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 إهداء
 

جاوز ذلك أنه ت على الدعم الأبوي والمادي، بل  ، الذي لم يقتصر  والديّ العزيزين، شكرًا جزيلاً على دعمكم اللامحدود إلى  

. لقد كنتم مصدر إلهام حقيقي لي وما زلتم تلهموني في كل فصل من حياتي. شكرًا الثقة بالنفس والتفاؤل بكل خيرشمل  يل

 .علم والمربيالمالسند ولكونكم 

أنتِ   الحياة.  في  لي  دافع  أكبر  أيضًا لأنكِ  لكِ  العمل  هذا  أهدي  أن  أريد  ليان،  ابنتي  يذكرني  والرمزل  اثالمإلى  في    الذي 

 عز وجل.بقدرة الله والإيمان  الصعوبات  على التغلب 

 

 شكر وتقدير 
 

 تقديم المساعدة والمشورة إخلاصه وتفانيه في  بداية أتوجه بالشكر والتقدير لمشرف المشروع، الدكتور ينال القدسي على  

أود   العمل. كما  فترة  كان  توجيه  طوال  الذي  للأستاذة  بارز  شكر وعرفان  دور  في  والمميز    الإعطاءفي  لهم  الذي ساهم 

والدكتور رؤوف  جمالي،  المجد    الدكتور  أخص بالذكر كل منو  الأفكار،تعزيز الفهم الأكاديمي والتطبيق العملي وإيصال  

 باسم عصفور.  والدكتوروالدكتورة لمى يوسف،  ،والدكتورة رنوة السيد  الدكتور ياسر خضراوحمدان 

التعليم المستمر والافتراضي  مشروع  دعم    لبقية الأساتذة وفريق عمل الجامعة السورية الافتراضية علىكما أتوجه بالشكر  

 برنامج التخصص وإنجاز هذا العمل.  يدخول الذي كان له دور كبير في

    إتمام هذا العمل.من اجل  سباب الأ قاموا بتوفير من أصدقاء وزملاء  من ساندنيكل بالشكر والعرفان إلى أتوجه وأخيرا 
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 الملخص 
التي تسبب   والأمراض تتأثر بالعوامل البيئية  وهي عملية  الحمض النووي آلية أساسية في علم الوراثة اللاجيني،    مثيلةإن  

الحمض النووي. يمكن أن تؤثر هذه التغييرات على النمط الظاهري دون تغيير  سلاسل    علىلة  يتغييرات في أنماط المث
الن يؤدي  يتسلسل  مما  المحفزات   عادةوكليوتيدات،  مناطق  في  المثيلة  فرط  خلال  من  الجينات  كبت   promoter  إلى 

regions  .تؤدي التغييرات المستمرة في المثيلة إلى الطفرات، مما يحفز الباحثين لدراسة المؤشرات الحيوية للمثيلة   كما
لأخرى فتحظى باهتمام  . أما الاضطرابات ادراسة في هذا المجالالأمراض الأكثر  السرطانات    وتمثلالمرتبطة بالأمراض،  

من العلاج، خاصة عندما    خيرالمبدأ القائل بأن الوقاية  هذه الدراسة منطلق من   الدافع منإن  أقل، وكذلك العوامل البيئية.  
آليات بعض الاضطرابات غير واضحة، مع عدم وجود عوامل خطر محددة. تمثل الحالات النفسية واضطرابات    تكون 

السلوك مثالًا على هذه المشكلة، حيث يفتقر معظمها إلى علاجات حاسمة. علاوة على ذلك، فإن تنوع الأعراض وتداخلها 
آثار جانبية، خاصة عند استخدامها   الاضطرابات الأدوية المتاحة لهذه    مع  يترافقيجعل التشخيص أكثر تعقيدًا. غالبًا ما  

هذه  لفترات طويلة.   البحث عن  استلهمنا    ،التحديات وفي ضوء  لهذه الاضطرابات   املالعو فكرة  المحتملة  عن  أو    البيئية 
لاجينية   مختلفة  Epigeneticمؤشرات  اضطرابات  بين  في    ، مترافقة  المساهمة  العوامل  على  أكثر  التعرف  أجل  من 

بهدف تحسين جودة حياة الأفراد دون الاعتماد بالضرورة على الأدوية، أو على الأقل تقليل استخدامها إلى الحد    ،هاتطور 
زيادة   في  اللاجينية  الحيوية  المؤشرات  أو  المحتملة  البيئية  العوامل  تحديد  يساعد  أن  يمكن  ذلك،  إلى  بالإضافة  الأدنى. 

أنماط    9لـ    Micro Array  والمساهمة في تقليل معدلات الإصابة. تم تحليل بيانات   باكرا  الوعي حول تشخيص المرض 
، مع على مستوى مثيلة الحمض النووي   مهمة  ات تباين  بحث عنالبهدف    فرد(  125)إجمالي حجم العينة  ظاهرية مختلفة  

طرق  حول  للأدبيات  شاملة  مراجعة  إجراء  تم  التقنية،  الناحية  من  المجموعات.  عبر  المقارنة  قبل  جينيًا  النتائج  إثراء 
في الطرائق  بناءً على أحدث التطورات    المعالجةالمعالجة المبدئية للبيانات. وبالتالي، تم اختيار الأدوات المستخدمة في  

  P values في حساب قيم (pOOBAH)الحديث  الأسلوبه R Bioconductorمن  SeSAMe والتوصيات. تم استخدام
، هذا وقد على عوامل متعددة  بناء   موثوقةال  الغير   الإشارات باستثناء  شاملة تقوم    maskingخاصية تقنيع  بالإضافة إلى  

. تبع ذلك جولة إضافية من خطوات دبيات البحثيةبالأدوات الأخرى في الأ أفضل النتائج حين مقارنتها SeSAMEأعطت 
البيانات  تقليل نسبة  و   التي قام بها الباحث   ضبط جودة  البيانات التي هدفت إلى  وضمان    إلى الحد الأدنى  التعديل على 

 باستخدام    Differentially Methylated Regions (DMRs)متباينة المثيلة    المناطقعن    جودة عالية. تم الكشف
Limma ح مع تطبيق تصحي.FDR     بينما كانت التغيرات في مستويات المثيلة التي تم اكتشافها في هذه الدراسة محصورة

عام   صغيرة بشكل  مناطق  النووي   على  الحمض  لوحظ  (Single Probes)  من  المستوى    المناطق هذه    اشتراك،  في 
عند مجموعة    انخفاض المثيلة ترافقا في    MAD1L1و  CD81  الجينات   كل منتتبع  مختلفة  ت مناطق  أظهر لقد  .  الجيني

التنموي   اللغة  و   (DLD)تأخر  الزهايمر.  مرضى  من  مجموعتين  أو  للاهتمامومجموعة  المثير   زيادة  ملاحظة  هو،  من 
الجيني ل الزهايمر   CD81  التعبير  أخرى   لدى مرضى  دراسة  الأمامية    ت استخدم  في  القشرة  نسيج  مأخوذة من  عينات 

