.

C. Probes in platforms manufactured by other providers (Ex: Agilent), has different
IDs. Therefore, an attempt was done to map these ids to its genomic locations using
the manifest provided by the manufacturer. These locations are then compared to
[llumina probes in order to find matched probes which can be extracted and included
in the analysis (Figure 8).

Epic EpicMAPINFO

9 .0 cg08029603 854824.0
FLJ39609 c 4913 95 854913.0 8548 .0 cg22699361 854918.0
SAMD11 c 057! 6 860570.0 8606 0 ag 46 860613.0
P0O0000175 SAMD11 chr1:86 -8613 861304.0 8613480 1.0 cgl1432420 861317.0

Figure 8. Attempting to map Agilent 244K probes to Illumina EPIC probes
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The mapping procedure leveraged the information provided by the MAPINFO column from
the EPIC manifest (www.illumina.com), which was consistently found to be within the range
of the start and end coordinates of the corresponding probe. This information was then
compared with the start and end coordinates of Agilent probes (GEO Accession Viewer, n.d.
Platform ID GPL10878). Despite approximately 50K out of the 244K probes on the Agilent
platform having 'somewhat' similar genomic regions to EPIC probes, it is important to note
that the length of the probes differs (SEQUENCE column), with EPIC probes being 50 bp in
length, while Agilent probes can range up to 200 bp.

3. Exclusion criteria

Initially, 14 studies were selected, containing methylation arrays for 19 different phenotypes.
The metadata for all experiments were reviewed to verify the platform specifications and
determine compatibility for cross-comparison. The majority of the experiments utilized
[llumina Infinium bead chips (27K, 450K, EPIC v1.0). Therefore, it is preferable to restrict
the platform of choice to Infinium platforms only. The rationale for excluding experiments
from different platforms was discussed in the previous section. In brief, probes differ in
length (50 bp in Ilumina versus 40-200 bp in Agilent), and the genomic loci of similar
probes do not always match (differences in start and end coordinates).

Another exclusion criterion was the availability of raw IDAT files, as some experiments only
provide processed data, which does not align with our approach. Our method relies on the
availability of original raw IDAT files to ensure consistent preprocessing using our chosen
pipeline. As a result, 4 experiments remained, encompassing a total of 9 phenotypes (i.e., 9
datasets) (Figure 9). Table 8 summarizes the experiment details, and the available
phenotypes considered for this study.

Stage Available Data
Initial Collection 14 Experiments (19 Phenotypes)
Platform Compatibility 11 Experiments (16 Phenotypes)
IDATSs Availability 4 Experiments (9 Phenotypes)
Figure 9. Exclusion process.
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Array / Study

ID and Link

Data Source

Platform

Sample
Size

Phenotype /
Environmental
Factor

Comparison of
the methylation
profiles of
children with
developmental
language disorder
and healthy
control subjects

E-MTAB-
13583

ArrayExpress

IHlumina
EPIC v1.0

12

Developmental
Language
Disorder

Epigenomics of
Total Acute
Sleep
Deprivation in
Relation to
Genome-wide
DNA
Methylation
Profiles and RNA
Expression

E-MTAB-4664

ArrayExpress

IHlumina
450K

18

Acute Sleep
Deprivation

DNA
Methylation
Differences
Associated with
Social Anxiety
Disorder and
Early Life
Adversity

GSE164056

GEO

IHlumina
EPIC v1.0

35

Social Anxiety

DNA
Methylation
Differences
Associated with
Social Anxiety
Disorder and
Early Life
Adversity

GSE164056

GEO

IHlumina
EPIC v1.0

30

Ealry Life
Adversity

DNA
Methylation
Differences
Associated with
Social Anxiety
Disorder and
Early Life
Adversity

GSE164056

GEO

IHlumina
EPIC v1.0

31

Social Anxiety
& Ealry Life
Adversity
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Genome-wide
DNA
methylation
analysis
identifies
epigenetic
differences in
Alzheimer’s
disease and
frontotemporal
dementia in brain
tissue and
lymphoblastoid
cell lines

E-MTAB-

11975

ArrayEXxpress

IHlumina
EPIC v1.0

sporadic early-
onset
Alzheimer's
disease

Genome-wide
DNA
methylation
analysis
identifies
epigenetic
differences in
Alzheimer’s
disease and
frontotemporal
dementia in brain
tissue and
lymphoblastoid
cell lines

E-MTAB-

11975

ArrayExpress

IHlumina
EPIC v1.0

Familial
Alzheimer
Disease

Genome-wide
DNA
methylation
analysis
identifies
epigenetic
differences in
Alzheimer’s
disease and
frontotemporal
dementia in brain
tissue and
lymphoblastoid
cell lines

E-MTAB-

11975

ArrayExpress

IHlumina
EPIC v1.0

Genetic
Frontotemporal
Dementia
(GRN
Mutation)

Genome-wide
DNA
methylation
analysis
identifies
epigenetic
differences in
Alzheimer’s
disease and
frontotemporal

E-MTAB-

11975

ArrayExpress

IHlumina
EPIC v1.0

Genetic
Frontotemporal
Dementia
(MAPT
Mutation)
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dementia in brain
tissue and
lymphoblastoid
cell lines

10

Comparison of
the methylation
profiles of
children with
developmental
language disorder
and healthy
control subjects

E-MTAB-
13583

ArrayEXxpress

IHlumina
EPIC v1.0

12

Healthy
Controls

11

Epigenomics of
Total Acute
Sleep
Deprivation in
Relation to
Genome-wide
DNA
Methylation
Profiles and RNA
Expression

E-MTAB-4664

ArrayExpress

IHlumina
450K

18

Healthy
Controls

12

DNA
Methylation
Differences
Associated with
Social Anxiety
Disorder and
Early Life
Adversity

GSE164056

GEO

IHlumina
EPIC v1.0

47

Healthy
Controls

13

Genome-wide
DNA
methylation
analysis
identifies
epigenetic
differences in
Alzheimer’s
disease and
frontotemporal
dementia in brain
tissue and
lymphoblastoid
cell lines

E-MTAB-
11975

ArrayExpress

IHlumina
EPIC v1.0

Healthy
Controls

Table 8. List of experiments (4) and available phenotypes (9 cases + 4 controls = Total of

13 datasets) that are included in the workflow.
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4,
Based

Workflow Steps and Approach
on the literature reviewed (Chapter 1), the data preprocessing protocol significantly

influences the results, particularly when the investigated phenotypes do not exhibit global
changes in DNA methylation. Therefore, it was crucial to select a comprehensive and
consistent protocol that could be applied across all included experiments.

4.1. Preprocessing (QC part 1)
Purpose: 1- Eliminate noise from artifact effects
2- Mask weak and unreliable signals
3- Extract masking summary (metric-wise)

4- Convert IDATSs into betas matrix

Our package of choice was SeSAME for the following reasons:

None of the included datasets has used SeSAME.

Relatively new (released in 2018) and uses up to date methods (pOOBAH for
detection p-value).

Researchers have more control over sample/ probe exclusions.

Conservative and comprehensive quality mask is provided. The masking procedure
targets low quality signals (beta values) without removing the probes which give the
choice for the researcher to check if certain samples exhibit extra number of low-
quality probes.

The quality mask provided by SeSAME target probes with suboptimal
hybridization, multimapping, and other features like insignificant p value based on a
threshold decided by the researcher, and probes with low bead count.

P values can be extracted as a standalone dataset and used as a guide for removing
bad performing samples during the workflow.

SeSAME is recommended by [Hlumina (www.illumina.com, Infinium™
Methylation Screening Array).

Availability of workflows and published papers that are used as a reference.(Zhou
etal., 2018, Zhou et al., 2022, Welsh et al., 2023).

The main reason why we preferred to have p values after preprocessing is that we wanted to
delay any correction (imputation of missing/ low quality values) after exploring the original
dataset and hence we will have the confidence to impute missing/ low quality values based
on clear insights.
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Furthermore, p values are a used with other metrics to evaluate the overall quality of
samples. This is beneficial in the workflow when dataset has lot of outliers, and the
researcher wanted to check if certain sample is having distinguished number of outliers and
low-quality values. The first step was to process raw IDATs using the recommended
approach provided in SeSAME reference manual (Figure. 10), in addition to Zhou et al.,
(2022) study. The complete code used for the 13 datasets (9 cases and 4 controls) is available
in the Appendices Chapter (Section 3, preprocessing IDATS).

> # Step 1: Apply qualityMask
masked_data <- qualitymMask(readIDATpair(px))

# Step 2: Apply dyeBiasNL and extract p-values
corrected_data <- dyeBiasNL(masked_data, mask

standard dyBiasNL()

pvalues <- pOOBAH(corrected_data, return.pval

TRUE) # Equal to

TRUE) # EXtract p-values

# Step 3: Apply pOOBAH (using corrected_data from step 2)
p_value_data <- pOOBAH(corrected_data, combine.neg = TRUE, pval
.threshold = 0.05) # Equal to standard pOOBAH()

# Step 4: Apply noob
noob_data <- noob(p_value_data, combine.neg = TRUE, offset = 15) # qual
to standard noob ()

# Step 5: Get betas
betas <- getBetas(noob_data)

Figure 10. Partial overview of the main steps involved in preprocessing IDATs with Noob
and Dye Bias Correction within the SeSAMe pipeline.

After preprocessing, a masking summary is generated to identify the sample with the highest
percentage of masked probes. This procedure utilizes built-in functions from the SeSAME
package. However, we have combined all key parameters into a single function that outputs
comprehensive metrics for all samples in one CSV file. This process was applied to all
datasets. The complete code is provided in the Appendices Chapter (Section 4, Masking
Summary). An example of the output is shown in Table 9. A masking summary represents a
table that enables us to view some important QC statistics like percentage of masked probes
using pOOBAH with threshold of pval = 0.05 and pval = 0.01 at the same time. The table
also provides an easy way to know the percentage of probes that are masked for reasons
other than p value (Table 9).
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R01C01_ | R02CO1_ R02C01_ | R0O3CO01_

Procedure

DLDO001 DLD002 DLDO011 DLDO012
Platform Recognized EPIC EPIC I EPIC EPIC
No. of Masked Probes in The Raw 0 0 0l 0 0

Sample

Perc. Of Missing Betas in The Raw

0.021128 | 0.010941 | // | // | 0.011797 | 0.010209
Sample

No. of Masked Probes After

qualityMask() 105454 105454 | /I | 1/ 105454 105454

Perc. Of Missing Betas After

qualityMask() 0.139165 | 0.130171 | // | /I | 0.130845 | 0.12959

No. of Masked Probes with

dyeBiasNL() 0 0 iy 0 0
goo'ooBf 2";8‘9‘1 A 19008 90975 | /1| # | 10758 9375
EggBO;F'Y”SSi”Q Betas AsaResultof | o1198 | 0010041 | #/ | #/ | 0.011797 | 0.010209
No. of Masked Probes with noob() 0 0 I 0 0

Perc. Of Missing Betas As a result of

0.021128 | 0.010941 | // | /I | 0.011797 | 0.010209
noob()

Perc. Of Missing Betas After
(qualityMask() + dyeBiasNL() + 0.139165 | 0.130171 | // | /I | 0.130845 | 0.12959
pOOBAHY() + nooh())

Total Masked probes 124462 115429 | /I | /I 116212 114829

Table 9. Number/ Percentage of masked betas as a result of performing SeSAME
standard QC mask
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4.2. QC (part2)

Note: SNP probes, control probes, ch probes, and probes on sex chromosomes are removed
prior to QC (part 2). The exclusion of these probes is a standard procedure in methylation
studies (e.g: Wiegand et al., 2021, Hop et al., 2020, Ramos-Campoy et al., 2024, lllumina
"Infinium controls training guide", www.illumina.com) unless the researcher chose not to
base on the purpose of the study.

Complete source code for QC (part 2) is available as supplementary material (QC2).

Importance 1- Rank subjects based on outliers and quality metrics
of QC 2- Identify best and worst performing subjects
(part2): 3- Exclude low-quality probes (and low-performing subjects if needed)
4- Isolate probes with extra variability
5- Detect outliers using IQR in isolated probes.
6- Mask the outliers
7- Impute the masked values using WM

8- Visualize the results and variability improvement

Purpose:  Reduce artifact effects while preserving biological variability.

To maintain a conservative approach, we decided to perform another round of QC right after
SeSAME preprocessing. This was important since none of the probes or samples were
removed during preprocessing. This idea was inspired by the study 2023, welch et al which
performs 2 rounds of QC with SeSAME, leveraging pOOBAH for improving the reliability if
methylation values. The workflow of QC (part 2) is summarized in Table 10 which lists all
the used functions step wise from 1-17. Source code is available as supplementary material

(QC2).

This part of the workflow begins with evaluating the potential removal of low-performing
samples. To achieve this, a scoring matrix is created, incorporating several quality metrics.
Based on these metrics, subjects are ranked from highest to lowest quality in terms of
methylation signal performance (Table 11 is the output of Step 1). Functions (2-7) check for
subjects with an unusually high number of values showing the greatest absolute deviation
from the mean (probe-wise). This procedure helps determine whether a specific subject
contributes significantly to the majority of outliers. Combined with the scoring matrix (Table
11), these metrics facilitate the decision-making process regarding the removal or retention
of certain samples (Table 12).
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Step

Self-Built Functions (Python)

Process

1

pval df = subject score (df)

Creating a scoring matrix
(Table 11)

2 |abs dif = df abs(dfl) Calculation of absolute
difference from the mean
average

3 | plotAbsDifference (abs dif) Plot the subjects to check
for distinguished number of
probes for certain subject

4 | abs rank = abs dif rank(abs dif) Rank subjects based on
absolute deviation

5 | subjectsPerformance (abs rank, pval df) Returns a table that shows
Max Abs. Diff. Count for
each subject compared with
its rank in scoring matrix.

6 Top Scorer = '203259750077 R04CO1 DLDO013 Betas' |n|t|a||y’ set a target Subject
to have extra weight for

Bad Samples = ['203141320045 RO1COL DIDOOL Betas'] | IMPutation with mean
# leave it [] in case no bad subjects is average.
determined
The bas samples (if any)
et seea (69 (S| v R will be stored in list to be
e cide probe (¢ S sed on Jjec
N removed.
TRPQC = (len(dfl.columns)-1) * (2/3) ]
A threshold to be decided
(mostly 2/3 of sample size).

7 dfl_removed = dfl.drop (columns=[col for col in Dropping bad Samp|e(s) if

dfl.colums if col in Bad Samples]) any.

8 df2 = probe QC (dfl_removed, threshold = TRPQC, Removing bad probes

HIHEND S WA (probes that has > TRPQC
NaN values

9 |qc_table 2 = mask summary (df2) Check masking summary
after removal of bad probes

10 | count probes with range(df2) Check how many probes

have more than 0.3 range
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11 | df3, df remain = extract probes with range(df2, Extract probes with range >
e 0.3 to a separate dataframe.

12 | plotAbsDifference (abs dif 1) Plot the subjects to check
which one has extra

abs rank 1 = abs dif rank(abs dif 1) number of outliers.
Rank the subjects based on
# Campare Against Pval Scores the results.
subjectsPerformance (abs rank 1, pval df)
Check the overall
performance for each and
decide if certain subjects
needs to be removed.