أدلة إضافية تدعم إمكانية استخدام تعطي  ، إلى جانب دراسات أخرى،  التي قمنا بها  الدراسة  يجعل  ي الأمر الذ   ،للدماغ
الحيوية   المحيطي  في  المؤشرات  تعكس الدم  ال  كمؤشرات  مناقشة  دماغيةالوظائف  ناحية أخرى، تمت    MAD1L1. من 

Abstract (Arabic Version) 
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الجين    بشكل هذا  مثيلة  تتناول  التي  العلمية  الأدبيات  في  أنماطمتكرر  وبيئية  في  الأمرنفسية  يشجعنا  ،  على    الذي 
من ناحية    .الأعراض العصبية والنفسية  في تفسيرالمحتمل    هدور وذلك ل  تحديدا في الدراسات القادمة  هداف هذا الجيناست

يعزز اتساق س  الأمر الذييلة الحمض النووي،  مثموحد في تحليل    دليلإلى    الباحثين  على حاجةتؤكد  نتائجنا    أخرى فإن
 .نمط المثيلةالكبيرة في  اضطرابات تفتقر إلى التغيرات  خصوصا في الدراسات التي تتناولالنتائج وموثوقيتها 
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DNA methylation is a key mechanism in epigenetics, influenced by environmental factors 

and disorders that cause changes in methylation patterns across DNA strands. These changes 

can affect phenotype without altering nucleotide sequences, often silencing genes through 

hypermethylation at promoter regions. Persistent methylation alterations may lead to 

mutations, prompting researchers to study DNA methylation biomarkers associated with 

diseases, with cancers being the most extensively investigated. Other disorders receive much 

less attention, and so do environmental factors. The motive of this study originates from the 

principle that prevention is better than treatment, particularly when the mechanisms of 

certain disorders remain unclear, with no established risk factors. Psychiatric conditions and 

behavioural disorders exemplify this issue, as most lack definitive treatments. Moreover, the 

diversity and overlap of symptoms complicate diagnosis further. Available medications for 

these conditions often come with side effects, especially when used long-term. This has 

inspired us to explore potential environmental contributions to such disorders, with the goal 

of improving individuals' quality of life without necessarily relying on medication, or at least 

minimizing its use. In addition, identifying potential environmental factors or epigenetic 

biomarkers can raise awareness about disease prognosis and ultimately help reduce incidence 

rates. Micro array data for 9 different phenotypes (Total 145 Subjects) were analysed for 

significant DMRs, with the results being gene-enriched prior to cross-comparison. From a 

technical standpoint, a comprehensive literature review on data preprocessing methods was 

conducted. Consequently, the tools used for analysis were selected based on recent 

advancements and literature recommendations. SeSAMe from R Bioconductor was employed 

for its modern p-value calculation method and comprehensive QC masking. This was 

followed by additional customized QC steps to minimize imputation of masked values and 

ensure high data quality. DMRs were detected using the Limma package, with FDR 

correction applied. While the alteration in methylation levels detected in this study was 

generally limited to single-probe differentiation, several DMPs were shared at the gene level. 

Both CD81 and MAD1L1 exhibit hypomethylation associated with DLD and one or two 

Alzheimer's groups. Interestingly, CD81 has been reported as upregulated in Alzheimer's 

candidates in a study using prefrontal cortex tissue samples. Therefore, our research, along 

with other studies, provides further evidence supporting the potential of peripheral blood 

biomarkers in reflecting neurological symptomatology. MAD1L1, on the other hand, has 

been frequently discussed in existing literature regarding the methylation of the same gene in 

psychiatric and environmental contexts. These findings should encourage further 

investigation of MAD1L1 to explore its potential role in neuropsychiatric symptoms. The 

study also emphasizes the need for standardized methods tailored to specific cell types or 

phenotypes. Such standardization would improve result consistency and enhance the 

reliability of DNA methylation analysis, particularly for diseases that lacks global 

methylation changes. 

Abstract 
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1. Importance of DNA Methylation 
 

DNA methylation plays a pivotal role in epigenetics. Environmental factors and disorders 

can contribute to alterations in methylation levels over the DNA strand, more specifically on 

cytosines molecules. This alteration can change phenotype without changing a single 

nucleotide. In general, a typical mechanism to explain the effect methylation in functional 

biology is the down regulation (silencing) of genes as a result of covalently bonded – methyl 

groups with cytosines (Figure 1), especially when binding occurs at the promoter site. 

 

 
 

DNA Methylation ➔ Inactivation of Genes 
 

Figure 1. An example of gene inactivation resulting from epigenetic modification. 

 

The alteration of methyl levels over cytosines are not limited to hypermethylation but also 

representing in hypomethylation. For example, hypomethylation of tandem repeats 

contribute to carcinogenesis and chromosomal rearrangements (Choi et al., 2009).  While 

these alterations are tissue-specific, scientists often seek associations between different 

tissues. This is crucial for leveraging feasible tissues, such as blood or buccal cells, to 

identify reliable markers (e.g., differential genes or regions) associated with disorders 

affecting less accessible tissues, such as those in neuro disorders. However, the scope of 

DNA methylation is not limited to disorders, but also extends to environmental factors and 

overall quality of life. Studies have investigated sleep, stress, diet, exercise and other factors 

to check if a factor can contribute or prevent certain disorder. Therefore, most of the studies 

follows case-control study design. 

 

2. DMRs 

 

When studying a case versus control group in terms of methylation levels, the researcher 

aims to find differential methylated regions (DMRs) or differentially methylated probes 

(DMPs) in case group that expresses either hypermethylation or hypomethylation compared 

to control group. If a differentiation is detected, these regions undergo gene enrichment 

analysis and other mapping steps in order to interpret the results and extract meaningful 

findings that can relate to the differences between phenotypes (case versus control). DMRs 

can be expressed as  

Introduction 
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global changes in methylation levels as it is the case for cancers, or as a localized alteration 

within specific part of DNA such as it is the case with behavioural disorders. 

 

 

3. Sequencing Technique (BS-Seq) 

 

A frequent occurrence of Cytosine and Guanine over a part of DNA is called CpG site (p 

stands for phosphate which represents the phosphodiester between C and G), and clusters of 

these CpG sites are called CpG islands (Takeshima & Ushijima, 2018). These islands are 

often located near the promoter regions in 40% - 50% of human genes and therefore plays an 

important regulatory role (Juo et al., 2014, Elango & Yi, 2011).  

To detect DMRs, a differentiation between methylated cytosine and unmethylated cytosine 

needs to take place. Therefore, a technique known as bisulfite sequencing (BS-Seq) is used 

to add sodium bisulfite to DNA sample to convert unmethylated cytosines into Uracil. 

Methylated cytosines on the other hand remains unconverted. This conversion allows for 

detecting methylation patterns on single base pair resolution (Bibb et al., 2017). BS-Seq 

technique is considered gold standard in DNA methylation studies. After conversion of 

unmethylated cytosines into Uracil, PCR is taking place and the Uracil eventually converted 

to Thymine. It is important to understand that the original Thymine (T) can be distinguished 

from the Cytosine-converted Thymine through comparing the untreated DNA with the 

treated DNA. 