13 | df4 = replace outliers withNaN(df3) Replace outliers with NaN.
(Masking outliers as
missing values)

14 | gc_table 3 = mask summary(df3 updated) Check how much beta
R values are masked after
outlier inspectien table = outlier detection
compare2qc tables(qc_table 3, gc table 4)

15 | df5S = append masked to original (df4, Rejoin the isolated probes
Bh [REWECN WRREErey to the remaining datframe.

16 | df6 = probe QC(df5, threshold=TRPQC, remove= True) Remove any probes that

# Set remove = True to Remove Bad Probes exceeds the threshold
TRPQC.
17 | df7 = impute WM(df6, target col=Top Scorer, Impute the remaining

target weight=Target Weight, default weight=l)

missing (masked) beta
values

Table 10. All functions used in QC (part 2). The code for each function is available as
Supplementary material (DNA_Meth_Module.ipynb)

Page |38




Chapter 2 | Methodology

Function in step (8) removes any probe that has masked values more than 2/3 (default
threshold "TRPQC") of the sample size. This is followed by step (9) exploring the masking
percentage. Functions (10-11) checks for the number of probes that has range of values (max
— min) greater than 0.3 and isolate these probes to handle the outliers separately from the
other probes that has range < 0.3. The advantage of this method is that any future imputation
for outliers will take place only over the isolated probes rather than the entire dataset, and
hence the overall adjustments are minimal. The range 0.3 is decided based on available
literature which states that DMRs are considered significant when the cases are at least 0.2
greater or less than controls (Cabezon et al., 2021, Jiang et al., 2015, Van Doorn et al., 2016).
Therefore, to maintain biological variability among samples, 0.3 is considered conservative.
In other words, we are considering probes with a range of 0.3 or less as biologically variable.

II\D/Iercl.(oé
aske
f o TP a | oe ] son
0.05 | 0.01 from (Perc.)
SeSAME
1 | R0O4C01_DLDO013 Betas | 0.00305 | 6844 | 38223 | 12.76% | 48 |100.00%
2 |RO3C01_DLDO012 Betas | 0.00342 | 8234 | 40331 | 12.90% 42 | 87.50%
3 | RO3C01_DLDO007 Betas | 0.00353 | 8234 | 43021 | 12.89% 38 | 79.17%
4 | R02C01_DLDO006_Betas | 0.00345 | 8266 | 41007 | 12.91% | 36 | 75.00%
5 | R04C01_DLDO008_Betas | 0.0036 | 8236 | 44287 | 12.89% | 31 | 64.58%
6 | RO3CO01_DLDO003 Betas | 0.00357 | 8508 | 42202 | 12.93% 30 | 62.50%
7 | R0O4C01_DLDO004 Betas | 0.00357 | 8703 | 41409 | 12.95% 28 | 58.33%
8 | R02C01_DLDO002 Betas | 0.00373 | 8787 | 43791 | 12.95% 22 | 45.83%
9 |R01CO01_DLDO010 Betas | 0.00376 | 9562 | 47265 | 13.05% 15 | 31.25%
10 | R0O2C01_DLDO011_Betas | 0.00381 | 9669 | 44786 | 13.05% 14 | 29.17%
11 | R0O1C01_DLDO005_Betas | 0.00402 | 9886 |49916 | 13.07% 8 16.67%
12 | RO1C01_DLDO001_Betas | 0.00576 | 17737 | 67254 | 13.90% 4 8.33%
Table 11. Scoring matrix to check samples performance.
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Functions in step (12) are similar to (2-7) except that it calculates the absolute difference for
the isolated probes only (probes with range > 0.3). Similarly, the subjects are ranked to check
which one accounts for the most outliers (the output is similar to Table 12). Subjects are
kept/ removed accordingly. It is important to consider the sample size as a small sample size
will limit the ability to exclude low performing subjects.

Functions (13-16) replace (mask) all detected outliers using the IQR method with NaN,
before appending the isolated probes back into the original dataset. This is followed by
another round of removal of low-quality probes. Function (17) imputes the remaining
masked beta values using the weighted mean method, where extra weight is given to the
sample that achieve top scores throughout the entire workflow.

# Column Name Max Abs. Diff. Count S(cgo(ie
1 | 203259750076_R02C01_DLDO006_Betas 31890 75.00%
2 | 203259750077_R03C01_DLD012_Betas 36592 87.50%
3 | 203259750077_R04C01_DLD013_Betas 37745 100.00%
4 | 203259750076_R01C01_DLDO005_ Betas 47025 16.67%
5 | 203259750077_R01C01_DLD010_Betas 54050 31.25%
6 | 203141320045 _R03C01_DLD003_Betas 54704 62.50%
7 | 203259750077 _R02C01_DLDO011 Betas 57670 29.17%
8 | 203259750076_R04C01_DLDO008 Betas 67241 64.58%
9 | 203141320045 _R04C01_DLD004 Betas 72142 58.33%
10 | 203141320045 _R02C01_DLDO002_Betas 75714 45.83%
11| 203259750076 _R03C01_DLD007 Betas 78858 79.17%
12 | 203141320045 R01C01_DLDO001_Betas 232594 8.33%
Table 12. Subject performance ranking table. Lower-quality subjects are often
associated with a higher count of beta values showing the greatest absolute deviation
from the mean.
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4.3. DMRs Detection

The Limma package was used to perform the differential analysis. Limma is a popular choice
among researchers in DNA methylation analysis because it offers several advantages, such as
using the Benjamini-Hochberg method for FDR correction. Furthermore, Limma has been
extensively tested and used over a long period of time. This step is applied over the 9
datasets separately. The analysis of DMRs is carried out for each phenotype against its
corresponding control dataset provided in the study. The code script used to run Limma
analysis along with FDR correction is included in the Appendices Chapter (Section 5, Limma
Analysis). The tables containing a list of differentially methylated probes for each dataset are
available in supplementary material (Limma DMPS).

4.4. Cross Comparison

After extracting DMRs for each case dataset (a total of 9 results corresponding to 9
phenotypes), it was observed that one of the cases (TSD) resulted in zero DMRs after FDR
correction. For the exploratory approach intended in this study, we decided to use the DMRs
file without FDR correction for this specific dataset only (E-MTAB-4664, Total Acute Sleep
Deprivation). However, this will be considered one of the limitations of the study, and any
shared DMRs/ DMPs with this specific dataset will be highlighted as weak results. The
cross-comparison among the 9 phenotypes was conducted based on 3 criteria (Table 13).

Criteria Procedure

Shared | This part will look for shared probe ids that are differentially methylated
Probes | among the 9 datasets.

Using Illumina manifests, the differentially methylated probes for each
Shared | phenotype are gene enriched, and then a cross comparison among the 9
Genes phenotypes is carried out to check for probes that are mapped to the same
gene. A priority is given to probes that are mapped to promoter regions

For each phenotype, using Illumina manifests, the differentially
methylated probes are mapped to their genomic locations. Probes with
shared regions across the 9 results are determined based on a threshold of
Shared | base pair distance. Since this approach is exploratory, an initial threshold
Regions | of 10,000 bp was applied, but no significant probes were identified.
Therefore, the threshold was increased to 100,000 bp. Although a range
of 100,000 bp is commonly used in other studies (Bondhus et al., 2022)
when identifying DMRs, the results should be interpreted with caution.

Table 13. Approach to find shared methylation patterns across multiple phenotypes.
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Figure 11. Workflow diagram
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A general workflow plan is demonstrated in Fig. 11, along with the tools and sources used.
This chapter is divided into 4 sections:

1. Preprocessing

2. Quality Control (QC part 2)
3. Differential Analysis

4 Cross Comparison

1. Preprocessing

All datasets (cases and controls) were processed using the SeSAME pipeline, as detailed in
the methodology (Chapter 2). The output of this procedure comprises 13 datasets in CSV
format (Figure 12).

Abstract of the code (R programming) used for 4 datasets (controls) | Output (Total 13 datasets)

9 cases:
> print("[4] Processing Group of Idats..")

ﬁ Lo?p o;erj ea((::h path and perform the tasks @ 01_DLD(11)cases(NORM).csv

or (path in ¢ -
"C:/Users/saeed.LAPTOP-0UBK4QVG/Documents /Target/01_DLD/E-MTAB-13583", @ 02_Farly_Alz(5)cases(NORM).csv
"C:/Users/Saeed.LAPTOP-0UBK4QVG/Documents /Target /02_FTP/E-MTAB-11975", - -
"C:/Users /Saeed.LAPTOP-0UBK4QVG/Documents /Target /03_SAD/GSEL164056", @ 02_Fam_Alz{6)cases(NORM).csv
"C:/Users/Saeed.LAPTOP-0UBK4QVG/Documents /Target /04_AcuteSleepDep/E-MTAB-4664"

N Ao @ 02_FTP_GRN(5)cases(NORM).csv
print("Processing Starts. . . ")
# Set Working Directory as same as the input @ 02_FTP_MAPT(3)cases(NORM).csv
setwd(path)
input = path @ 03 _ELA(27)cases(NORM).csv

------ @ 03 SAD(32)cases(NORM).csv
@ 03 _SAD _ELA(29)cases(NORM).csv

h # Write merged data to Csv file @ 04_TSD(17)cases(NORM).csv

write.csv(merged_data, "[4] Betas_Pval.csv", row.names = FALSE)

# Optional: frees up memory 4 controls:
rm(Tist = 1s())
9cQ)

@ 01_DLD(9)controls(NORM).csv
F e check Batas in Pyehon™) B9 02_FTP(5)controls(NORM).csv
@ 03_SAD(42)controls{(NORM).csv
@ 04 _TSD(15)controls{NORM).csv

Figure 12. preprocessing samples and convert raw IDATs to Betas (.csv format)

2. Quality Control (QC part 2)

Unlike preprocessing, which occurs iteratively, the second round of quality control (QC) is
conducted separately for each dataset to explore and manage the removal of probes and
subjects. The same steps are repeated across the 13 datasets. Table 14 summarizes the output
of this section. Since all datasets undergo the same process, one complete workflow is demo-
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nstrated in detail for the 01_DLD dataset (page: 39), while the others are summarized with

experiment details and normalization curves (9 cases followed by 4 controls).

Probes Samples Percentage Std
# Phenotype Data§et_ of
Abbreviation Before | After | Before | After Imputation Before | After
Developmental 01 DLD
1 Language (Cases) 866553 | 737275 | 12 11 1.67% | 0.019 | 0.0185
Disorder
Sporadic
o | EBarly-Onset | 02 Early Alz | ggeena | 710035 | 5 5 9.97% | 0.0797 | 0.0665
Alzheimer's (cases)
Disease
Familial
3| Alzheimer | 92-FAMAIZ | ogasna | 730137 | 6 | 6 | 7.90% | 0.0562 | 0.049
Disease (cases)
Genetic
Frontotemporal
4| Dementia | P-TTPORN | gaenna | 708698| 5 | 5 | 10.30% |0.0794 | 0.0662
(cases)
(GRN
Mutation)
Genetic
Frontotemporal
5 |  Dementia OZ—F(E:;E';’)'APT 866553 | 734277 | 3 | 3 | 097% |0.0772 | 0.0769
(MAPT
Mutation)
6 | EAYLIfe o5 o) A (cases) | 866553 | 738553 | 30 | 27 | 2.28% | 0.0185 | 0.0177
Adversity
7 | Soctal Anxiety | 03_SAD | geanes | 738751 | 35 | 33 | 2.48% | 0.0193 | 0.0182
Disorder (cases)
Social Anxiety
g | Disorderand | 03 SAD_ELA | geanea | 738975 | 31 | 20 | 229% |0.0198| 0.019
Early Life (cases)
Adversity
Total Acute
9 Sleep 04_TSD (cases) | 486427 | 406311 | 18 17 3.08% | 0.0191 | 0.0184
Deprivation
10| Healthy OLDLD | o66553 | 736430 | 12 | 9 | 1.86% | 0.0208 | 0.0187
Controls (controls)
1|  Healthy 02 FTP | g6es53 | 707987 | 5 | 5 | 1.94% | 0.0703 | 0.0577
Controls (controls)
12 Healthy 03_SAD 866553 | 738597 | 47 42 2.83% | 0.0191 | 0.0181
Controls (controls)
13 Healthy 04_TSD 486427 | 406446 | 18 17 2.24% | 0.0197 | 0.0179
Controls (controls)
Table 14. A summary of QC (part 2) effect on number of probes, samples, and overall
deviation probe wise.
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Table 15 includes information about technical aspects and output data availability.

Data Availability Notes

Detailed Workflow for Pages: 37 - 44 Demonstration of
01 _DLD dataset. ges. detailed output

Summary and Output Beta distribution

of remainina datasets Pages: 45 - 56 curves before and after
) ' QC (part 2)
Source Code used Supplementary Material (QC2) (-ipynb) files for 13

datasets (Python)*

Supplementary Material (Quality

Tables for 13 datasets
Score)

Complete output **
Supplementary Material (QC2/

Subject Performance) Tables for 13 datasets

Table 15. Output data availability and technical information.

* Using the VS Code editor on a 16GB RAM Intel Core i5 PC, processing a single
(.ipynb) file takes approximately 4 minutes for smaller sample sizes (e.g., 5 subjects in
the 02_Early Alz dataset) and up to ~16 minutes for larger sample sizes (e.g., 43 subjects
in the 03_SAD control dataset). This time includes generating beta value distribution
plots.

** The large number of tables made it impractical to include this information in the thesis
text or appendices, particularly for datasets with a high number of samples.
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Comparison of the methylation profiles of children with developmental

language disorder and healthy control subjects.
Released: 2024 | Link: E-MTAB-13583 < ArrayExpress < BioStudies < EMBL-EBI

Dataset

» Experiment Details:

No. of Probes 866553 Probes
ID E-MTAB-13583 (CpG Sites)
ArrayExpress (BioStudies, EMBL's Tota_l . . .
Source - S Participants in 24 Subjects (3-7 yr)
European Bioinformatics Institute) .
Experiment
Hypomethylation of Wnt Signaling
. . Regulator Genes in Developmental Phenotype . ]
FUlE e A CTal Language Disorder, (2024). Link: Sample Size 12 Subjects (3-7 yr)
https://doi.org/10.2217/epi-2023-0345

. i - Developmental
Experiment Type | Methylation Profiling by Array Phenotype Language Disorder

[llumina - Human Infinium Methylation
Platform Used EPIC BeadChip

Species Homo sapiens

RaV\_/ L Yes (.idat format)
Available : .
Organism Part Peripheral Blood
Processed Data
: Yes (.csv format)
Available

» Exclusion of SNP, Control, and Sex Chromosomes Probes:

Initial Array | Probes to be Excluded Output (Before | Output (After | Updated Array
Size Exclusion) Exclusion) Size
866553 Probes | » 19640 (chrX, chrY) cg 862927 846225 Probes
Probes ch 2932 cg 843386
» 53 ‘rs’Probes ct 635 ch 2839
» 635 ‘ctl’ Probes rs 59

» Summary of Workflow and Steps:

Raw
Signal | QC (1) QC (2
S
Order 1 2 3 4 5 6 7
. Masking
Raw | SeSAM Low LOW. Isolatln_g & Outliers LOW.
. | Performing Handling . Performing
Steps Beta E Performin . in the
. Probes (1) Probes with . Probes (2)
Values | Output | g Subjects - isolated -
range > 0.3
probes
El?(;t?;s 846225 | 846225 846225 737288 737288 737288 737275
No. of
Subjects 12 12 11 11 11 11 11
Total 0 1322182 | 1204573 14982 14982 22922 22841
Masked (13.02%) | (12.94%) (0.18%) (0.18%) (0.28%) (0.28%)
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Betas **

(10432) probes

13.02%0 One of which range
f Betas subject is | Bad probes > 03 are

maasrlie q excluded: (108937) 'Sﬁ;ﬁt(;?nfor oﬁﬁgr Bad probes
Details - 20314132 are 1ng (13) are
based on outliers values are
0045 RO1 | removed. removed.
SeSAM - separately masked
: C01_DLD
E quality T from other
. 001 .
metrics probes with
range < 0.3

Table 16. The effect of QC (part 2) on DLD dataset. Step 7 is followed by imputation of
masked betas.

* The removal of low performing probes using probeQC() function is carried twice; the
first one is after removing bad samples, and the second one is after masking outlier values
in step (6).

** Both number and percentage represent the total number/ percentage out of the entire
array respectively.

> Details and Discussion of Steps (2-7)

Steps (2-4): Thresholds and QC Criteria (Determining High vs Low Performing
Samples)

After SeSAME processing, beta values along with its corresponding p-values for all subjects
were grouped together in one dataset and QC score is calculate for each subject following
our methodology. Table 17 Shows the ranking for each subject where highest and lowest
performing samples highlighted in green and red respectively.

Perc. of
val val Masked
p-value P P Betas QC QC Score
RIS | 2] [EtEE Mean | > Resulted | Score | (Perc.)
0.05 |[0.01 ‘

from

SeSAME
1 203259750077_R04C01_DLDO013 Betas | 0.00305 | 6844 | 38223 | 12.76% 48 100.00%
2 203259750077_R03C01_DLDO012 Betas | 0.00342 | 8234 | 40331 | 12.90% 42 87.50%
3 203259750076_R03C01_DLDO007_Betas | 0.00353 | 8234 | 43021 | 12.89% 38 79.17%
4 203259750076_R02C01_DLDO006 Betas | 0.00345 | 8266 | 41007 | 12.91% 36 75.00%
S 203259750076_R04C01_DLDO008 Betas | 0.00360 | 8236 | 44287 | 12.89% 31 64.58%
6 203141320045_R03C01_DLDO003 Betas | 0.00357 | 8508 | 42202 | 12.93% 30 62.50%
7 203141320045 _R04C01_DLDO004 Betas | 0.00357 | 8703 | 41409 | 12.95% 28 58.33%
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8 203141320045 R02C01_DLD002_Betas | 0.00373 | 8787 |43791 | 12.95% | 22 45.83%
9 203259750077_R01C01_DLDO010_Betas | 0.00376 | 9562 | 47265 | 13.05% | 15 31.25%
10 | 203259750077_R02C01_DLDO11_Betas | 0.00381 | 9669 | 44786 | 13.05% | 14 29.17%
11 | 203259750076 R01CO1_DLD005_Betas | 0.00402 | 9886 | 49916 | 13.07% 8 16.67%
12 | 203141320045 R01C01_DLDO01_Betas | 0.00576 | 17737 | 67254 | 13.90% 4 8.33%

Table 17. Subjects ranking (Quality score)

This was followed by a bar plot to visualize any subject(s) with excessive outliers (Fig. 13).

Within-Array Variability (E-MTAB-13583)

200000 A

150000 A

100000 A

Number of Probes

50000 +

~ I m by 7]
o =) o S =3
[=] (=] o (=] (=]
o Q [a] Q Q
= —1 -t T~ =
[a] [a] (=] [a] Q

— —~ — —~ —
(=] [=) o [=) o
O ] [ ] O
~ ~ m oy ~
= j=] = j=] j=]
o o o o o

T
o
=

(=]

o

—

[a]

—
o
]
o
o
o

T
™~ ©
j=] (=1
o o
Q Q
-t T~

) Q

—~ —
o o
[ ]
m =
j=] j=l
o o

RGICULDLDDJO |

~

—

(=]
o
—
Q

—
(=Y
o
~
o
o

~
~
o
o
1
Q

—
=
O
m
o
=S

m
—~
o
o
—_
Q

—
(=
]
=
=1
o

Figure 13. A bar plot showing the number of probes each subject achieves the highest

absolute deviation from the mean.

Sample id (203141320045 R01C01_DLDO001) achieves the highest absolute difference from
the mean average in more than 200,000 probes. Together with being the lowest score in QC
score table, we decided to remove the sample from downstream analysis. To validate our
decision, a comparison table is used to number of outlier values observed in one sample
against its QC score (Table 18). As mentioned in summary table, the removal of low
performing probes take place in step (4) to ensure that no probes have exceeds the threshold
of masked betas. The threshold (TRPQC) for E-MTAB-13583 is decided to be 6 (12 * 0.5 =

6).
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Max Max
# D) 25D éﬁ‘? S(c?oie G e 25 g?fi S(c?ocie
Count Count
1 | 203259750076_R02C01_DLDO006 | 31890 75.00% 7 203259750077_R02C01_DLDO011 57670 | 29.17%
2 | 203259750077 _R03C01 DLDO012 | 36592 87.50% 8 203259750076 _R04C01_DLDO008 67241 | 64.58%
3 | 203259750077_R04C01_DLDO013 | 37745 | 100.00% | 9 203141320045_R04C01_DLDO004 72142 | 58.33%
4 | 203259750076_R01C01_DLDO005 | 47025 16.67% | 10 | 203141320045 R02C01_DLDO002 75714 | 45.83%
5 | 203259750077_R01C01_DLDO010 | 54050 31.25% | 11 | 203259750076_R03C01_DLDO007 78858 | 79.17%
6 | 203141320045 _R03C01 DLDO003 | 54704 62.50% | 12 | 203141320045 R01C01 DLDO001 | 232594 | 8.33%
Table 18. A Comparison of QC score versus maximum absolute deviation.

Steps (5-7) Outlier Detection Based on range and IQR approach:

Following our methodology, first we isolate the probes that has a range (max min) beta

values > 0.3 using the following functions:

Function:
count probes with range(df,
thresholds=[0.2, 0.3, 0.4, 0.5])

Function:
extract probes with range (df,
threshold=0.3)

> Output:

Probes with range > 0.2: 38540 Probes (5.23%)
Probes with range > 0.3: 10432 Probes (1.41%)
Probes with range > 0.4: 3026 Probes (0.41%)
Probes with range > 0.5: 833 Probes (0.11%)

> Output:

Probes Above Threshold Are Successfully Isolated
No. of Probes Isolated: 10432

No. of Probes Not Affected: 726856

The 10432 probes are then inspected separately to check the subject’s performance for this
set of probes. The bar plot shows 1 sample to have distinguished count of probes with
highest absolute difference. However, the count (2236 probes) is not enough to exclude this
sample when considering its QC score, the size of array and the performance of other

samples (Figure 14), (Table 19).
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Subject's Outlier Frequencies - E-MTAB-13583
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Figure 14. A bar plot comparing the outlier count for each subject based on the isolated

probes using the IQR method.

On the other hand, sample id (203259750077 _R04C01_DLDO013) highlighted in green
shows the least amount of Max Abs. Diff. in addition to being the top performing sample in
terms of original QC score (Table 19). This makes it qualified to be chosen as the target
sample when imputing missing values using weighted average in the final procedure of QC

(2).
Max Max
¢ |10.ses R 190 |0 | io e Ll
Count Count
1 | 203259750076_R02C01_DLDO006 398 75.00% 7 203141320045_R03C01_DLD003 879 62.50%
2 | 203259750077 _R04C01 _DLDO013 | 490 100.00% | 8 203259750077_R01C01_DLDO010 1121 31.25%
3 | 203259750077_R03C01_DLDO012 | 494 87.50% 9 203259750076_R03C01_DLDO007 1419 79.17%
4 | 203259750076_R01C01 _DLDO005 544 16.67% 10 | 203259750077_R02C01_DLDO011 1428 29.17%
5 | 203259750076_R04C01_DLDO008 684 64.58% 11 | 203141320045_R02C01_DLDO002 2236 45.83%
6 | 203141320045 _R04C01_DLDO004 739 58.33%
Table 19. Highest and lowest performing subjects are highlighted in green and blue
respectively.
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The next step is to replace outlier values in the 10432 Probes based on IQR approach
followed by re-joining them again to the existing array using below functions:

Function: Function: Validation of
replace outliers withNaN(df) | append masked to original (df masked, dimensions
df remaining)
> Qutput:
> Output: Checking
> Qutput: Isolated Probes Are Re-joined Back to the Dimensions of dfb..
7940 Outliers have been replaced Remaining Array 737288 Probes, 11
with NaN using IQR approach. Check Dimensions: Subjects >>>
737288 Probes, 11 Samples Dimensions
Confirmed

After masking the 7940 outliers, the total missing betas increased to 22922 values in the
whole array. Therefore, another exclusion of low performing probes took place to exclude
probes that has more than 6 missing betas. This has resulted in exclusion of only 13 probes.
Below is a comparison of number of probes with certain ranges before and after masking the
outliers:

Before Masking Outliers After Masking Outliers

Function: Function:
count probes with range (df, count probes with range(df,
thresholds=[0.2, 0.3, 0.4, 0.5]) thresholds=[0.2, 0.3, 0.4, 0.5])

0 . > Qutput:
> Output: Probes with range > 0.2: 24604 Probes
Probes with range > 0.2: 27719 Probes (6.06%)
(6.82%) Probes with range > 0.3: 3294 Probes

Probes with range > 0.3: 8481 Probes (2.09%) | (0.81%) .
Probes with range > 0.4: 2830 Probes (0.70%) | Probes with range > 0.4: 1052 Probes

. . .26%
Probes with range > 0.5: 858 Probes (0.21%) éorot?es(,))with range > 0.5 428 Probes (0.11%)

After Step (7), the final procedure will be to impute any remaining masked betas.

Imputation of Masked Betas:

Following our methodology which uses weighted mean for imputation, we have chosen
sample id (9297962042 _R04CO01) highlighted in green to be the target sample. A weight of 3
Is decided since the sample achieves the top score in QC score and the least number of
probes for Max. Abs. Diff. column. Total of 22841values were imputed with WM using
impute_WM() function:
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Parameters:

Function:

Top_Scorer:
203259750077_R04C01 DLD013 Betas
Target Weight: 3

default weight=1)

impute WM(df6, target col=Top Scorer,
target weight=Target Weight,

Application:

Imputation of Masked Betas

Validation of the Result Probe
Wise (Before and After

Overall effect of QC (2)
Procedure on the Array:

default weight=1)

Imputation)
Function:
impute WM(df6, Function: .
target col=Top Scorer, probe QC(df, threshold=l, SbUbt][aCt'Otr;] of arff(‘iCted
target weight=Target Weight, remove=False) Probes trom the whole array

> Imputation:

Total Missing Betas Replaced with
WM are 22841, (0.24% Out of Total
Betas)

> Qutput:(Before Imputation)
Number of probes with >= 1
masked betas: 12331 (1.67%)
> Qutput:(After Imputation)
Number of probes with >= 1
masked betas: 0 (0.00%)

> Qutput:

No. of Probes Not Modified
by Imputation: 724944
(98.33%)

Final Dimensions 737275
Probes, 11 Subjects

Visualization

A comparison (Visualization and quantification of the changes happened to raw data) is done
through beta distribution curves. Figure 15 shows the difference in normalization that took
place for the probes (10432) that were > 0.3 in range:

0.4

¥ 0.6
Beta Value

0.8

0.2

04

0.6
Beta Value

0.8

Before Imputation

After |

mputation

Figure 15. Beta value distribution for the isolated probes before and after imputation.
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Another visualization (Figure 16.) using beta distribution curves is carried for the entire array
during the three stages of data:

1- Raw Data (The output from getBetas() without preprocessing)
2- Data after SeSSAME.
3- Data after QC(2) (The final output after imputation).
Graphs =

0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 0.4 0.6 08 1.0

Beta Value Beta Value

Raw Data SeSAME Output

60 [ Raw Betas std
SeSAME std
[ QC(2) std

o . . . . .
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1 02 03 0.4
Beta Value standard deviation - probe wise

Standard deviation (std) For the three

QC(2) Output =» Final Array. datasets

Figure 16. Beta value distribution curve for E-MTAB-13583 (01_DLD cases)

Quantification:

To quantify the difference in normalization over the three stages, we have measured the
mean average of standard deviation among the entire probes in the array for each stage:
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Raw Data After SeSSAME After QC(2)
Function: Function: Function:
raw betas['std'] = df2['std'] = dfFinal['std'] =

raw betas.filter (like=' Beta
s') .std(axis=1)

avg_std raw betas =
raw betas['std'] .mean()

df2.filter(like=' Betas'
) .std (axis=1)

avg _std df2 =
df2['std'] .mean ()

dfFinal.filter (like=' Betas
') .std (axis=1)

avg_std dfFinal =
dfFinal['std'].mean()

Output:
Average std in raw data: 0.0293

Output:
Average std after SeSAME:
0.0190

Output:
Average std after QC(2): 0.0185

The results match the distribution curves we see in Figures (15, 16), since the amount of
decrease from 0.0293 in raw data to 0.0190 in data after SeSSAME is more noticeable than the
decrease from 0.0190 in SeSAME to 0.0185 in data after QC(2). However, the slight
improvement in variability reduction observed in QC(2) compared to the SeSAME output is
satisfactory, as the procedure aims to minimally adjust weak and unreliable values without
introducing extreme modifications, thereby preserving biological variability.