 

4. Platforms and Application 

 

After bisulfite conversion, scanners with fluorescence technology are used to detect the 

methylated and unmethylated cytosines. In general, methylation micro arrays have gained 

popularity due to their cost and time efficiency compared to Whole-Genome Bisulfite 

Sequencing (WGBS). Majority of experiments are performed using Illumina Infinium 

platforms (Table 1). Examples of other less common platforms are Agilent arrays, ex: 

Agilent-023795 Human DNA Methylation Microarray 244k (platfrom id: GPL10878). There 

are also custom platforms which are built to target specific regions based on the study 

interest, ex: UHN Microarray Centre Human 8.1K CpG island microarray (Platform id: 

GPL10342). Among the previous platforms, Infinium by Illumina, specifically 450K and 

EPIC (v1.0) are the most common. In this study, the literature focuses on human methylation 

using Infinium by Illumina (specifically 450K and EPIC v1.0) unless stated otherwise. The 

numbers (27K, 244K, 450K, etc..) represents the number of probes used in each platform. 

And of course, higher number of probes corresponds to wider coverage. 
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Platform 
Marker 

Count 

Release 

Year 
Reference 

Infinium Human Methylation 

27K BeadChip 

~ 27K 

markers 
2008 

www.illumina.com, 

HumanMethylation27 product 

support files  

Infinium Human Methylation 

450K BeadChip 

~ 450K 

markers 
2011 

www.illumina.com, Infinium 

HumanMethylation450K V1.2 

Product Files, n.d. 

Infinium MethylationEPIC v1.0 
~ 850K 

markers 
2016 

www.illumina.com, Infinium 

MethylationEPIC v1.0 product 

Files, n.d. 

Infinium MethylationEPIC v2.0 
~ 930K 

markers 
2024 

www.illumina.com, Infinium 

MethylationEPIC v2.0 Product 

Files 

Table 1. Infinium platforms 

 

The widest coverage among current platforms is provided by Illumina Infinium Methylation 

EPIC v2.0 which is recently released (in 2024) and therefore it is still not quite available 

compared to EPIC v1.0. Therefore, in this study, all EPIC platforms refer to EPIC v1.0 

version (850K) unless stated otherwise. 
 

5. Signal Reads (IDAT files) 
 

The output of scanners represents in methylation signal (M) and unmethylated signal for 

each probe. In Illumina platforms, these signals are directly stored in IDAT format. The 

output of methylation array experiment is two IDAT files per sample (2 IDATs for each 

individual), one for the green channel that measures the methylated signal 

(sampleID_Grn.idat), and the other for red channel which measures the unmethylated signal 

(sampleID_Red.idat) (Introduction to DNA Methylation Analysis — methylprep 1.6.5 

documentation, n.d). Therefore, if an experiment includes samples from 8 individuals, the 

output of the experiment would be 16 IDAT files. Fig. 2 shows how methylation signals look 

like after processing pair of IDAT files for one sample. As shown in Fig. 2, each probe has 4 

columns that represents methylation signals: 
 

1- MG ➔ Methylated signal from the green channel (retrieved from _Grn.idat) 

2- UG ➔ Unmethylated signal from the green channel (retrieved from _Grn.idat) 

3- MR ➔ Methylated signal from the red cannel (retrieved from _Red.idat) 

4- UR ➔ Unmethylated signal from the red channel (retrieved from _Red.idat) 

Introduction 
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6. Beta Values 
 

For easier statistical analysis, methylation intensities are converted into either: 
 

• M values ➔ ranges between -1 and +1 where 0 means the probe is 50% 

methylated.  

Or: 

• Beta Values ➔ ranges between 0 – 1 where 0 means fully hypomethylated, and 1 

means fully hypermethylated. 
 

 
1- Example of downloading random pair of IDATs from a repository: 

 

 

 

2- Locate the path of downloaded IDATs and read it (R Studio): 

 

 
 

3- Output: 

 

 

Figure 2. A simple example to download and read IDATs 

 

In general, beta values are more commonly used due to their ease of interpretation and 

intuitive biological meaning. However, M values offer greater statistical validity (Du et al., 

2010). Du et al. (2010) offers a complete guide to compare between both methods. Fig. 3 

demonstrate  
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the calculation process for each method, where M represents the maximum methylation 

signal, and U represents the maximum unmethylated signal detected. 

 

  

Figure 3. Calculation of Beta, & M values. Typically, α is a constant which is set to 100 

for β and 1 for Mval. 

 

The terminology (Beta) is derived from the distribution curve which is similar to beta 

distribution (Du et al., 2010). This is because by nature, majority of CpG sites are either 

hyper methylated (betas are close to 1) or hypo methylated (betas close to 0) (Fig. 4).   

 

 

Figure 4. Multiple curves correspond to multiple samples. 

Platform used: Epic Array 
 

 

7. Motive of the study 
 

• Literature abundance 
 

While DNA methylation research is abundant in cancer studies, psychiatric and behavioural 

disorders have received comparatively less attention. However, the increasing observations 

of shared epigenetic markers among psychiatric disorders has sparked interest in recent 

studies. 

 

• Ambiguity of risk factors 
 

The mechanism for many psychiatric disorders is still unknown. As a result, no specific 

biomarkers are available to monitor the risk of developing the disease, which makes  
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complete prevention is unfeasible. On the other hand, investigating the role of environmental 

factors in developing or even reversing such conditions is important, as this approach can 

reduce reliance on medical intervention and ultimately avoid the side effects often associated 

with prolonged use of medication. 

 

a. Increasing rate of developmental/ behavioural disorders among children 
 

This research is further motivated by the rising rates of behavioural disorders like ADHD, 

and Autism among children, especially in the recent years. The developmental challenges in 

children are not limited to the existence of well-defined disorder, but also extends to general 

developmental delays that often overlap with each other’s or with other psychiatric 

conditions (ex: language and learning delays, social anxiety, depression, attention deficit, 

sleep deprivation etc..). While some conditions may improve as children grow older, their 

impact on schooling and social life can persist into adulthood, potentially lowering overall 

quality of life. 

 

d. Complexity of behavioural disorders 
 

The overlapping symptoms among behavioural disorders, especially those that occur during 

developmental ages in children, pose challenges in diagnostic accuracy. As a result, one 

disorder can be confused with another, particularly when symptoms are unclear or do not 

appear persistently. 

 

8. Study Objective 
 

To investigate possible epigenetic markers that may play a role in developing of certain 

behavioural disorders. 
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The literature review for this study can be divided into 4 sections: 
 

1- Behavioural Disorders: 

A review of behavioural disorders in terms environmental risk factors and overlapping 

symptoms. 
 

2- Analysis Workflow: 

Exploring the latest recommendations in terms of preprocessing methods and differential 

analysis.  
 

3- Comparison of Pipelines 

As an exploratory approach, comparing the resulted beta distribution curve among different 

R Bioconductor packages to confirm that different methods have profound effects on the 

results. 
 

4- Comparison of Detection p value Calculation Methods  

Four different methods are tested to check how many values are masked in each method. 