Remaining datasets (12) are summarized with experimental details and beta value
distribution curves (pages: 48 - 60). The adjustments that took place in QC(2) for each
dataset is previously mentioned in Table 14.
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Dataset
[2-1]

lymphoblastoid cell lines.
Released: 2024 | Link: E-MTAB-11975 < ArrayExpress < BioStudies < EMBL-EBI

Genome-wide DNA methylation analysis identifies epigenetic differences in
Alzheimer’s disease and frontotemporal dementia in brain tissue and

» Experiment Details:

No. of Probes 866553 Probes
ID E-MTAB-11975 (CpG Sites)
64 Subjects (31-92
. . , . yr),
Source ArrayExpress (BioStudies, EMBL's Total Participants (prefrontal cortex

European Bioinformatics Institute)

in Experiment

tissue is excluded =»
24 Subjects (40-76 yr)

Published Article

Genome-Wide DNAMethylation in Early-
Onset-Dementia Patients Brain Tissue and
Lymphoblastoid Cell Lines, (2024). Link:
https://doi.org/10.3390/ijms25105445

Phenotype Sample
Size

Experiment Type

Methylation Profiling by Array

Phenotype

Platform Used

Illumina - Human Infinium Methylation
EPIC BeadChip

Species

5 Subjects (52-63 yr)

Sporadic Early-
Onset Alzheimer's
Disease

Homo sapiens

Raw Data Available

Yes (.idat format)

Processed Data
Available

No

Organism Part

Peripheral Blood

(A) Raw Betas

(B) SeSAME Output

04 06 08 10 “00
Beta Value

0.‘2 0.‘4 0.‘6 0.‘E 1.0
Beta Value

(C) QC-2 Output

Standard deviation (SD) for the three datasets

[ Raw Betas SD
SeSAME SD
[ oc-2sD

0:4 0:6 0.‘B 1.0
Beta Value

0.‘0 0:1 0.‘2 0:3 0.‘4 0.‘5
SD - probe wise

Figure 17. Beta value distribution curve curves for E-MTAB-11975, dataset 02_Early_Alz

(cases).
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https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11975?query=E-MTAB-11975
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11975?query=E-MTAB-11975
https://doi.org/10.3390/ijms25105445

Genome-wide DNA methylation analysis identifies epigenetic differences in
Alzheimer’s disease and frontotemporal dementia in brain tissue and

lymphoblastoid cell lines.
Released: 2024 | Link: E-MTAB-11975 < ArrayExpress < BioStudies < EMBL-EBI

» Experiment Details:

No. of Probes 866553 Probes
ID E-MTAB-11975 (CpG Sites)
64 Subjects (31-92
e - yn),
ST ArrayExpregs_(BloStuqlles, EM BL's Total Paftlupants (_prefrqntal cortex
European Bioinformatics Institute) in Experiment tissue is excluded =
24 Subjects (40-76
yr)
Genome-Wide DNAMethylation in Early-
. . Onset-Dementia Patients Brain Tissue and | Phenotype Sample .
Published Article | v shoblastoid Cell Lines, (2024). Link: | Size YPESATPE | 6 Subjects (42-50 yn)
https://doi.org/10.3390/ijms25105445

Experiment Type Methylation Profiling by Array Phenotype E?;Egslsl AAATEIEL

Illumina - Human Infinium Methylation

Platform Used EPIC BeadChip Species Homo sapiens
Raw Data Available | Yes (.idat format)
Processed Data Organism Part Peripheral Blood
: No
Available
(A) Raw Betas (B) SeSAME Output

. Beta Value . . Beta Value '

(C) QC-2 Output Standard deviation (SD) for the three datasets

231 [ Raw Betas SD
SeSAME SD
[ Qc-2sD

201

Density

0.0 02 04 06 08 10 0.0 01 02 03 04 05
Beta Value SD - probe wise

Figure 18. Beta distribution curves for E-MTAB-11975, dataset 02_Fam_Alz (cases).
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https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11975?query=E-MTAB-11975
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11975?query=E-MTAB-11975
https://doi.org/10.3390/ijms25105445

Genome-wide DNA methylation analysis identifies epigenetic differences in
Alzheimer’s disease and frontotemporal dementia in brain tissue and

lymphoblastoid cell lines.
Released: 2024 | Link: E-MTAB-11975 < ArrayExpress < BioStudies < EMBL-EBI

» Experiment Details:

ID E-MTAB-11975 No. of Probes 866553 Probes

(CpG Sites)
Total 64 Subjects (31-92 yr),
ArrayExpress (BioStudies, EMBL's . . (prefrontal cortex tissue
Source . . . Participants in )
European Bioinformatics Institute) E . is excluded = 24
Xperiment

Subjects (40-76 yr)

Genome-Wide DNAMethylation in Early-
Onset-Dementia Patients Brain Tissue and | Phenotype

Lymphoblastoid Cell Lines, (2024). Link: Sample Size
https://doi.org/10.3390/ijms25105445

Published Article 5 Subjects (54-63 yr)

Genetic
Frontotemporal

Experiment Type Methylation Profiling by Array Phenotype Dementia (GRN

Mutation)

Illumina - Human Infinium Methylation
EPIC BeadChip

Raw Data Available | Yes (.idat format)

Processed Data

Platform Used Species Homo sapiens

Organism Part Peripheral Blood

Available No
(A) Raw Betas (B) SeSAME Output
3.0 ;\
32.5’
% 2.0
fal
0'00 0 02 04 06 08 1.0 - -
! ) " Beta Value ) ' Beta Value
(C) QC-2 Output Standard deviation (SD) for the three datasets
[ Raw Betas SD
=l i
é- 12.5
§ 10.0
Y Beta Value X 0.0 0.1 532_ orobe Woi.;e 0.4 0.5
Figure 19. Beta value distribution curves for E-MTAB-11975, dataset 02_FTP_GRN (cases)

Page |57


https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11975?query=E-MTAB-11975
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11975?query=E-MTAB-11975
https://doi.org/10.3390/ijms25105445

Dataset

Genome-wide DNA methylation analysis identifies epigenetic differences in

Alzheimer’s disease and frontotemporal dementia in brain tissue and

[2-4] [

phoblastoid cell lines.

Released: 2024 | Link: E-MTAB-11975 < ArrayExpress < BioStudies < EMBL-EBI

> Experiment

Details:

No. of Probes 866553 Probes

ID E-MTAB-11975 (CpG Sites)
Total 64 Subjects (31-92 yr),
S ArrayExpress (BioStudies, EMBL's Af : (prefrontal cortex tissue
ource . . . Participants in h
European Bioinformatics Institute) E . is excluded = 24
xperiment

Subjects (40-76 yr)

Published Article

Genome-Wide DNAMethylation in Early-
Onset-Dementia Patients Brain Tissue and | Phenotype

Lymphoblastoid Cell Lines, (2024). Link: Sample Size
https://doi.org/10.3390/ijms25105445

5 Subjects (54-63 yr)

Experiment Type

Methylation Profiling by Array

Genetic

Phenotype Frontotemporal

Dementia (MAPT
_Mutation)

Platform Used

EPIC BeadChip

Illumina - Human Infinium Methylation

Species Homo sapiens

Raw Data Available

Yes (.idat format)

Processed Data

Organism Part Peripheral Blood

- No
Available
(A) Raw Betas (B) SeSAME Output
2.0 4.0
35 35
3.0 3.0
2.5 25
2 2
w0 [0]
C 20 C 2.0+
o a
154 154
1.0 1.0+
o
0.5 0.5
0.0 T T T T 0.0 T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 06 0.8 10
Beta Value Beta Value
(C) QC-2 Output Standard deviation (SD) for the three datasets
4.0 [ Raw Betas SD
20.0 SeSAME SD
' 1 Qc-2sD
35
17.5
3.0
15.0
2.59
2 D125
£ o
5 20 S 10.0
(=) & 10

0:4 0.‘6 CI:B 10
Beta Value

2.51

0.0

0.‘0 0.‘1 0.‘2 0:3 0:4 0:5 0.‘6
SD - probe wise

Figure 20. Beta value distribution curves for E-MTAB-11975, dataset 02_FTP_MAPT (cases)
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https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11975?query=E-MTAB-11975
https://doi.org/10.3390/ijms25105445

Dataset
[3-1]

DNA Methylation Differences Associated with Social Anxiety Disorder and Early Life
Adversity.

Released: 2021 | Link: GSE164056 < Accession Display < GEO < NCBI

» Experiment Details:

ID

GSE164056

No. of Probes

866553 Probes

(CpG Sites)
GEO Accession Viewer (National Total .
Source Center for Biotechnology Information Participants in 143 Subjects (19-50
NCBI) Experiment yr)
DNA methylation differences associated
with social anxiety disorder and early .
Published Article | life adversity, (2021). Link: gg&”rﬁteygiez . %SUbJECtS (19-50
https://doi.org/10.1038/s41398-021-
01225-w
Experiment Type | Methylation Profiling by Array Phenotype Early Life Adveristy
[llumina - Human Infinium Methylation . .
Platform Used Species Homo sapiens

EPIC BeadChip

Raw Data .

Available Yes (.idat format)
Processed Data Yes

Available

Organism Part

Peripheral Blood

(A) Raw Betas

(B) SeSAME Output

NG

04 06 08 10 0.0
Beta Value

0.2 0.4

Beta Value

0.6 0.8 1.0

(C) QC-2 Output

Standard deviation (SD) for the three datasets

50 4

40 4

10 4

[ Raw Betas SD
[ SeSAME sD
[ QC-2 5D

0:4 0:6 0.‘B 10 0.0
Beta Value

0.1 0.2

SD - probe wise

0.3 0.4

Figure 21. Beta value distribution curves for GSE164056, dataset 03 ELA (cases).
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https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://doi.org/10.1038/s41398-021-01225-w
https://doi.org/10.1038/s41398-021-01225-w

Dataset
[3-2]

Released: 2021 | Link: GSE164056 < Accession Display < GEO < NCBI

» Experiment Details:

DNA Methylation Differences Associated with Social Anxiety Disorder and Early Life
Adversity.

No. of Probes

866553 Probes

ID GSE164056 (CpG Sites)
GEO Accession Viewer (National Total .
Source Center for Biotechnology Information Participants in l?')?’ Subjects (19-50
NCBI) Experiment yn,
DNA methylation differences associated
with social anxiety disorder and early .
Published Article | life adversity, (2021). Link: gg&”"lteygiez . 3‘33““9“5 (19-37
https://doi.org/10.1038/541398-021- P y
01225-w
Experiment Type | Methylation Profiling by Array Phenotype SQC'aI AURUE
Disorder
Platform Used [llumina - Human Infinium Methylation Species Homo sapiens

EPIC BeadChip

Raw Data ]

Available Yes (.idat format)
Processed Data Yes

Available

Organism Part

Peripheral Blood

(A) Raw Betas

(B) SeSAME Output

w
L

-
L

. Beta Value -

- Beta Value

(C) QC-2 Output

Standard deviation (SD) for the three datasets

10 4

[ Raw Betas SD
) SeSAME SD
[ Qc-2sD

T
0.0 0.2

T T T
0.4 0.6 0.8 1.0 0.0

Beta Value

0:2 0.‘3
SD - probe wise

T
0.4

Figure 22. Beta value distribution curves for GSE164056, dataset 03_SAD (cases).
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https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://doi.org/10.1038/s41398-021-01225-w
https://doi.org/10.1038/s41398-021-01225-w

Dataset
[3-3]

DNA Methylation Differences Associated with Social Anxiety Disorder and Early Life
Adversity.

Released: 2021 | Link: GSE164056 < Accession Display < GEO < NCBI

» Experiment Details:

No. of Probes

866553 Probes

ID GSE164056 (CpG Sites)
GEO Accession Viewer (National Total .
Source Center for Biotechnology Information Participants in 1?')3 Subjects (19-50
NCBI) Experiment Y0,
DNA methylation differences associated
with social anxiety disorder and early .
Published Article | life adversity, (2021). Link: gg&”"lteygiez . 3r1)3“bje‘3ts (19-45
https://doi.org/10.1038/541398-021- P y
01225-w
Social Anxiety
Experiment Type | Methylation Profiling by Array Phenotype Disorder & Early
Life Adversity
Platform Used [llumina - Human Infinium Methylation Species Homo sapiens

EPIC BeadChip

Raw Data .

Available Yes (.idat format)
Processed Data Yes

Available

Organism Part

Peripheral Blood

(A) Raw Betas

(B) SeSAME Output

. Beta Value -

0.2 0.4

Beta Value

0.6 0.8 10

(C) QC-2 Output

Standard deviation (SD) for the three datasets

50

40

10 4

[J Raw Betas SD
[ SeSAME sD
[ QC-25D

T
0.0 0.2

T T T u
0.4 0.6 0.8 L0 0.0
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0.1 0.2

SD - probe wise

03 0.4 0.5

Fig. 23. Beta value distribution curves for GSE164056, dataset 03_SAD_ELA (cases).
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Dataset

[4]

Epigenomics of Total Acute Sleep Deprivation in Relation to Genome-wide DNA
Methylation Profiles and RNA Expression.

Released: 2016 | Link: E-MTAB-4664 < ArrayExpress < BioStudies < EMBL-EBI

» Experiment Details:

ID E-MTAB-4664 No. of Probes 486427 Probes
(CpG Sites)
Source ArrayExpress (BioStudies, EMBL's Total 36 Subjects (19-31
European Bioinformatics Institute) Participants in yr)
Experiment
Published Article | Epigenomics of Total Acute Sleep Phenotype 18 Subjects (19-31
Deprivation in Relation to Genome- Sample Size yr)
Wide DNA Methylation Profiles and
RNA Expression, (2016). Link:
https://doi.org/10.1089/0mi.2016.0041
Experiment Type | Methylation Profiling by Array Phenotype
Deprivation
Platform Used [llumina Infinium Species Homo sapiens
HumanMethylation450 BeadChip
Raw Data Yes (.idat format)
Available
Processed Data No Organism Part Peripheral Blood
Available

0?¢ 0:5 0“3 1"0 0.0
Beta Value

Beta Value

0.6 0.8 10

Density

50

40

[ Raw Betas std
[ SeSAME std
[ Qc(2) std

0.0 0.2

04 06 08 10
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0.0

y T
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T T
03 0.4

standard deviation - probe wise

Figure 24. Normalization curves for E-MTAB-4664, dataset 04_TSD (cases)

Page |62



https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-4664?query=E-MTAB-4664
https://doi.org/10.1089/omi.2016.0041

Dataset [1] -

Controls

disorder and healthy control subjects.

Comparison of the methylation profiles of children with developmental language

Released: 2024 | Link: E-MTAB-13583 < ArrayExpress < BioStudies < EMBL-EBI

» Experiment Details:

No. of Probes 866553 Probes
ID E-MTAB-13583 (CpG Sites)
ArrayExpress (BioStudies, EMBL's Tota_l . . .
Source - AN Participants in 24 Subjects (3-7 yr)
European Bioinformatics Institute) E .
Xperiment
Hypomethylation of Wnt Signaling
. . Regulator Genes in Developmental Phenotype i ]
FUlE e A CTal Language Disorder, (2024). Link: Sample Size 12 Subjects (3-7 yr)
https://doi.org/10.2217/epi-2023-0345
Experiment Type | Methylation Profiling by Array Phenotype Healthy Controls
Platform Used [llumina - Human Infinium Methylation Species Homo sapiens

EPIC BeadChip

Raw Data .

Available Yes (.idat format)
Processed Data

Available Yes (.csv format)

Organism Part

Peripheral Blood

(A) Raw Betas

(B) SeSAME Output

-
L

' Beta Value .

. Beta Value .

(C) QC-2 Output

Standard deviation (SD) for the three datasets

50 1

40 A

10 4

[ Raw Betas SD
) SeSAME SD
[ QC-2SD

0.‘4 0.‘6 OIB 10 0.0
Beta Value

u T
0.1 0.2

SD - probe wise

T T
0.3 0.4

Figure 25. Beta value distribution curves for E-MTAB-13583, dataset 01_DLD (controls).
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Genome-wide DNA methylation analysis identifies epigenetic differences in
Alzheimer’s disease and frontotemporal dementia in brain tissue and
Controls lymphoblastoid cell lines.

Dataset [2] -

Released: 2024 | Link: E-MTAB-11975 < ArrayExpress < BioStudies < EMBL-EBI

» Experiment Details:

No. of Probes 866553 Probes
ID E-MTAB-11975 (CpG Sites)
64 Subjects (31-92
ArrayExpress (BioStudies, EMBL's Total Participants yn),
Source . . . . . (prefrontal cortex
European Bioinformatics Institute) in Experiment . .
tissue is excluded =

24 Subjects (40-76 yr)

Genome-Wide DNAMethylation in Early-
Onset-Dementia Patients Brain Tissue and | Phenotype Sample . )

Lymphoblastoid Cell Lines, (2024). Link: Size 5 Subjects (40-65 yr)
https://doi.org/10.3390/ijms25105445

Experiment Type Methylation Profiling by Array Phenotype Healthy Controls
Illumina - Human Infinium Methylation

Published Article

Platform Used EPIC BeadChip Species Homo sapiens
Raw Data Available | Yes (.idat format)
Processed Data Organism Part Peripheral Blood
: No
Available
(A) Raw Betas (B) SeSAME Output

Beta Value Beta Value
(C) QC-2 Output Standard deviation (SD) for the three datasets
3.51 [ Raw Betas SD
[ SeSAME SD
[ Qc-2sD
3.0 4 209 Il
2.54
15 4
2204 2z
£ =
c C
9] ]
0O 15 0 104
1.0 4
5
0.5
0.0 - - . . 0 T T . — T .
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1 0.2 0.3 0.4 0.5
Beta Value SD - probe wise

Figure 26. Beta value distribution curves for E-MTAB-11975, dataset 02_FTP (controls).
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DNA Methylation Differences Associated with Social Anxiety Disorder and
Early Life Adversity.

Dataset [3] -

Controls

Released: 2021 | Link: GSE164056 < Accession Display < GEO < NCBI

» Experiment Details:

No. of Probes 866553 Probes

ID GSE164056 (CpG Sites)
GEO Accession Viewer (National Total .
Source Center for Biotechnology Information Participants in 1?')3 Subjects (19-50
NCBI) Experiment y
DNA methylation differences associated
with social anxiety disorder and early Phenotype 47 Subjects (19-42

Published Article | life adversity, (2021). Link:
https://doi.org/10.1038/s41398-021-
01225-w

Experiment Type | Methylation Profiling by Array Phenotype Healthy Controls

[llumina - Human Infinium Methylation . .
Platform Used EPIC BeadChip Species Homo sapiens

Sample Size yr)

RaV\_/ Ll Yes (.idat format)
Available : .
Organism Part | Peripheral Blood
Processed Data Yes
Available
(A) Raw Betas (B) SeSAME Output
23
: 0.0 0.2 0.4Beta Valueo.ﬁ 0.8 1.0 0.0 0.2 0.4BEta Valueo.ﬁ 0.8 1.0
(C) QC-2 Output Standard deviation (SD) for the three datasets

23 F

0.0 0.2 0.4BEta Valuet).ﬁ 0.8 1.0 0.0 0.1 SD -O-SrObe Wise 0.3 0.4
Figure 27. Beta value distribution curves for GSE164056, dataset 03 _SAD (controls).
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Dataset [4]

- Controls

Epigenomics of Total Acute Sleep Deprivation in Relation to Genome-wide
DNA Methylation Profiles and RNA Expression.
Released: 2016 | Link: E-MTAB-4664 < ArrayExpress < BioStudies < EMBL-EBI

» Experiment Details:

ID E-MTAB-4664 No. of Probes 486427 Probes
(CpG Sites)
Source ArrayExpress (BioStudies, EMBL's Total 36 Subjects (19-31
European Bioinformatics Institute) Participants in yr)
Experiment
Published Article | Epigenomics of Total Acute Sleep Phenotype 18 Subjects (19-31
Deprivation in Relation to Genome- Sample Size yr)
Wide DNA Methylation Profiles and
RNA Expression, (2016). Link:
https://doi.org/10.1089/0mi.2016.0041
Experiment Type | Methylation Profiling by Array Phenotype
Platform Used [llumina Infinium Species Homo sapiens

HumanMethylation450 BeadChip

Raw Data Yes (.idat format)
Available
Processed Data No Organism Part Peripheral Blood
Available
(A) Raw Betas o (B) SeSAME Output

3.0 q Jl‘fﬁ

2.5 :’l/-\'.\
> / -‘.\I
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T T
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Fig. 28. Beta value distribution curves for E-MTAB-4664, dataset 04_TSD (controls).
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Chapter 3 | Workflow

3. Differential Analysis

Each phenotype dataset is analysed against its corresponding control dataset. A threshold of
0.05 for FDR adjusted p values is used to subset the initial amount of differentially
methylated probes for each dataset. Table 18 summarizes the resulted output of this
procedure.

No. of
No. of probes :
: : . probes with
File name with P val < File name .
0.05 adjusted P
: val < 0.05

01 DLD Results.csv 102588 | 91 DLD Significant 746
Probes.csv

02 Early Alz Results.csv 32375 02 Early Alz Significant 489
Probes.csv

03 Fam Alz Results.csv 3gs5y | 93 Fam Alz Significant 45
Probes.csv

04 FTP GRN Results.csv 37751 | 94 FTP GRN Significant 265
Probes.csv

05 FTP MAPT Results.csv | 50554 | 92 FTP MAPT Significant 5
Probes.csv

06 ELA Results.csv 54620 | 06 ELA Significant 42
Probes.csv

07 SAD Results.csv 75303 | 97 SAD Significant 33
Probes.csv

08 SAD_ELA Results.csv 42821 | 98 SAD_ELA Significant 9
Probes.csv

09 TSD Results.csv 15484 |29 TSD Significant 0
Probes.csv

Table 18. The initial differentially methylated probes are filtered to include only those that

passes the FDR correction of 0.05.

All DMPs extracted from the 9 datasets are available in the supplementary material (Limma
DMPs). The DMPs for each phenotype are mapped to their genomic information using
Illumina manifests (HG19) and are provided in a separate folder within the supplementary
material (Probe Info).
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Note: As mentioned in the methodology (Chapter 2), the DMPs included from the 04 TSD
dataset were not FDR-corrected, as no probes passed the FDR correction. Therefore, the
initially detected differentially methylated probes were used for analysis.

4. Cross Comparison

Following the methodology in (chapter 2), the comparison is carried out over three sections:

A.  Shared probes

A matrix of 1 and 0 values is created to check which phenotype contains a certain probe (1
means probe is found in the list of DMPs for that phenotype). All differentially methylated
probes from all phenotypes are combined into one column, while phenotypes represent the
remaining columns, as demonstrated in (Tables 20, 21). This procedure is performed twice:
once for hypermethylated probes (Table 20) and once for hypomethylated probes (Table 21).

"" Create Empty Matrix with Column names same as dictionary keys "™

> def Create_Matrix(PROBE_INFO): ---

matrix = Create_Matrix(PROBE_INFO)

> def Cross_Match_Probes(matrix, PROBE_INFO): -

Output™*:

Hyper Methylated Shared Probes.xlsx
=| Hyper Probes.txt

Hypo Methylated Shared Probes.xlsx
=| Hypo Probes.txt

*Availability: Supplementary Material (Shared Probes)

ProbeL.ist D(I{)D Egzr)ly F(:r)n F("Il')P F('?')P E(I?A S(,Z\?D 3(23 T(g?D phenoCount
Alz | Alz | GRN | MAPT ELA
cg09945813 | 0 1 0 1 0 0 0 0 0 2
€g21374153 | 0 0 1 1 0 0 0 0 0 2
€g26187194 | 0 1 0 1 0 0 0 0 0 2

Table 20. Hypermethylated probes that are shared among phenotypes
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2 3 4 5 7
ProbeL.ist D(I{)D Egr)ly F(ar)n F(T)P F(T)P E(I?A S(A)D SEE)D T(g)D phenoCount
Alz | Alz | GRN | MAPT ELA

cg15454820 | 0 1 1 0 1 0 0 0 0 3
€g04586579 0 1 1 1 0 0 0 0 0 3
€g25782229 | 0 1 0 1 0 0 0 0 0 2
€g24291747 | 0 1 0 1 0 0 0 0 0 2
€g06952310 0 1 0 1 0 0 0 0 0 2
€g20022454 | 0 0 0 0 0 1 0 1 0 2
cg08259796 | 0 0 0 0 0 1 1 0 0 2
€g15370054 0 1 0 1 0 0 0 0 0 2
€g20824804 | 0 0 1 1 0 0 0 0 0 2
cg07529625 | 0 1 0 1 0 0 0 0 0 2
€g16288713 0 1 1 0 0 0 0 0 0 2
cg00531088 | 0 0 0 0 0 1 1 0 0 2
cg07257571 | O 1 0 1 0 0 0 0 0 2
€g22579590 0 1 0 1 0 0 0 0 0 2
cg11335335| 0 1 1 0 0 0 0 0 0 2
Table 21. Hypomethylated probes that are shared among phenotypes

The column phenoCount is created to track the number of phenotypes that are associated
with one probe. Since TSD dataset was excluded from FDR correction, a conservative
approach to include only probes that are shared with TSD and at least 2 phenotypes.
However, none of the probes achieves such criteria (Tables 20, 21).

Source code and output for the three sections (A. Shared probes, B. Shared Genes, C. shared
Regions) is available in supplementary material (Folders: Shared Probes, Shared Genes,
Shared Regions)

Next, shared genes...
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B. Shared Genes

Differentially methylated probes were mapped and sorted based on gene occurrence (i.e.
genes that are mapped to multiple probes are ranked higher).

LIRIRI

[1] Map Probes To Genomic Info Using Manifest """

> def GeneEnrichment(dataset, manifest): --
> def Clean_GeneName(dataset, column_name='UCSC_RefGene_Name'): -

> def PrePlot(datatset): -

result = GeneEnrichment(RESULTS[filename], Epic)

result_1 = Clean_GeneName(result, column_name= 'UCSC_RefGene_Name')
result_1['UCSC_RefGene_Name_Count'] = result_1[
'UCSC_RefGene_Name'].map(result_1['UCSC_RefGene_Name'].value_counts())

probe_info_hyper, probe_info_hypo = PrePlot(result_1)

Two lists of genes are extracted for each phenotype: hypermethylated and hypomethylated
genes.

> def Extract_DiffGenes(filename, R 5 5 , Threshold, max_genes): -

df = Extract_DiffGenes(filename, HYPER, HYPO, 'Top Genes', 'Top Promoters', 1, 1008)

This procedure is done for the 9 phenotypes. Fig. 29 shows an abstract of the final output. In
the next step, all available genes are combined under one column in order to create a matrix
that shows gene availability in each phenotype (Table 22 for hypermethylated genes
combined datasets, and Table 23 for hypomethylated genes combined dataset).
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A B C

D

E F
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| J
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L M

N

0 P

Q R

(1) DLD | (1) DLD | (2)Early | (2) Early | (3) Fam | (3) Fam | (4)FTP | (4)FTP | (5)FTP | (5)FTP | (6)ELA | (6)ELA | (7)SAD | (7)SAD | (8)SAD | (8)SAD | (9) TSD | (9) TSD
hypR hypR |Alz hypR | Alz hypR |Alz hypR |Alz hypR | GRN GRN MAPT MAPT hypR hypR |ELA hypR |ELAhypR | hypR hypR hypR hypR
genes prmtrs genes prmtrs genes prmtrs hypR hypR hypR hypR genes prmtrs genes prmtrs genes prmtrs genes prmtrs

genes prmtrs genes prmtrs
DENND2
WISP2 ABCC4 KCNAB2 D INF714 DLX5 PRDM15 CELF4 FOXI1 CELF4 KIAA1467 CUX1 LIMA1
LOC2843
DNAH3  ANXA1l PKP3 PDIAS SMTNL2 C9orf7  ZNF610 HCCA2 79 KIAA1551 LOXL3 CPS1 MCF2L  C20orf3
TRIPG CHSY1 MSI2 WDR25 LOX BAHCC1 UsT CDH10 PRDM16
SLC25A25 C5o0rf24  COL4A2 DNTTIP1 C3orf32 ZNF517 KIAA1467 PTPRN2 NARF
ANKRD20
ANXA11 SIL1 ACOX3  FLJ44606 TNNT3 A19P CPs1 DNAJB6 DNAIC17
THRA CENPU PCDHGB4 PXMP4  ZNF664 GAA LCE2A MED12L SGK3
SPATAS8-
TNK1 TTC21B JPH1 TMEM9 TRPM4 GNRHR2 AS1 PRKCZ RIC8B

Figure 29. Abstract of the output after gene enrichment for all phenotypes (hyper methylated
genes/ promoters). Complete Output is available in supplementary material (Shared Genes)
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Table 22. Hypermethylated genes that are shared among phenotypes.
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Table 23. Hypomethylated genes/ promoters that are shared among phenotypes.

C.  Shared Regions

After mapping the differentially methylated probes to their genomic coordinates, clusters of
regions were detected using a maximum threshold of 100,000 bp. A data frame that contains
chromosome number in the first column is created and the clusters of regions are appended
as columns. An abstract of the output is available in Table 24. Each phenotype has two
datasets similar to Table 24 (one for hyper- and one for hypomethylated regions). The mean
average for each pair of coordinates (e.g., min_coord 1 and min_coord_2) is calculated for
each dataset. Datasets from 9 phenotypes are then combined into two datasets:
hypermethylated regions and hypomethylated regions (Supplementary Material: Shared
Regions).
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" Extract chromomes with regions into dataframe ""'

> def list_of_target_chromosomes(chr, probe_info_2, threshold): -

> def CHRs_With_Regions(chromosomes, probe_info_2, threshold=1eeeee): -

if dictionary is HYPER:
Output = r"C:\Users\Saeed.LAPTOP-QUBK4QVG\Documents\Target\limma\[@4] regions\Hyper"
print("> Writing Hyper Methylated Regions to Path")
elif dictionary is HYPO:
Output = r"C:\Users\Saeed.LAPTOP-BUBK4QVG\Documents\Target\limma\[@4] regions\Hypo"
print("> Writing Hypo Methylated Regions to Path")

df = CHRs_With_Regions(chromosomes, probe_info_2, 1000680)

display(df)

df.to_excel(f"{Output}\\{filename}.xlsx", index= False)

ch | min_coord_ | max _coord | min_coord | max coord | min_3,4, | max 34,
r 1 1 2 2 etc.. etc..
1 6420713 6454339 17766917 17829087 /l /l
2 47077192 47077388 // /l
3 | 100581781 100594209 150996563 151036761 // /l
12 | 26348011 26349129 32638669 32654929 /l /l
6 14117402 14117423 75898357 75922610 /l /l
16 2058189 2058701 21161842 21162212 // /l
7 7142996 7162892 100463206 100464145 // /l
10 | 81946545 81965771 82247853 82265445 /l /l
5 10522197 10601638 Il /l
17 7283774 7283897 26683926 26699551 // /l
4 55618746 55650446 // /l
19 1068561 1074425 46932069 46946599 Il /l
14 | 51288521 51288740 104345945 104397864 Il /l
15 | 72409092 72409169 86296229 86296274 /l I
8 | 134307728 134369320 /l /l
9 | 130860583 130866500 Il /l
20 | 43343304 43343997 Il /l
18 | 48404401 48404491 /l I

Table 24. Abstract of output for one dataset that shows the detected clusters in each
chromosome.
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Each dataset is then inspected for regions that share the same chromosome and are located
within a pre-determined threshold of 100K base pairs*. The output** of detected regions is
represented in a dictionary where chromosomes are the keys and phenotype names are the
values. If any pairs are detected, another function is used to get the corresponding
coordinates***. An example of this procedure (from hypermethylated regions) is
demonstrated below:

*Detection of phenotypes that shares close regions

> def detect_shared_chromosomes(dataset, Threshold):

chromosome_dict = detect_shared_chromosomes(df_new, 18€000)

display(chromosome_dict)

**Qutput of previous code:

> Output:

11225 |11
{1: [], 13: [1,
2: [1, 14: [],
3: ['avg_2(1) DLD-avg 6(9) TSD'], 15: [1,
a: [1, 16: ['avg_3(1) DLD-avg_1e(9) TSD'],
s: [1, 17: [1,
6: [1, 18: [1],
7: [1, 19: [1,
8: [1, 20: [1,
9: [1, 21: [1,
10: ['avg_2(1) DLD-avg _6(9) TSD'], 22: [1],
11: [1, 23: [1}

***Next, Extract the coordinates of detected phenotypes...

> def detect_shared_regions(dataset, Threshold): -

value_pairs_dict = detect_shared_regions(df_new, 10e000)

display(value_pairs_dict)

v/ 00s

> Output:

{'avg_2(1) DLD VS avg_6(9) TSD': [(np.float64(151016662.0),
np.float64(151022497.5)),
(np.float64(82256649.0), np.float64(82252688.0))],
‘avg_3(1) DLD VS avg_1@(9) TsD': [(np.floate4(307136€3.0),
np.float64(30693227.0))1}
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How significant probes are selected?