 

The study intends to compare DMRs among multiple experiments and explore possible 

shared DMRs among certain phenotypes. Therefore, the majority part of the study is 

technical and involves statistical applications. There are numerous methods and tools to 

choose when performing micro array data analysis. Therefore, it was crucial to select 

methods that are up to date. Another challenge was the un abundance of one specific 

workflow of which analyse and compare multiple experiments in the domain of DNA 

methylation. As a result, a comprehensive review of the latest guides and protocols is carried 

to select the most appropriate tools that best serves our study design. Confounding factors 

like sex, age, race, lab conditions, can all contribute unreliability of the results. Therefore, in 

order to make sure that the retrieved results are related to biological differences rather than 

confounding factors, a conservative approach was chosen in every step of the analysis. 

 

Several studies have concluded that using different preprocessing methods can result in 

significant effects on downstream analysis (Marabita et al., 2013). As a result, part of our 

literature review was dedicated to review the documentation of common Bioconductor 

libraries, apply the recommended pipeline by each library, and finally compare the beta value 

distribution in each one as an exploratory procedure to observe the differences on overall 

beta distribution. On the other hand, to evaluate the potential benefits and validity of 

comparing epigenetic markers across psychiatric conditions, it was also necessary to review 

the existing literature on these conditions. Furthermore, it was also necessary to review the 

relationship between environmental factors and psychiatric conditions. 
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1- Behavioural disorders 
 

The interest in connecting behavioural disorders with environmental factors is not novel. For 

example, a review by Cassoff, J., et al. (2012) highlighted several studies suggesting 

potential associations between ADHD and sleep deprivation or general sleep disturbances 

(Cassoff, J., et al. 2012). Studies also demonstrates that effects of having inadequate sleep in 

childhood are not limited only to be associated solely with ADHD, but more importantly 

with general conditions that represents in overall cognitive function and academic 

performance (O’Callaghan et al., 2010). These symptoms are often observed in other 

disorders like ASD. For example, children with ASD often struggles in focussing on things 

they don’t like, and also expresses impaired reasoning ability in problem solving. Other 

findings were presented in a study done by Van Der Heijden, K. B. et al. (2005), which 

highlights the effects of maladjusted circadian rhythms on children that somehow mimics 

ADHD symptoms such as, late nighttime, daytime fatigue, and consequently sleep 

disturbances (Van Der Heijden et al., 2005). On the other hand, according to National 

Institute of General Medical Sciences (NIGMS), circadian genes itself can be triggered by 

food intake, stress, and social environment (National Institute of General Medical Sciences 

[NIGMS], n.d.). A recent study by Han, Y. et al. (2024) has pointed that low protein diet 

altered peripheral clock regulation. Compared to typical developing children, children with 

autism (ASD) on the other hand has shown higher frequency of association with other 

psychiatric comorbidities like mood disorder, anxiety, depression, and even ADHD (Gurney 

et al., 2006, Magnuson & Constantino, 2011). Unlike ASD and ADHD disorders, anxiety and 

depressive symptomology was easier to correlate with environmental factors. For example, 

the increasing rates of depression and anxiety among US population was obvious in the 

period of COVID pandemic Fig. 5 (Vahratian et al., 2021). The increased prevalence of 

anxiety disorder during COVID pandemic was further validated in the meta-analysis 

conducted by Delpino, F. M. et al. (2022). 

 

On the other hand, the overlap of symptoms among various psychiatric disorders is quite 

common (Bourque et al., 2024). Alomari. N. A., et al. (2022) presented several psychiatric 

conditions that overlap with social anxiety disorder, which often poses challenges in 

diagnosis. For example, the differential diagnosis of PTSD (post traumatic disorder) is very 

difficult as its symptoms overlap with other anxiety and mood disorders (Alomari et al., 

2022). One of the recent systematic reviews has investigated the genetic and phenotypic 

similarities among the major psychiatric disorders (Schizophrenia, Bipolar Disorder, Major 

Depressive Disorder, Autism Spectrum Disorder, and Attention Deficit Hyperactivity 

Disorder) (Bourque et al., 2024). The review has included significant findings related to the 

heritability of the previously mentioned disorders, but more importantly that nearly 75% of- 
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the significant genetic loci where shared by at least two disorders (Bourque et al., 2024, 

Polderman et al., 2015, Anttila et al., 2018). 
  

 

Figure 5. Increasing rate of depressive and anxiety disorders during COVID pandemic 

during 2020. Image from Morbidity and Mortality Weekly Report (MMWR; Vahratian et 

al., 2021). 

 

2- Analysis Workflow 
 

Sahoo, K., and Sundararajan, V. (2024) conducted the most recent comprehensive review on 

DNA methylation analysis methods. the review not only outlines the steps in a general DNA 

methylation analysis workflow but also evaluates commonly used methods at each stage. 

Notably, it provides a comparison for different libraries and tools used to detect DMRs. 

Following data collection, preprocessing raw IDAT files is identified as the initial step in the 

analysis workflow. Sahoo and Sundararajan (2024) highlights some common quality control 

procedures: 
 

a. Filtering probes. 

Ex: probes with P val > 0.05, probes with many low-quality samples, SNPs, probe with cross 

hybridization potential. 
 

b. Quality control that includes background subtraction and filtering outliers. 
 

c. Batch correction and FDR correction. 
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The other fundamental part of the workflow is sample normalization. According to the 

review, here are some common preprocessing algorithms used for sample normalization, 

along with their corresponding Bioconductor libraries (Table 2): 

 

# Preprocessing Algorithm 
Bioconductor 

Library 
Software 

1 Beta mixture quantile normalization (BMIQ) wateRmelon 
R 

programming 

2 Quantile normalization Limma 
R 

programming 

3 
Noob (Normal-exponential convolution using out-of-

band probe) 
Minfi 

R 

programming 

4 SQN: Subset-quantile normalization ENmix 
R 

programming 

5 Illumina (genome studio) NA 

Illumina 

(genome 

studio) 

6 Functional normalization (funNorm) Minfi 
R 

programming 

7 SWAN: Subset-quantile normalization Minfi 
R 

programming 
 

Table 2. Commonly used algorithms in normalization process 
  

 

A comparison table is available in supplementary material of Sahoo and Sundararajan (2024) 

review that provides general information for different algorithms. There are many 

recommendations about which normalization method to choose (Sahoo & Sundararajan, 

2024, Wang et al., 2018). For example, FunNorm() is often recommended in case of global 

methylation changes (Cancer versus Normal) (Fortin et al., 2014, K. D. Hansen & Fortin, 

Minfi User Guide). PreprocessQuantile() is the opposite where global changes are not 

expected (K. D. Hansen & Fortin, Minfi User Guide). 
 

The available literature also highlights the advantages and disadvantages for different 

methods. For example, Illumina did not recommend quantile and loess normalization 

methods as it can remove biological signal (www.illumina.com ,A Patient-Centric 

Methylation Pipeline). Notably, Quantile-based methods are reported to be the worst in 

Welsh et al. (2023) study, which performs a systematic evaluation of normalization methods 

specifically on EPIC arrays. Welsh et al. (2023) stated that the SeSAME pipeline was the best 

among the investigated methods. Figure 6 from the same study clearly shows the variance 

between replicates for each method. According to Figure 6, NOOB, NOOB+BMIQ, and the 

SeSAME pipeline had the best results. 
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Interestingly, the standard pipeline in SeSAME uses normalization exponential (Norm-Exp) 

deconvolution parametrized by out-of-band probes. In simple terms, this method is similar to 

NOOB normalization. 
 