From each of the previous sections (A. Shared probes, B. Shared genes, C. Shared regions), a
set of significant probes/ genes is extracted based on the following criteria:

e Overall logFC value which represent the magnitude of differentiation.
e Number of probes mapping to a specific gene.

e Number of phenotypes sharing a specific probe/gene.

e Number of probes/phenotypes sharing a similar region.

The top differentiated candidates are presented in the results section, where the probes are
visualized with detailed information. All initial results are provided in the supplementary
material, along with the source code for reproducibility (Supplementary Material: Limma
DMPs, Probe Info).

End of Chapter 3 | Workflow
Next: Chapter 4 | Results and Discussion
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Chapter 4 | Results & Discussion

1. Results

To distinguish between hypermethylated and hypomethylated probes, figures were
highlighted in green in sections 1.1, 1.2, 1.3 for hypermethylation and highlighted in yellow
in sections 1.4, 1.5, and 1.6 for hypomethylation.

1.1. Hypermethylated probe ids that are shared among 2 or more phenotypes:

The maximum match detected in hyper methylated probes (Table 20) was two phenotypes.
The probes that achieve this match are 'cg09945813', 'cg21374153', 'cg26187194" as shown

in Figures (30, 31, 32) respectively.

Phenotype: (2) Early Alz Phenotype: (4) FTP GRN
Chr: 17 -> Gene: SLC39A11 Chr: 17 -> Gene: SLC39A11
# ProbelD 'cg09945813' # ProbelD 'cg09945813'
Region: Unknown Region: Unknown
Function: Unknown Function: Unknown
1.0 1.0
0.8 1 0.8 1
@ o
r 4 °*
o 061 0 061 @
= =
4 2
[1s 1+
@ o
@ 0.4 @ 0.4 4
0.2 1 0.2 1
0.0 = . 0.0 . .
Control Case Control Case
Figure 30. Probe ID 'cg09945813'
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Phenotype: (3) Fam Alz
Chr: 13 -> Gene: nan

# ProbelD 'cg21374153'
Region: Unknown
Function: Unknown
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Phenotype: (4) FTP GRN
Chr: 13 -> Gene: nan

# ProbelD 'cg21374153"
Region: Unknown
Function: Unknown
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Figure 31. Probe ID 'cg21374153'

Phenotype: (2) Early Alz
Chr: 10 -> Gene: nan

# ProbelD 'cg26187194"
Region: S_Shore
Function: Unknown
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Phenotype: (4) FTP GRN
Chr: 10 -> Gene: nan

# ProbelD 'cg26187194'
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Figure 32. Probe ID 'cg26187194'
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1.2.

phenotypes: Figures (33, 34, 35, 36).

Hypermethylated probes that share the same gene among 2 or more

Phenotype: (1) DLD
Chr: 7 -> Gene: MAD1L1

# ProbelD 'cg24163194'
Region: N_Shore
Function: Unknown
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Phenotype: (2) Early Alz
Chr: 7 -> Gene: MADI1L1

# ProbelD 'cgl7618327"
Region: Unknown
Function: Unclassified
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Phenotype: (3) Fam Alz
Chr: 7 -> Gene: MAD1L1

# ProbelD 'cg12073833'
Region: N_Shelf

Function: Unclassified cell-
type_specific
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Figure 33. Gene: MAD1L1

# ProbelD 'cg08864105°
Region: N_Shelf
Function: Unclassified

Phenotype: (1) DLD
Chr: 1 -> Gene: DENND2D

# ProbelD 'cg18924738"
Region: N_Shelf
Function: Unclassified
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Phenotype: (2) Early Alz
Chr: 1 -> Gene: DENND2D

# ProbelD 'cgl0117077"
Region: Unknown

Function: Promoter associated-
cell type specific
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Figure 34. Gene: DENND2D
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# ProbelD 'cg02770857" # ProbelD 'cg04064890'

Phenotype: (2) Early Alz
Chr: 17 -> Gene: MSI2

Phenotype: (9) TSD
Chr: 17 -> Gene: MSI2

# ProbelD 'cg11876048"

# ProbelD 'cg26871347'

Region: Unknown Region: Unknown Region: S_Shelf Region: Unknown
Function: Unknown Function: Unknown Function: Unknown Function: Unknown
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Figure 35. Gene: MSI2

Phenotype: (9) TSD Phenotype: (3) Fam Alz
Chr: 10 -> Gene: FGFR2 Chr: 10 -> Gene: FGFR2
# ProbelD 'cg16653991' # ProbelD 'cg08899523' # ProbelD 'cg18566515'
Region: Unknown Region: Unknown Region: N_Shore
Lo Function: Unknown Function: Unknown Lo Function: Unknown
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Figure 36. Gene: FGFR2
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1.3. Hypermethylated probes in nearby regions (< 100K bp) shared between two
or more phenotypes: (Figures 37, 38, 39)

Chromosome 3

Phenotype: (1) DLD -> Chr: 3 Phenotype: (9) TSD -> Chr: 3

# ProbelD 'cg09571369'
Gene: P2ZRY14

Region: Unknown
Coordinates: 150996563.0

# ProbelD 'cgl4833952'
Gene: MED12L

Region: Unknown
Coordinates: 151036761.0
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# ProbelD 'cg09410045'
Gene: P2RY14

Region: Unknown
Coordinates: 150997688.0

# ProbelD 'cg24474182°
Gene: P2RY13
Region: Unknown

0 Coordinates: 151047307.0
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Figure 37. Shared probes within the genomic loci (chr3:151,016,761-151,077,307)

Chromosome 10

Phenotype: (1) DLD -> Chr: 10

# ProbelD 'cg08560387"
Gene: TSPAN14

Region: Unknown
Coordinates: 82247853.0

# ProbelD 'cgl6178415°
Gene: TSPAN14

Region: Unknown
Coordinates: 82265445.0

Phenotype: (9) TSD -> Chr: 10

# ProbelD 'cg23858360°

# ProbelD 'cgl13612642'

1.0 1.0
0.8 1 0.8 1
g 0.6 1 g 0.6 1
© )
= =
] ]
] @
o 0.44 o 0.4
0.2 1 ) 0.2 4
® Lo
0.0 T T 0.0 T T
Control Case Control Case

Gene: TSPAN14
Region: N_Shore
Coordinates: 82213490.0

Gene: nan
Region: N_Shelf

Coordinates: 82291886.0
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Figure 38. Shared probes within the genomic loci (chr10:822,478,53-822,918,86)
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Chromosome 16

Phenotype: (1) DLD -> Chr: 16 Phenotype: (9) TSD -> Chr: 16
# ProbelD 'cg19932737' # ProbelD 'cg25773585' # ProbelD 'cgl5928446' # ProbelD 'cg08826468'
Gene: nan Gene: SNORA30 Gene: PRR14 Gene: SRCAP
Region: N_Shelf Region: Unknown Region: N_Shore Region: Unknown
Coordinates: 30705491.0 Coordinates: 30721715.0 Coordinates: 30661850.0 Coordinates: 30724604.0
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Figure 39. Shared probes within the genomic loci (chr16:307,054,91-307,246,04)

Next: Hypomethylated probes (Sections: 1.4, 1.5, 1.6)

1.4. Hypomethylated probe IDs that are shared among 2 or more phenotypes:

The maximum match detected in hypo methylated probes (Table 21) was three phenotypes.
The probes that achieve this match are 'cg15454820', 'cg04586579' as shown in Figures (40,

41) respectively.

Figures (40, 41) =
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Phenotype: (2) Early Alz
Chr: 10 -> Gene: nan

# ProbelD 'cg15454820°
Region: Unknown
Function: Unknown
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Phenotype: (3) Fam Alz
Chr: 10 -> Gene: nan
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Phenotype: (5) FTP MAPT
Chr: 10 -> Gene: nan
# ProbelD 'cg15454820'
Region: Unknown
Function: Unknown
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Figure 40. Probe ID 'cg15454820'

Phenotype: (2) Early Alz
Chr: 16 -> Gene: SDR42E1

# ProbelD 'cg04586579'
Region: Island
Function: Unclassified
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Phenotype: (3) Fam Alz
Chr: 16 -> Gene: SDR42E1

# ProbelD 'cg04586579'
Region: Island
Function: Unclassified
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Phenotype: (4) FTP GRN
Chr: 16 -> Gene: SDR42E1l

# ProbelD 'cg04586579"
Region: Island
Function: Unclassified
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Figure 41. Probe ID 'cg04586579'
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1.5. Hypomethylated probes that share the same gene among 2 or more
phenotypes: Figures (42, 43, 44, 45).
Phenotype: (1) DLD Phenotype: (2) Early Alz
Chr: 7 -> Gene: MADI1L1 Chr: 7 -> Gene: MADI1L1
# ProbelD 'cg16012294° # ProbelD 'cg15896696'
Region: N_Shelf Region: Island
Function: Unknown Function: Unclassified
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Phenotype: (9) TSD
Chr: 7 -> Gene: MADI1L1
# ProbelD 'cg07610468"
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Figure 42. Gene: MAD1L1
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Phenotype: (9) TSD Phenotype: (1) DLD
Chr: 6 -> Gene: RPS6KA2 Chr: 6 -> Gene: RPS6KA2
# ProbelD 'cg04040935' # ProbelD 'cgl11599721" # ProbelD 'cg00949384'
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Figure 43. Gene: RPS6KA2
Phenotype: (4) FTP GRN Phenotype: (2) Early Alz Phenotype: (1) DLD
Chr: 11 -> Gene: CD81 Chr: 11 -> Gene: CD81 Chr: 11 -> Gene: CD81
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Figure 44. Gene: CD81
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Phenotype: (2) Early Alz
Chr: 16 -> Gene: SDR42E1

# ProbelD 'cg04586579'
Region: Island
Function: Unclassified
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Phenotype: (3) Fam Alz
Chr: 16 -> Gene: SDR42E1
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Figure 45. Gene: SDR42E1 (the same probes available in Figure 41)

1.6.
more phenotypes:

Hypomethylated probes in nearby regions (< 100K bp) shared between two or

None of the chromosomes expresses shared regions among the 9 phenotypes even with

threshold of 100K bp.

Note: The source code used to plot all previous results is available in the
supplementary material (Shared probes, Shared Genes, Shared Regions)

2. Discussion

The list of genes extracted for each dataset generally differed from the original results
provided in each experiment. While a detailed comparison with the original results is beyond
the scope of our study, the observed differences highlight the significant impact of varying
normalization methods and pipelines on DMR results.
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Based on logFC and the number of shared phenotypes, the most significant differentiations
were selected. For hypermethylation, SLC39A11, MAD1L1, and DENND2D showed the
highest differentiation. For hypomethylation, SDR42E1, CD81, and again MAD1L1 were
identified as top candidates. Tables 25 and 26 highlight the most significant differentiations
for hypermethylated and hypomethylated genes, respectively. The maximum number of
phenotypes that are detected to share certain loci is 3 for both hypermethylated and
hypomethylated regions.

MAD1L1(Hypermethylation & Hypomethylation)

For hypermethylated genes, MAD1L1 is the only to express availability in 3 phenotypes
(DLD, Early Alz, Fam Alz). Interestingly, the same gene expresses hypomethylation in other
locations (Figure 42) among also 3 phenotypes (DLD, Early Alz, and minimal differentiation
in TSD). Upon reviewing available literature on the possible contribution of MADI1LL1 in
behavior and psychiatric health, we found a recent study by Sokolov et al. (2023) that
specifically identifies Three methylation loci (cg02825527, cg18302629, and cg19624444)
as consistently hypomethylated in minor allele carriers of depression candidates. Su et al.
(2015) and Levey et al. (2020), on the other hand, provide evidence for the association of
MAD1L1 variants with schizophrenia and anxiety, respectively. From an environmental
perspective, Bozack et al. (2021) detected an association of the differentially methylated
probe ¢g26462130 (MAD1L1) in cord blood linked to prenatal metal exposure (specifically
Mn), with their findings showing that the differentiation persisted when blood samples were
collected during childhood. However, in our study, the environmental effect of sleep
deprivation in the TSD group should be interpreted conservatively, as the DMRs for TSD did
not pass FDR correction.

Other studies did not reveal a role for MAD1L1 relative to our phenotypes. For example,
Jansen et al. (2006) highlights MAD1L1 as a potential target to improve survival in patients
with ovarian cancer. The study demonstrates that MAD1L1 overexpression delays cell
proliferation, while its downregulation through hypermethylation contributes to disease
progression. Similarly, Bandala-Jacques et al. (2020) shows that patients with the MAD1L1
rs1801368 polymorphism are less likely to achieve optimal cytoreduction (a critical factor in
improving overall survival in ovarian adenocarcinomas) compared to the non-polymorphic
group. However, the study did not investigate an epigenetic contribution.

SLC39A11 Hypermethylation

Figure 31 shows significant hypermethylation of probe 1D 'cg09945813', which corresponds
to the SLC39A11 gene. The hypermethylation was detected in the Early Alz and Fam Alz-
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groups. Given that both phenotypes exhibit overall low quality of life and considering that
hypermethylation is often associated with gene downregulation (reduced expression), we
were particularly interested in the recent findings by Xia et al. (2024), which suggest a
possible role of SLC39A11 in overall longevity. The study found that a mutation in
SLC39A11, leading to reduced expression, results in an accelerated aging phenotype in
zebrafish. Additionally, the study reported that SLC39A11 expression is significantly reduced
in patients with Hutchinson-Gilford Progeria Syndrome (HGPS).

@ & | @ | 6 (7)

Chr | Gene/ Loci D(I{)D Early | Fam | FTP | FTP E(I?A SAD S(,E\)D T(g)D
Alz | Alz | GRN | MAPT ELA

17 | SLC39A11 1 1

13 NaN 1 1

10 NaN 1 1

7 MAD1L1 1 1 1

10 FGFR2

1 | DENND2D 1
17 MSI2
3 P2RY14 ~ 151M bp 1

1

1

1

3 MED12L | ~151M bp
3 P2RY13 ~ 151M bp
10 | TSPAN14 | ~82M bp

10 NaN ~ 82M bp
16 NaN ~30M bp
16 | SNORA30 | ~30M bp
16 PRR14 ~30M bp 1
16 SRCAP ~ 30M bp 1

Table 25. Hypermethylated genes availability among the 9 phenotypes. Values (1,2)
represents the number of probes).