 

Figure 6. A comparison among different preprocessing methods. Image from (Welsh et al., 

2023). 
 

For the calculation of detection p-values, it is interesting to note that the pOOBAH method, 

originally provided by SeSAME, is the most up-to-date method. This method uses out-of-

band probes to substantially remove technical variation while preserving biological variation 

(Zhou et al., 2018). Interestingly, pOOBAH is now also available within the Rnbeads 

package (RNBeads Reference Manual, 2024).  
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Furthermore, using pOOBAH twice in Welsh et al. (2023) comparison achieved the highest 

correlation among replicates compared to other methods. Based on the available information, 

it appears that several independent studies agree on the superiority of the pOOBAH method 

and the SeSAME pipeline in general. Another parameter that differs among different 

Bioconductor packages is the method used for dye bias correction. For example, similar to 

SeSAME's novel method (pOOBAH), the Enmix standard pipeline uses a novel dye bias 

correction method called RELIC, compared to the traditional methods used in other libraries 

(e.g., Minfi and SeSAME, which use non-linear dye bias correction). Xu et al. (2017) 

demonstrated the advantage of using RELIC compared to other methods. However, unlike 

SeSAME, we could not find additional papers that further support this novel method, and it 

seems that it is still not quite common among researchers. 

 

When using the standard pipeline provided by certain packages, there are several common 

parameters considered to improve data quality. Table 3 lists the most important parameters 

that researchers need to know how to use. Table 4 lists two examples of pipelines from 

different packages. 

 

Parameter Description 

Samples threshold 
Removes samples with low-quality probes count 

greater than the chosen threshold. 

Probe threshold 
Removes probes with low-quality methylation values 

count (samples) greater than the chosen threshold. 

Imputation of 

missing/unreliable 

values 

An optional argument usually set as True or False. If 

true, the function will replace masked (or missing) 

values with various imputation methods (mean 

average, k nearest neighbour, using machine learning, 

etc.). 

Outliers’ detection 
Outliers are detected and may or may not be replaced 

by other values. 

P value threshold The researcher has the option to set it to 0.05, 0.01, etc. 
 

Table 3. Common parameters to be set by the researcher. (K. D. Hansen & Fortin, 

Minfi User Guide, SeSAME User Guide, 2024, Enmix User Guide, 2024, Sahoo 

& Sundararajan, 2024). 
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Package Example of Pipeline 

Minfi 

reference 

manual 

preprocessQuantile(data, fixOutliers = TRUE, 

removeBadSamples = TRUE, badSampleCutoff = 0.5, 

quantileNormalize = TRUE, stratified = TRUE) 

SeSAME 

reference 

manual 

openSesame( x, prep = "QCDPB", func = getBetas, 

min_beads = 1) * 
 

 

Table 4. Examples of Standard pipelines with parameters distinguished in 

bold. (K. D. Hansen & Fortin, [Minfi User Guide], (SeSAME User Guide, 

2024) 
 

* Choosing  "QCDPB" parameter in SeSAME makes the function works as 

a wrapper for NOOB normalization + nonlinear dye bias correction + 

pOOBAH masking. 
 

 

 

Typically, the output of preprocessing and QC steps is a beta value (or M value) matrix, 

where the header contains the probe IDs in the first column, followed by the sample IDs 

(Table 5). The rest of the matrix contains the corresponding beta values for each sample. 

These values are often calculated within the preprocessing step using the methylated (M) and 

unmethylated (U) signal intensities. 
 

ProbeID 

FTP_MAPT_203282

450164_R07C01_Be

tas 

FTP_MAPT_2032824

50165_R06C01_Betas 

FTP_MAPT_2032824

50206_R06C01_Betas 

cg00000321 0.93185736 0.452552278 0.170955216 

cg00000363 0.956787254 0.245961765 0.195561541 

cg00000540 0.595062545 0.814777269 0.957632846 

cg00000596 0.035264643 0.407019545 0.49373275 

cg00000776 0.093778138 0.236755558 0.430315058 

cg00001099 0.737510528 0.530688509 0.851287559 

Table 5. Example of beta value file (first 6 probes)  

 

The matrix may or may not contain missing values, depending on the pipeline and 

parameters chosen. For p-values, packages like SeSAME, provide the ability to extract them 

if the researcher chooses to, which is not the case for other packages like Minfi, where p-

values are calculated without the ability to convert them into a data frame. 
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As a result, p-values cannot be obtained as a standalone dataset after preprocessing. Once 

preprocessing and QC is done, beta values can be analysed for DMRs. For DMRs detection, 

Limma package is considered among the packages that prove its effectiveness (Sahoo & 

Sundararajan, 2024). The algorithm uses empirical Bayes approach. 

 

3- Comparison of pipelines 
 

To confirm the differences of different preprocessing methods, several attempts were made 

on sample ID 203141320045_R04C01_DLD004 from E-MTAB-13583 Experiment 

(BioStudies, n.d.). E-MTAB-13583 raw and processed methylation data is publicly available 

on ArrayExpress. As per the meta data provided with the experiment, the processed data is 

obtained after several QC steps. This was followed with normalization using SWAN method. 

In addition to raw and SWAN processed datasets provided by the experiment, we have 

selected the following methods to process the same file and compare accordingly (Table 6): 

 

Package Pipeline used 
Algorithm / parameters 

remarks 

Minfi 

preprocessQuantile(data, fixOutliers = TRUE, 

removeBadSamples = TRUE, 

badSampleCutoff = 0.5, quantileNormalize = 

TRUE, stratified = TRUE) 

Stratified quantile 

normalization for an Illumina 

methylation array. 

preprocessSWAN()  

Subset-quantile Within Array 

Normalisation (standard 

pipeline from Minfi)  

Enmix 

mpreprocess(data, nCores=2, 

bgParaEst="oob", dyeCorr="RELIC", 

qc=TRUE, qnorm=TRUE, 

qmethod="quantile1", fqcfilter=FALSE, 

rmcr=FALSE, impute=TRUE) 

RELIC is used  for dye 

correction. Background 

correction + Quantile 

normalization method 

 

Table 6. Pipelines used in comparison against the processed and raw data published with 

E-MTAB-13583 experiment. 
  

 

Attempting to mimic the distribution curve in the pre-processed data provided with the 

experiment, we used the same algorithm (preprocessSWAN). Interestingly, the comparison 

results in different beta distributions, most likely due to different QC parameters (Figure 7). 

All comparisons are available in the Appendices Chapter (Section 1 , Pipelines Comparison). 
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Fig 7. A comparison between preprocessSWAN() standard approach as per Minfi reference 

manual versus the preprocessSWAN() pipeline used in E-MTAB-13583 experiment.   

 

4- Comparison of detection p value calculation methods 

This section is dedicated to exploring the differences associated with using pOOBAH 

method which is originally provided by SeSAME package. Table 7 represent a comparison in 

terms of the number of masked probes based on p value 0.05 using 4 different methods. The 

same sample has different of number of failed probes in each method, which highlights the 

profound effects that can results from different methods. The source code used to output the 

Table 7 is available in the Appendices Chapter (Section 2, P-value Methods Comparison). 

 

Method 

R01C01

_DLD0

01 

R02C01

_DLD00

2 

R03C01

_DLD00

3 

# # 

R06C0

1_V18

3 

R07C01

_V187 

R08C01

_V188 
Average 

'pOOBAH' 

Method by 

SeSAME 

19008 9975 9716 // // 10958 8560 20587 11666.21 

'detectionP

(M+U)' 

Method by 

Minfi 

617 345 282 // // 508 261 530 465.9167 

'oob' 

Method by 

ENmix 

31538 12168 12251 // // 11563 7366 13482 12256.17 

'negative' 

Method by 

ENmix 

514 263 214 // // 428 216 424 383.1667 

 

Table 7. A comparison of calculating dectection p value methods. P value threshold set 

to 0.05 in all methods across samples from the experiment E-MTAB-13583. 
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1. Data Collection: 

Data is collected from GEO and ArrayExpress. Experiments have been selected using the 

following keywords: [brain, behavior, behaviour, child, psychiat, adhd, asd, attention, 

autism, impulsive, sleep, stress, adversity, developmental, language, abuse]. To limit the 

confounding variables especially in terms of tissues, and make the included experiments 

compatible for cross comparison, the search was restricted to the following parameters: 
 

• Tissue: blood, or peripheral blood 

• Species: Homo Sapiens 

• Study type: Methylation Profiling by Array.  

 

2.  Platform Compatibility 

Since this study attempts to compare methylation levels across different experiments, it was 

important to evaluate the compatibility of platforms that are provided by different 

manufacturers before including the corresponding experiments. Upon checking the manifests 

for different platforms (ex: Illumina, Agilent, etc..), it was observed that important 

information must be considered when comparing different platforms. 
 

a. All Illumina Infinium platforms (27K, 450K, EPIC) uses the same length of probes 

(50 bp per probe). 
 

b. A considerable number of probes are shared among different Infinium platforms. 

Furthermore, these probes correspond to the same genomic locations. 
 

c. Probes in platforms manufactured by other providers (Ex: Agilent), has different 

IDs. Therefore, an attempt was done to map these ids to its genomic locations using 

the manifest provided by the manufacturer. These locations are then compared to 

Illumina probes in order to find matched probes which can be extracted and included 

in the analysis (Figure 8). 
 

 

Figure 8. Attempting to map Agilent 244K probes to Illumina EPIC probes 
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The mapping procedure leveraged the information provided by the MAPINFO column from 

the EPIC manifest (www.illumina.com), which was consistently found to be within the range 

of the start and end coordinates of the corresponding probe. This information was then 

compared with the start and end coordinates of Agilent probes (GEO Accession Viewer, n.d. 

Platform ID GPL10878). Despite approximately 50K out of the 244K probes on the Agilent 

platform having 'somewhat' similar genomic regions to EPIC probes, it is important to note 

that the length of the probes differs (SEQUENCE column), with EPIC probes being 50 bp in 

length, while Agilent probes can range up to 200 bp. 

 

3. Exclusion criteria 

Initially, 14 studies were selected, containing methylation arrays for 19 different phenotypes. 

The metadata for all experiments were reviewed to verify the platform specifications and 

determine compatibility for cross-comparison. The majority of the experiments utilized 

Illumina Infinium bead chips (27K, 450K, EPIC v1.0). Therefore, it is preferable to restrict 

the platform of choice to Infinium platforms only. The rationale for excluding experiments 

from different platforms was discussed in the previous section. In brief, probes differ in 

length (50 bp in Illumina versus 40–200 bp in Agilent), and the genomic loci of similar 

probes do not always match (differences in start and end coordinates). 

Another exclusion criterion was the availability of raw IDAT files, as some experiments only 

provide processed data, which does not align with our approach. Our method relies on the 

availability of original raw IDAT files to ensure consistent preprocessing using our chosen 

pipeline. As a result, 4 experiments remained, encompassing a total of 9 phenotypes (i.e., 9 

datasets) (Figure 9). Table 8 summarizes the experiment details, and the available 

phenotypes considered for this study. 
 

 

Figure 9. Exclusion process. 
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# Array / Study ID and Link Data Source Platform 
Sample 

Size 

Phenotype / 

Environmental 

Factor 

1 

Comparison of 

the methylation 

profiles of 

children with 

developmental 

language disorder 

and healthy 

control subjects 

E-MTAB-

13583 

ArrayExpress 
Illumina 

EPIC v1.0 
12 

Developmental 

Language 

Disorder 

2 

Epigenomics of 

Total Acute 

Sleep 

Deprivation in 

Relation to 

Genome-wide 

DNA 

Methylation 

Profiles and RNA 

Expression 

E-MTAB-4664  ArrayExpress 
Illumina 

450K 
18 

Acute Sleep 

Deprivation 

3 

DNA 

Methylation 

Differences 

Associated with 

Social Anxiety 

Disorder and 

Early Life 

Adversity 

GSE164056 GEO 
Illumina 

EPIC v1.0 
35 Social Anxiety  

4 

DNA 

Methylation 

Differences 

Associated with 

Social Anxiety 

Disorder and 

Early Life 

Adversity 

GSE164056 GEO 
Illumina 

EPIC v1.0 
30 

Ealry Life 

Adversity 

5 

DNA 

Methylation 

Differences 

Associated with 

Social Anxiety 

Disorder and 

Early Life 

Adversity 

GSE164056 GEO 
Illumina 

EPIC v1.0 
31 

Social Anxiety 

& Ealry Life 

Adversity 
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6 

Genome-wide 

DNA 

methylation 

analysis 

identifies 

epigenetic 

differences in 

Alzheimer’s 

disease and 

frontotemporal 

dementia in brain 

tissue and 

lymphoblastoid 

cell lines 

E-MTAB-

11975 

ArrayExpress 
Illumina 

EPIC v1.0 
5 

sporadic early-

onset 

Alzheimer's 

disease 

7 

Genome-wide 

DNA 

methylation 

analysis 

identifies 

epigenetic 

differences in 

Alzheimer’s 

disease and 

frontotemporal 

dementia in brain 

tissue and 

lymphoblastoid 

cell lines 

E-MTAB-

11975 

ArrayExpress 
Illumina 

EPIC v1.0 
6 

Familial 

Alzheimer 

Disease 

8 

Genome-wide 

DNA 

methylation 

analysis 

identifies 

epigenetic 

differences in 

Alzheimer’s 

disease and 

frontotemporal 

dementia in brain 

tissue and 

lymphoblastoid 

cell lines 

E-MTAB-

11975 

ArrayExpress 
Illumina 

EPIC v1.0 
5 

Genetic 

Frontotemporal 

Dementia 

(GRN 

Mutation) 