DENND2D Hypermethylation

Figure 34 shows hypermethylation of 3 different probes that are mapped to DENND2D gene.
Associated phenotypes were DLD and Early Alz groups. The differentiation was more
obvious in Early Alz group. Although www.genecards.org stated that diseases associated
with DENND2D include autism spectrum disorder, we could not actually identify studies
with this information. On the other hand, the available literature shows that candidates of
DENN family are poorly characterized (Yoshimura et al., 2010, Kumar et al., 2023). Kumar
et al. (2023) suggests that DENND2B (another candidate from DENN damily) is involved in
cancer and neurodevelopmental disorders. As per the study, loss-of-function mutation in
DENNDZ2B leads to severe mental retardation, seizures, neural hearing loss, unilateral cystic
kidney dysplasia, frequent infections, and other congenital anomalies.
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On the other hand, the only study that specifically discusses DENND2D hypermethylation is
Kanda et al. (2013). The study highlights the frequent hypermethylation of DENND2D in
hepatocellular carcinoma (HCC) tissues (75%) and its significant association with the
downregulation of DENND2D mRNA expression. The study concluded that DENND2D
plays an important role in hepatocarcinogenesis (Kanda et al., 2013).

TSPAN14 Hypermethylation in DLD & TSD groups

Our findings revealed two probes that are hypermethylated on chromosome 10 within the
coordinate range (82247853.0 - 82265445.0) in the DLD group. Another two probes in a
nearby region (82213490.0 - 82291886.0) were also detected to be hypermethylated in the
TSD group. However, the differentiation in the DLD group was more significant than in the
TSD group (Figure 38). According to www.genecards.org, TSPAN14 is involved in the
positive regulation of the Notch signaling pathway. Upon reviewing the available literature,
Artavanis-Tsakonas and Muskavitch (2010) explain that Notch signalling plays a role in
various developmental decisions in the nervous system. Salazar et al. (2020) also highlight
the importance of Notch signalling in learning and memory across multiple species. The
study further suggests that modulation of Notch activity may be effective in treating some
symptoms associated with neurological disorders. These findings highlight the need for in-
depth investigation of TSPAN14 in developmental delays, such as the DLD phenotype.

2 3 4 5) 7
chr | cene | PO | O e e | e | ©) [sap | @ @)
Alz | Alz | GRN | MAPT ELA
16 SDR42E1 1 1 1
7 MAD1L1 1 1 3
6 RPS6KA2 1 2
11 CD81 1 1 1
10 NaN 915454820 1 1 1

Table 26. Hypomethylated genes availability among the 9 phenotypes. Values (1,2,3)
represents the number of probes).

SDR42E1 Hypomethylation

The most hypomethylation was observed in probe ID 'cg04586579' that maps to SDR42E1
gene, shown in Figure 41. This probe was hypomethylated across three phenotypes (Early
Alz, Fam Alz, FTP GRN), all belonging to the same experiment (E-MTAB-11975). We could
not find relevant information in the available literature regarding SDR42E1 role in nervous
system symptomology. However, Bouhouche et al. (2021) which uses blood samples in their-
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Study reveals an essential role of SDR42E1 in maintaining connective tissue. Apart from
relevant neurological symptoms, Meyer et al. (2021) on the other hand used TNBC samples
(triple-negative breast cancer biopsy samples) and finds that SDR42EL1 is the only DMR that
shows both altered methylation and expression in TNBC patients after Neoadjuvant
chemotherapy (NAC).

CD81 Hypomethylation

Three hypomethylated probes were mapped to CD81 which interestingly was associated
among DLD, Early Alz, and FTP GRN groups (Fig. 44). Available literature demonstrates
that CD81 main role is to mediate signal transduction events (Hasterok et al, 2019). An
analysis of single cell RNAseq of human Alzheimer’s disease brains showed that CD81 is
upregulated in microglia module Mathys et al. (2019). The study uses samples from the
prefrontal cortex of 48 individuals with varying degrees of Alzheimer’s disease pathology
across six major brain cell types (Figure 46). Together with our findings, this suggests a
possible correlation between CD81 hypomethylation in blood cells and the upregulation of
the same gene in microglia cells in Alzheimer’s disease.
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Figure 46. Diagram from Mathys et al. (2019) demonstrates
differentially expressed genes in six cell types from prefrontal cortex
tissue of Alzheimer’s candidates.

Cell type (prefrontal cortex) Abbreviation
Excitatory neurons Ex
Inhibitory neurons In
Astrocytes Ast
Oligodendrocytes Ol
Oligodendrocyte precursor cells Opc
Microglia Mic
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Hypermethylated regions

MED12L has been reported to overlap with several genes, including P2RY13 and P2RY14
(Nizon et al., 2019). Notably, our approach for detecting probes with shared regions revealed
hypermethylation within the genomic locus at chr3:151,016,761-151,077,307 (Figure 37)
that includes MED12L, P2RY13, and P2RY14. MED12L is associated with Nizon-Isidor
Syndrome, a neurodevelopmental disorder characterized by developmental delay, poor
speech, and various symptoms, including sleep disturbances (Online Mendelian Inheritance
in Man [OMIM], 2025). Given this context, our findings may offer promising insights in the
field of epigenetics, potentially shedding light on the role of sleep in the development of
such conditions or in explaining language delays in children without specific diagnoses.
However, these interpretations should be approached with caution, specifically in terms of
TSD group which did not pass the FDR correction.
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3. Limitations

Further enrichment of the results, particularly for MAD1L1, TSPAN14, and CD81, could have
provided deeper insights, especially when compared to results in other studies. This could be
achieved using a tailored tool that accounts for multiple phenotypes. However, time
constraints limited our ability to explore and test a sufficient number of tools. Additionally,
data availability posed a limitation, as phenotype selection depended on publicly accessible
datasets. On the other hand, our exclusion criteria in terms of platform compatibility needs to
be re-evaluated, this is because our results mainly targeted probes that shares the same gene,
rather than finding matched probes. Finally, the complete failure of the TSD dataset to pass
FDR correction requires further investigation, particularly regarding the parameter settings
of the Limma function for the 450K array.

4. Conclusion

Our research, alongside other studies, provides further evidence supporting the potential of
peripheral blood biomarkers in reflecting neurological symptomatology. Phenotypes that
exhibited patterns of alteration on identical probes were limited to Alzheimer’s disorders
groups from the same experiment (E-MTAB-11975). These probes need to be investigated in
a separate study primarily dedicated to Alzheimer’s disease. A key finding from our results is
the hypomethylation of CD81 in Alzheimer’s samples (Early Alz and FTP GRN), which has
also been reported as upregulated in the prefrontal cortex in another study. The alteration in
methylation levels detected in this study was limited to a single probe differentiation.
However, the methylation changes in MAD1L1-mapped probes in individuals with
Developmental Language Disorder (DLD) and Early-onset Alzheimer's Disease (EOAD) are
noteworthy, especially considering the existing literature discussing the methylation of the
same gene in psychiatric and environmental conditions. These findings should serve as
motivation for further investigation of MADI1L1 to explore its potential contribution to
neuro-system symptomology. From an analytical standpoint, it is clear that DNA methylation
analysis would benefit from standardized methods tailored to specific cell types or
phenotypes. Such standardization could improve result consistency and enhance the
reliability of DNA methylation studies, especially for diseases lacking global methylation
changes. On the other hand, our approach of performing QC procedures after a standard
pipeline provides greater insights and easier sample-wise visibility into data quality but
requires more processing time. Despite this, it remains valuable for large arrays with
potential quality risks from specific samples. For smaller arrays, while less useful for
removing low-performing samples, it offers a method to impute missing or masked beta
values using weighted mean (WM).
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Appendices

Section 1 Pipelines Comparison

Comparison (1) between:

Raw Data Raw reads extracted using minfi package from the idat files provided on
ArrayEXxpress.

Processed SWAN-Processed Data: Processed beta values provided by the publisher on

data ArrayExpress.

Fig 1. Shows the beta distribution curve for both outputs. From the provided metadata file
(E-MTAB-13583.txt.idf) available with the experiment E-MTAB-13583 on ArrayExpress, the
quality control protocol includes the following information:

o R packages minfi, ChAMP and RnBeads were used.

o The limma package was used by RnBeads to compute the p-values for all the
covered CpGs.

o Samples and CpG islands (CpGs) that contained a substantial fraction of low
technical quality measurements were discarded.

o Normalization done using SWAN method available in minfi package.
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Fig 1. A comparison between processed and raw data publicly available on ArrayExpress for
the experiment E-MTAB-13583

Page |101




Section 1 Pipelines Comparison

Comparison (2) between:
Processed SWAN-Processed Data: Processed beta values provided by the publisher on
data ArrayExpress.

Quantile
pipeline preprocessQuantile(data, fixOutliers = TRUE, removeBadSamples =

(Minfi TRUE, badSampleCutoff = 10.5, quantileNormalize = TRUE, stratified =
package) TRUE).

To compare the processed data with a complete pipeline, we have chosen preprocessQuantile
from Minfi library as it provides full workflow including the removal of low-quality points in

addition to fixing outlier (Fig. 2).
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Fig 2. Comparing preprocessQuantile() from Minfi with the processed data from the
experiment E-MTAB-13583 which used SWAN method.

The difference between the two methods is primarily due to difference in normalization
technique in Quantile versus SWAN. However, the details of the SWAN-processed data
published on ArrayExpress did not declare the specific arguments used in the function. To
further confirm that different processing methods result in different distribution of beta
values, we have tested one more pipeline used by Enmix, which is another popular library

from R Bioconductor packages.
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Section 1 Pipelines Comparison

Comparison (3) between:

Quantile

pipeline preprocessQuantile(data, fixOutliers = TRUE, removeBadSamples =
(Minfi TRUE, badSampleCutoff = 10.5, quantileNormalize = TRUE, stratified =
package) TRUE).

mpreprocess() | mpreprocess(data, nCores=2,bgParaEst="oob",dyeCorr="RELIC",
(Enmix gc=TRUE,gnorm=TRUE,gmethod="quantilel",

standard focfilter=FALSE,rmcr=FALSE,impute=TRUE)

pipeline)

One of the main differences observed in Enmix library, is the availability of RELIC method
in adjusting dye bias. The corresponding method used in Minfi is the non-linear approach
(dyeCorr = NL). Despite that both functions use quantile and applies outlier imputation, The
difference of distribution in beta values is still available (Fig. 3). Different factors that can
contribute to such a difference. For example, one obvious factor is the application of
different dye bias correction methods (RELIC vs Non-Linear).
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Fig 3. A comparison between mpreprocess() from Enmix and preprocessQuantile() from

Minfi
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Section 1 Pipelines Comparison

Comparison (4) between:

Processed data

publisher on ArrayExpress.

SWAN-Processed Data: Processed beta values provided by the

Standard

preprocessSWAN()

(Minfi package)

if (require(minfiData)) { dat <- preprocessRaw(RGsetEx)
preprocessMethod(dat) datSwan <- preprocessSWAN(RgsetEx, mSet =
dat) datlimn <- preprocesslllumina(RgsetEx)
preprocessMethod(datlimn) datlimnSwan <-
preprocessSWAN(RgsetEx, mSet = datlimn) }

Attempting to mimic SWAN of the processed data, we used preprocessSWAN() expecting
that this attempt will give the same result. The code used for SWAN is as per Minfi reference
manual (K. D. Hansen & Fortin, [Minfi User Guide]). Although the same normalization
algorithm is used in pipelines, there is still a difference in the beta distribution curve that
mostly resulted from quality control steps and thresholds used in each pipeline (Fig. 4).

4.0 {

3.5

3.0 1

Density

1.5

1.0

0.5

3 Minfi SWAN

E-MTAB-13583 Processed

No. of CpG Sites

0.0
0.0

0.2

0:4 0:6 0:8 1.0
Beta Value

20000

15000 4

10000

5000 1

o]
0.0

Minfi SWAN
E-MTAB-13583 Processe: d

l
1.

0.8 0

[T |||||||||||||||||HMHH
0.2 0.4 0.6

' Beta Value '

Fig 4. A comparison between preprocessSWAN() standard approach as per Minfi reference
manual versus the preprocessSWAN() pipeline used in E-MTAB-13583 experiment.
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Section 2 P-value Methods Comparison

# P value detection methods comparison
for (path in c(
"C:/Users/Saeed. LAPTOP-0UBK4QVG/Documents/Target/001 HealthyChildren/E-MTAB-
12728",
"C:/Users/Saeed. LAPTOP-OUBK4QVG/Documents/Target/01 DLD/E-MTAB-13583",
"C:/Users/Saeed. LAPTOP-OUBK4QVG/Documents/Target/02 FTP/E-MTAB-11975",
"C:/Users/Saeed. LAPTOP-OUBK4QVG/Documents/Target/03 SAD/GSE164056",
"C:/Users/Saeed. LAPTOP-OUBK4QVG/Documents/Target/04 AcuteSleepDep/E-MTAB-4664",
"C:/Users/Saeed. LAPTOP-OUBK4QVG/Documents/Target/05 LowSleepImpact/E-GEOD-80559"
)) |

print("calculating p values . . ")

# Define input path
setwd (path)
input <- path

# Initialize a data frame to store results

result <- data.frame (row.names = c(
"'pOOBAH' Method by SeSAME",
"'detectionP (M+U) ' Method by Minfi",
"'oob' Method by ENmix",
"'negative' Method by ENmix"

))

# Sesame - pOORAH
idat files <- searchIDATprefixes (input)
sesame counts <- c()

for (prefix in idat files) {
sset <- readIDATpair (prefix) # Process each IDAT pair individually
sset <- pOOBAH (sset) # Apply pOOBAH for detection p-values
sesame counts [basename (prefix)] <- sum(sset$mask) # Count failed probes

}
result["'pOOBAH' Method by SeSAME", names (sesame counts)] <- sesame counts

# Minfi - detection P values

rgSet <- read.metharray.exp (input)

p_val minfi <- detectionP(rgSet)

count 1 - minfi <- colSums (p_val minfi > 0.05)

result[" 'detectionP (M+U) ' Method by Minfi", names(count minfi)] <- count minfi

# ENmix - oob method

rgSetEX <- read.metharray.exp (input, extended = TRUE)

p_val oob <- calcdetP(rgSetEX, detPtype = "oob")

count ¢ - oob <- colSums (p_val ocb > 0.05)

result["'oob Method by ENmix", names (count oob)] <- count ocb

# ENmix - negative method
p_val neg <- calcdetP(rgSetEX, detPtype = "negative")
count neg <- colSums(p_val neg > 0.05)

Page |105



result["'negative' Method by ENmix", names(count neg)] <- count neg

# Add a colum for averages
result$Average <- rowMeans (result, na.rm = TRUE)

# Write the result to a CSV file
write.csv(result, file = "[1] Pval Detec Methods.csv", row.names = TRUE)

print ("Check csv camparison table'")
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Section 3 Preprocessing IDATs

print("[4] Processing Group of Idats..")

# Loop over each path and perform the tasks

for (path in c(
"C:/Users/Saeed. LAPTOP-OUBK4QVG/Documents/Target/01 DLD/E-MTAB-13583",
"C:/Users/Saeed. LAPTOP-OUBK4QVG/Documents/Target/02 FTP/E-MTAB-11975",
"C: /Users/Saeed. LAPTOP-0UBKAQVG/Documents/Target/03 SAD/GSE164056",
"C:/Users/Saeed. LAPTOP-OUBK4QVG/Documents/Target/04 AcuteSleepDep/E-MTAB-4664",
"C:/Users/Saeed. LAPTOP-0UBK4QVG/Documents/Target/05 LowSleepImpact/E-GEOD-80559"

print ("Processing Starts. . . ")

# Set Working Directory as same as the input
setwd (path)

input = path

# Load the Required Libraries
library (parallel) # in order to use mclapply()
library (sesame)

B o
### Function to process each IDAT pair
process idat <- function(px) {
# Step 1: Apply qualityMask
masked data <- qualityMask (readIDATpair (px))

# Step 2: Apply dyeBiasNL and extract p-values

corrected data <- dyeBiasNL(masked data, mask = TRUE) # Equal to standard
dyBiasNL ()

pvalues <- pOOBAH (corrected data, return.pval = TRUE) # Extract p-values

# Step 3: Apply pOOBAH (using corrected data from step 2)
p_value data <- pOOBAH (corrected data, combine.neg = TRUE, pval.threshold =
0.05) # Equal to standard pOORAH ()

# Step 4: Apply nocb
nocb data <- noob(p value data, combine.neg = TRUE, offset = 15) # qual to
standard noob ()

# Step 5: Get betas
betas <- getBetas (noob data)

return (list (betas = betas, pvalues = pvalues)) # Return both betas and p-
values

}

# Define input directory (Assign Multipe Inputs For Multi Experiments).
# Each Input Needs to Be Different Path In Order Not To Mix Up The Outputs.

B
# Locate IDAT files and process using above function

idat prefixes <- searchIDATprefixes (input)
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results <- mclapply (
idat prefixes,
process idat

)

# Combine betas and p-values
betas <- do.call(cbind, lapply(results, [[ , "betas"))
pvalues <- do.call(cbind, lapply(results, "[[ , "pvalues"))

# Convert betas and pvalues to data frames
betas <- as.data.frame (betas)
pvalues <- as.data.frame (pvalues)

# Rename columns to end with Betas and Pval
colnames (betas) <- paste0(colnames (betas), " Betas")
colnames (pvalues) <- paste0 (colnames (pvalues), " Pval")

# Merge betas and p-values

merged data <- data.frame (ProbeID = rownames (betas)) # Start with ProbelD
rownames (betas) <- NULL # Remove row names for binding

rownames (pvalues) <- NULL

# Interleave columns from betas and pvalues
for (i in 1l:ncol(betas)) {
merged data <- cbind(merged data, betas[, i], pvalues[, i])
colnames (merged data) [(2 * i)] <- colnames (betas) [i] # Rename to beta column
colnames (merged data) [(2 * i + 1)] <- colnames (pvalues) [i] # Rename to p-
value column

}

# Write merged data to CSV file
write.csv(merged data, "[4] Betas Pval.csv", row.names = FALSE)

# Optional: frees up memory
m(list = 1s())
gc()

# Check Betas QC in Python
print ("Check Betas in Python")
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Section4 Masking Summary

print (" [2-3] Masking summary")

# Loop over each path and perform the tasks
for (path in c(
"C:/Users/Saeed. LAPTOP-OUBK4QVG/Documents/Target/001 HealthyChildren/E-MTAB-
12728",
"C:/Users/Saeed. LAPTOP-OUBK4QVG/Documents/Target/01 DLD/E-MTAB-13583",
"C:/Users/Saeed. LAPTOP-0UBK4QVG/Documents/Target/02 FTP/E-MTAB-11975",
"C: /Users/Saeed. LAPTOP-0UBKAQVG/Documents/Target/03 SAD/GSE164056",
"C:/Users/Saeed. LAPTOP-OUBK4QVG/Documents/Target/04 AcuteSleepDep/E-MTAB-4664",
"C:/Users/Saeed. LAPTOP-0UBK4QVG/Documents/Target/05 LowSleepImpact/E-GEOD-80559"
)) |
# Set Working Directory as same as the input
setwd (path)
input <- path

# Locate IDAT file prefixes
idat files <- searchIDATprefixes (input)

# Initialize list to store results
results <- list()
results 1 <- list()

# Iterate over each IDAT pair
for (file in idat files) {
s <- readIDATpair (file)

# Check if SeSAME Identifies the platform:
platform <- sdfPlatform(s)

# Step 1: Check initial masking
initial mask <- sum(s$mask)

# How Many Missing Betas Before QC:
gcstat <- sesameQC calcStats(s)
missing betas <- sesameQC getStats(gcstat, "frac na cg")

# Modification 1: Calculate Probe Success rate using:
rate 05 1 <- probeSuccessRate(s, mask = TRUE, max pval
rate 01 1 <- probeSuccessRate(s, mask = TRUE, max pval

0.05)
0.01)

# Step 2: Apply Quality Mask

sl <- qualityMask (s)

quality mask <- sum(sl$mask) # Masks the un unique mapping or influenced by
SNPs (SeSAME tutorial)

# How Many Missing Betas After QC:

gcstat 1 <- sesameQC calcStats(sl)

missing betas 1 <- sesameQC getStats(gcstat 1, "frac na cg")
# Mddification 2: Calculate Probe Success rate using:
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rate 05 2 <- probeSuccessRate(sl, mask
rate 01 2 <- probeSuccessRate(sl, mask

0.05)
0.01)

TRUE, max pval
TRUE, max pval

# Step 3: Apply dyeBiasNL (mask not modified)
s2 <- dyeBiasNL(s)
dyeBiasNL mask <- sum(s2$mask)

# Step 4: Apply pOOBAH over the original data

s3 <- pOORAH (s)
POOBAH mask <- sum(s3$mask)

# Apply pOOBAH over the corrected Data

s2 1 <- dyeBiasNL(sl) # s2 1 is the corrected Data

s3 1 <- pOOBAH (s2 1)

rate 05 3 <- probeSuccessRate(s3 1, mask = TRUE, max pval = 0.05)
rate 01 3 <- probeSuccessRate(s3 1, mask = TRUE, max pval = 0.01)

# How Many Missing Betas After pOOBAH for the original data:
gcstat 2 <- sesameQC calcStats(s3)
missing betas 2 <- sesameQC getStats(qcstat 2, "frac na cg")

# Step 5: Apply nocb
s4 <- noob(s)
nocb mask <- sum(s4$mask)

# How Many Missing Betas After nocb for the original data:
gcstat 3 <- sesameQC calcStats(s4)
missing betas 3 <- sesameQC getStats(gcstat 3, "frac na cg")

# Mddification 3: Calculate Probe Success rate using:

s4 1 <- noab(s3 1)

rate 05 4 <- probeSuccessRate(s4 1, mask = TRUE, max pval = 0.05)
rate 01 4 <- probeSuccessRate(s4 1, mask = TRUE, max pval = 0.01)

# How many missing Betas After Complete Processing

# QC Mask + Dye Corr + pOOBAH + noob:

gcstat 4 <- sesameQC calcStats(s4 1)

missing betas 4 <- sesameQC getStats(gqcstat 4, "frac na cg")

# Calculate Total Masked

Total Masked Probes <- sum(slSmask) + sum(s2$mask) + sum(s3$mask) +
sum (s4S$mask)

Total Missing Betas <- missing betas 4

# Store results with base name of IDAT file
results|[[basename (file)]] <- c(platform, initial mask, missing betas,
quality mask, missing betas 1, dyeBiasNL mask, pOOBAH mask, missing betas 2,
noob mask, missing betas 3, Total Missing Betas, Total Masked Probes)
results 1[[basename(file)]] <- c(rate 05 1, rate 05 2, rate 05 3, rate 05 4,
rate 01 1, rate 01 2, rate 01 3, rate 01 4)
}

# Convert the results list to a data frame
summary df <- as.data.frame(do.call (cbind, results))
summary df 1 <- as.data.frame(do.call(cbind, results 1))
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# Ensure only numeric rows are used for averaging
numeric cols <- sapply(summary df, is.numeric)

# Calculate average for only the numeric columns
summary df$avg <- rowMeans (summary df[, numeric cols], na.rm = TRUE)

# Assign row names for steps

rownames (summary df) <- c("Platform Recognized", "No. of Masked Probes in The
Raw Sample", "Perc. Of Missing Betas in The Raw Sample", "No. of Masked Probes After
qualityMask ()", "Perc. Of Missing Betas After qualityMask()", "No. of Masked Probes
with dyeBiasNL()", "No. of Masked Probes with pOOBAH()", "Perc. Of Missing Betas As
a Result of pOORAH", "No. of Masked Probes with nocb()", "Perc. Of Missing Betas As
a result of noob ()", "Perc. Of Missing Betas After (qualityMask() + dyeBiasNL() +
POOBAH() + noob())", "Total Masked probes')

rownames (summary df 1) <- c("05 Rate for Raw Data", "05 Rate after
qualityMask()", "05 Rate after pOOBAH()", "05 Rate after noob()", "0l Rate for Raw
Data", "0l Rate after qualityMask()", "Ol Rate after pOOBAH()", "0l Rate after
nnab () ")

# Write summary to CSV

write.csv(sumnary df, "[2] Masking Summary.csv", row.names = TRUE)
write.csv(summary df 1, "[3] SuccessRate Summary.csv", row.names = TRUE)

# Optional: frees up memory
m(list = 1s())
gc()

print("One iteration is done..")

Page |111



Section 5 Limma Analysis

perform limma analysis <- function(case path, control path, filename) {
# Load necessary library
library (1imma)

# Load datasets
case data <- read.csv(case path)
control data <- read.csv(control path)

# Ensure 'ProbeID' column exists in both datasets

case data <- case data[, c("ProbeID", grep(" Betas$", names(case data), value =
TRUE) ) ]

control data <- control data[, c("ProbeID", grep(" Betas$", names(control data),
value = TRUE)) ]

# Merge datasets on 'ProbeID'
merged data <- merge(case data, control data, by = "ProbeID")

# Set ProbeID as row names and remove the column
rownames (merged data) <- merged data$ProbeID
merged data <- merged data[, -1]

# Create group labels
group <- factor(c(rep("Case", ncol(case data) - 1), rep("Control",
ncol (control data) - 1)))

# Design matrix
design <- model .matrix(~ group)

# Fit the linear model
fit <- lmFit(merged data, design)

# Apply empirical Bayes moderation
fit <- eBayes(fit)

# Get top differentially methylated probes
results <- topTable(fit, coef = 2, number = Inf) # coef=2 represents the
""group" variable

# Save results to CSV
write.csv(results, paste((filename, " Results.csv"), row.names = TRUE)

# Filter probes based on adjusted p-value
significant probes <- results[results$adj.P.Val < 0.05, ]

# Save significant probes to CSV
write.csv(significant probes, paste(O(filename, " Significant Probes.csv"),

row.names = TRUE)

# Return significant probes for further analysis
return (significant probes)
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HHHHHHEHHRHHBEHRE SRR
# Paths
> cases path <- "C:/Users/Saeed.LAPTOP-
OUBKAQVG/Documents/Target/0001 CASES/Normalized"
>
>
> # Print the list of files
> print(list.files(path = cases path, full.names = TRUE))
[1] "C:/Users/Saeed.LAPTOP-
OUBKAQVG/Documents/Target/0001 CASES/Normalized/01 DLD (11)cases (NORM) .csv"
[2] "C:/Users/Saeed.LAPTOP-
OUBK4QVG/Documents/Target/0001 CASES/Normalized/02 Early Alz(5)cases (NORM) .csv"
[3] "C:/Users/Saeed.LAPTOP-
OUBK4QVG/Documents/Target/0001 CASES/Normalized/02 Fam Alz(6)cases (NORM) .csv"
[4] "C:/Users/Saeed.LAPTOP-
OUBK4QVG/Documents/Target/0001 CASES/Normalized/02 FTP GRN (5)cases (NORM) .csv"
[5] "C:/Users/Saeed.LAPTOP-
OUBKAQVG/Documents/Target/0001 CASES/Normalized/02 FTP MAPT (3)cases (NORM) .csv"
[6] "C:/Users/Saeed.LAPTOP-
OUBK4QVG/Documents/Target/0001 CASES/Normalized/03 ELA (27)cases (NORM) .csv"
[7] "C:/Users/Saeed.LAPTOP-
OUBK4QVG/Documents/Target/0001 CASES/Normalized/03 SAD (32)cases (NORM) .csv"
[8] "C:/Users/Saeed.LAPTOP-
OUBKAQVG/Documents/Target/0001 CASES/Normalized/03 SAD EIA (29)cases (NORM) .csv"
[9] "C:/Users/Saeed.LAPTOP-
OUBKAQVG/Documents/Target/0001 CASES/Normalized/04 TSD (17)cases (NORM) .csv"
[10] "C:/Users/Saeed.LAPTOP-
OUBK4QVG/Documents/Target/0001 CASES/Normalized/05 LSI (1)cases (NORM) .csv"

> controls path <- "C:/Users/Saeed.LAPTOP-
OUBK4QVG/Documents/Target/0001 CONTROLS/Normalized"
>

> # Print the list of files

> print(list.files(path = controls path, full.names = TRUE))
[1] "C:/Users/Saeed.LAPTOP-
OUBKAQVG/Documents/Target/0001 CONTROLS/Normalized/01 DLD (9) controls (NORM) .csv"
[2] "C:/Users/Saeed.LAPTOP-
OUBKAQVG/Documents/Target/0001 CONTROLS/Normalized/02 FTP(5)controls (NORM) .csv"
[3] "C:/Users/Saeed.LAPTOP-
OUBK4QVG/Documents/Target/0001 CONTROLS/Normalized/03 SAD (42)controls (NORM) .csv"
[4] "C:/Users/Saeed.LAPTOP-
OUBKAQVG/Documents/Target/0001_ CONTROLS/Normalized/04 TSD (15)controls (NORM) .csv"
[5] "C:/Users/Saeed.LAPTOP-
OUBK4QVG/Documents/Target/0001 CONTROLS/Normalized/05 LSI (1)controls (NORM) .csv"

HHHHHEHHHEHEHREHHRHHHREHEREHHREHEHEHEREHRRHHEHHHRHEHREHHRE R
# Example usage

case path <- "C:/Users/Saeed.LAPTOP-

OUBK4QVG/Documents/Target/0001 CASES/Normalized/02 Early Alz(5)cases (NORM) .csv"
control path <- "C:/Users/Saeed.LAPTOP-

OUBK4QVG/Documents/Target/0001 CONTROLS/Normalized/02 FTP(5)controls (NORM) .csv"
filename <- "02 Early Alz"
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significant probes <- perform limma analysis(case path, control path, filename)
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Supplementary Material

Note: project pipeline will be uploaded on github after official publishing.
Github link: https://github.com/users/saeed-svu/projects/1.

Access using google drive (link). List of contents available below:

# | Folder Name Content

1| Limma DMPs Differentially Methylated Probes for 9 phenotypes
5 | Probe Info I(\l/l_legfg;j DMPs infomration from Illumina manifest
3|1QC2 .ipynb notes (9 cases and 4 controls)*

4 | Quality Score Masked percentage per subject (9 tables)

5 | Shared Genes Genes list per phenotypes + combined

6 | Shared Probes Probes that are shared among phenotypes

Detected coordinates for 9 phenotypes + a table for

7 | Shared Regions the shared regionsphenotypes

A table that include subject quality score + outlier

8 | Subject Performance
counts

9 | DNA Meth_Module_Limma.ipynb | A module that includes all functions and libraries**

* Pipeline example available on https://github.com/saeed-svu/DNAmMeth_QC2_Pipeline.
**To be used in all steps except QC2.
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