9 

Genome-wide 

DNA 

methylation 

analysis 

identifies 

epigenetic 

differences in 

Alzheimer’s 

disease and 

frontotemporal 

E-MTAB-

11975 

ArrayExpress 
Illumina 

EPIC v1.0 
5 

Genetic 

Frontotemporal 

Dementia 

(MAPT 

Mutation) 

https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11975?query=E-MTAB-11975
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11975?query=E-MTAB-11975
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11975?query=E-MTAB-11975
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11975?query=E-MTAB-11975
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11975?query=E-MTAB-11975
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11975?query=E-MTAB-11975
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11975?query=E-MTAB-11975
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11975?query=E-MTAB-11975
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dementia in brain 

tissue and 

lymphoblastoid 

cell lines 

10 

Comparison of 

the methylation 

profiles of 

children with 

developmental 

language disorder 

and healthy 

control subjects 

E-MTAB-

13583 

ArrayExpress 
Illumina 

EPIC v1.0 
12 

Healthy 

Controls 

11 

Epigenomics of 

Total Acute 

Sleep 

Deprivation in 

Relation to 

Genome-wide 

DNA 

Methylation 

Profiles and RNA 

Expression 

E-MTAB-4664  ArrayExpress 
Illumina 

450K 
18 

Healthy 

Controls 

12 

DNA 

Methylation 

Differences 

Associated with 

Social Anxiety 

Disorder and 

Early Life 

Adversity 

GSE164056 GEO 
Illumina 

EPIC v1.0 
47 

Healthy 

Controls 

13 

Genome-wide 

DNA 

methylation 

analysis 

identifies 

epigenetic 

differences in 

Alzheimer’s 

disease and 

frontotemporal 

dementia in brain 

tissue and 

lymphoblastoid 

cell lines 

E-MTAB-

11975 

ArrayExpress 
Illumina 

EPIC v1.0 
5 

Healthy 

Controls 

Table 8. List of experiments (4) and available phenotypes (9 cases + 4 controls = Total of 

13 datasets) that are included in the workflow.  

 

 

https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-13583?query=E-MTAB-13583
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-13583?query=E-MTAB-13583
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-4664?query=E-MTAB-4664
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11975?query=E-MTAB-11975
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11975?query=E-MTAB-11975
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4. Workflow Steps and Approach 

Based on the literature reviewed (Chapter 1), the data preprocessing protocol significantly 

influences the results, particularly when the investigated phenotypes do not exhibit global 

changes in DNA methylation. Therefore, it was crucial to select a comprehensive and 

consistent protocol that could be applied across all included experiments. 

 

4.1. Preprocessing (QC part 1) 

 

Purpose: 1- Eliminate noise from artifact effects 

2- Mask weak and unreliable signals 

3- Extract masking summary (metric-wise) 

4- Convert IDATs into betas matrix  

 

Our package of choice was SeSAME for the following reasons: 
 

• None of the included datasets has used SeSAME.  

• Relatively new (released in 2018) and uses up to date methods (pOOBAH for 

detection p-value). 

• Researchers have more control over sample/ probe exclusions. 

• Conservative and comprehensive quality mask is provided. The masking procedure 

targets low quality signals (beta values) without removing the probes which give the 

choice for the researcher to check if certain samples exhibit extra number of low-

quality probes. 

• The quality mask provided by SeSAME target probes with suboptimal 

hybridization, multimapping, and other features like insignificant p value based on a 

threshold decided by the researcher, and probes with low bead count. 

• P values can be extracted as a standalone dataset and used as a guide for removing 

bad performing samples during the workflow. 

• SeSAME is recommended by Illumina (www.illumina.com, Infinium™ 

Methylation Screening Array).  

• Availability of workflows and published papers that are used as a reference.(Zhou 

et al., 2018, Zhou et al., 2022,  Welsh et al., 2023).  

 

The main reason why we preferred to have p values after preprocessing is that we wanted to 

delay any correction (imputation of missing/ low quality values) after exploring the original 

dataset and hence we will have the confidence to impute missing/ low quality values based 

on clear insights.  
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Furthermore, p values are a used with other metrics to evaluate the overall quality of 

samples. This is beneficial in the workflow when dataset has lot of outliers, and the 

researcher wanted to check if certain sample is having distinguished  number of outliers and 

low-quality values. The first step was to process raw IDATs using the recommended 

approach provided in SeSAME reference manual (Figure. 10), in addition to Zhou et al., 

(2022) study. The complete code used for the 13 datasets (9 cases and 4 controls) is available 

in the Appendices Chapter (Section 3, preprocessing IDATs). 

 

 

Figure 10. Partial overview of the main steps involved in preprocessing IDATs with Noob 

and Dye Bias Correction within the SeSAMe pipeline. 

 

After preprocessing, a masking summary is generated to identify the sample with the highest 

percentage of masked probes. This procedure utilizes built-in functions from the SeSAME 

package. However, we have combined all key parameters into a single function that outputs 

comprehensive metrics for all samples in one CSV file. This process was applied to all 

datasets. The complete code is provided in the Appendices Chapter (Section 4, Masking 

Summary). An example of the output is shown in Table 9. A masking summary represents a 

table that enables us to view some important QC statistics like percentage of masked probes 

using pOOBAH with threshold of pval = 0.05 and pval = 0.01 at the same time. The table 

also provides an easy way to know the percentage of probes that are masked for reasons 

other than p value (Table 9). 
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Procedure 
R01C01_

DLD001 

R02C01_

DLD002 
# # 

R02C01_

DLD011 

R03C01_

DLD012 

Platform Recognized EPIC EPIC // // EPIC EPIC 

No. of Masked Probes in The Raw 

Sample 
0 0 // // 0 0 

Perc. Of Missing Betas in The Raw 

Sample 
0.021128 0.010941 // // 0.011797 0.010209 

No. of Masked Probes After 

qualityMask() 
105454 105454 // // 105454 105454 

Perc. Of Missing Betas After 

qualityMask() 
0.139165 0.130171 // // 0.130845 0.12959 

No. of Masked Probes with 

dyeBiasNL() 
0 0 // // 0 0 

No. of Masked Probes with 

pOOBAH() 
19008 9975 // // 10758 9375 

Perc. Of Missing Betas As a Result of 

pOOBAH 
0.021128 0.010941 // // 0.011797 0.010209 

No. of Masked Probes with noob() 0 0 // // 0 0 

Perc. Of Missing Betas As a result of 

noob() 
0.021128 0.010941 // // 0.011797 0.010209 

Perc. Of Missing Betas After 

(qualityMask() + dyeBiasNL() + 

pOOBAH() + noob()) 

0.139165 0.130171 // // 0.130845 0.12959 

Total Masked probes 124462 115429 // // 116212 114829 

Table 9. Number/ Percentage of masked betas as a result of performing SeSAME 

standard QC mask 
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4.2. QC (part 2) 

 

Note: SNP probes, control probes, ch probes, and probes on sex chromosomes are removed 

prior to QC (part 2). The exclusion of these probes is a standard procedure in methylation 

studies (e.g: Wiegand et al., 2021, Hop et al., 2020, Ramos-Campoy et al., 2024, Illumina 

"Infinium controls training guide", www.illumina.com) unless the researcher chose not to 

base on the purpose of the study. 

 

Complete source code for QC (part 2) is available as supplementary material (QC2). 

 

Importance 

of QC 

(part2): 

 

 

1- Rank subjects based on outliers and quality metrics 

2- Identify best and worst performing subjects 

3- Exclude low-quality probes (and low-performing subjects if needed) 

4- Isolate probes with extra variability 

5- Detect outliers using IQR in isolated probes. 

6- Mask the outliers 

7- Impute the masked values using WM 

8- Visualize the results and variability improvement 

 

Purpose: Reduce artifact effects while preserving biological variability. 

 

To maintain a conservative approach, we decided to perform another round of QC right after 

SeSAME preprocessing. This was important since none of the probes or samples were 

removed during preprocessing. This idea was inspired by the study 2023, welch et al which 

performs 2 rounds of QC with SeSAME, leveraging pOOBAH for improving the reliability if 

methylation values. The workflow of QC (part 2) is summarized in Table 10 which lists all 

the used functions step wise from 1-17. Source code is available as supplementary material 

(QC2). 

 

This part of the workflow begins with evaluating the potential removal of low-performing 

samples. To achieve this, a scoring matrix is created, incorporating several quality metrics. 

Based on these metrics, subjects are ranked from highest to lowest quality in terms of 

methylation signal performance (Table 11 is the output of Step 1). Functions (2–7) check for 

subjects with an unusually high number of values showing the greatest absolute deviation 

from the mean (probe-wise). This procedure helps determine whether a specific subject 

contributes significantly to the majority of outliers. Combined with the scoring matrix (Table 

11), these metrics facilitate the decision-making process regarding the removal or retention 

of certain samples (Table 12). 
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Step Self-Built Functions (Python) Process 

1 pval_df = subject_score(df) Creating a scoring matrix 

(Table 11) 

2 abs_dif = df_abs(df1) Calculation of absolute 

difference from the mean 

average 

3 plotAbsDifference(abs_dif) Plot the subjects to check 

for distinguished number of 

probes for certain subject 

4 abs_rank = abs_dif_rank(abs_dif) Rank subjects based on 

absolute deviation 

5 subjectsPerformance(abs_rank, pval_df) Returns a table that shows 

Max Abs. Diff. Count for 

each subject compared with 

its rank in scoring matrix. 

6 Top_Scorer = '203259750077_R04C01_DLD013_Betas' 

 

 

Bad_Samples = ['203141320045_R01C01_DLD001_Betas'] 

 # leave it [] in case no bad subjects is 

determined 

 

 

""" Decide probe_QC threshold Based on Subject 

Counts """ 

TRPQC = (len(df1.columns)-1) * (2/3) 

 

Initially, set a target subject 

to have extra weight for 

imputation with mean 

average. 

 

The bas samples (if any) 

will be stored in list to be 

removed. 

 

A threshold to be decided 

(mostly 2/3 of sample size). 

7 df1_removed = df1.drop(columns=[col for col in 

df1.columns if col in Bad_Samples]) 

 

 

Dropping bad sample(s) if 

any. 

8 df2 = probe_QC(df1_removed, threshold = TRPQC, 

remove = True) 

 

Removing bad probes 

(probes that has > TRPQC 

NaN values   

9 qc_table_2 = mask_summary(df2) 

 
Check masking summary 

after removal of bad probes 

10 count_probes_with_range(df2) 

 
Check how many probes 

have more than 0.3 range 
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11 df3, df_remain = extract_probes_with_range(df2, 

threshold=0.3) 

 

 

Extract probes with range > 

0.3 to a separate dataframe.  

12 plotAbsDifference(abs_dif_1) 

 

 

abs_rank_1 = abs_dif_rank(abs_dif_1) 

 

 

# Compare Against Pval Scores 

subjectsPerformance(abs_rank_1, pval_df) 

 

Plot the subjects to check 

which one has extra 

number of outliers. 

 

Rank the subjects based on 

the results. 

 

Check the overall 

performance for each and 

decide if certain subjects 

needs to be removed. 

13 df4 = replace_outliers_withNaN(df3) 

 
Replace outliers with NaN. 

(Masking outliers as 

missing values) 

14 qc_table_3 = mask_summary(df3_updated) 

qc_table_4 = mask_summary(df4) 

 

outlier_inspection_table = 

compare2qc_tables(qc_table_3, qc_table_4) 

Check how much beta 

values are masked after 

outlier detection 

15 df5 = append_masked_to_original(df4, 

df_remain_updated) 

 

Rejoin the isolated probes 

to the remaining datframe. 

16 df6 = probe_QC(df5, threshold=TRPQC, remove= True) 

  # Set remove = True to Remove Bad Probes 

 

Remove any probes that 

exceeds the threshold 

TRPQC. 

17 df7 = impute_WM(df6, target_col=Top_Scorer, 

target_weight=Target_Weight, default_weight=1) 
Impute the remaining 

missing (masked) beta 

values 

Table 10. All functions used in QC (part 2). The code for each function is available as 

Supplementary material (DNA_Meth_Module.ipynb) 
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Function in step (8) removes any probe that has masked values more than 2/3 (default 

threshold "TRPQC") of the sample size. This is followed by step (9) exploring the masking 

percentage. Functions (10-11) checks for the number of probes that has range of values (max 

– min) greater than 0.3 and isolate these probes to handle the outliers separately from the 

other probes that has range < 0.3. The advantage of this method is that any future imputation 

for outliers will take place only over the isolated probes rather than the entire dataset, and 

hence the overall adjustments are minimal. The range 0.3 is decided based on available 

literature which states that DMRs are considered significant when the cases are at least 0.2 

greater or less than controls (Cabezón et al., 2021, Jiang et al., 2015, Van Doorn et al., 2016). 

Therefore, to maintain biological variability among samples, 0.3 is considered conservative. 

In other words, we are considering probes with a range of 0.3 or less as biologically variable. 

 

# ID_Betas 
p-value 

Mean 

p-val 

> 

0.05 

p-val 

> 

0.01 

Perc. of 

Masked 

Betas 

Resulted 

from 

SeSAME 

QC 

Score 

QC 

Score 

(Perc.) 

1 R04C01_DLD013_Betas 0.00305 6844 38223 12.76% 48 100.00% 

2 R03C01_DLD012_Betas 0.00342 8234 40331 12.90% 42 87.50% 

3 R03C01_DLD007_Betas 0.00353 8234 43021 12.89% 38 79.17% 

4 R02C01_DLD006_Betas 0.00345 8266 41007 12.91% 36 75.00% 

5 R04C01_DLD008_Betas 0.0036 8236 44287 12.89% 31 64.58% 

6 R03C01_DLD003_Betas 0.00357 8508 42202 12.93% 30 62.50% 

7 R04C01_DLD004_Betas 0.00357 8703 41409 12.95% 28 58.33% 

8 R02C01_DLD002_Betas 0.00373 8787 43791 12.95% 22 45.83% 

9 R01C01_DLD010_Betas 0.00376 9562 47265 13.05% 15 31.25% 

10 R02C01_DLD011_Betas 0.00381 9669 44786 13.05% 14 29.17% 

11 R01C01_DLD005_Betas 0.00402 9886 49916 13.07% 8 16.67% 

12 R01C01_DLD001_Betas 0.00576 17737 67254 13.90% 4 8.33% 

Table 11. Scoring matrix to check samples performance. 
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Functions in step (12) are similar to (2-7) except that it calculates the absolute difference for 

the isolated probes only (probes with range > 0.3). Similarly, the subjects are ranked to check 

which one accounts for the most outliers (the output is similar to Table 12). Subjects are 

kept/ removed accordingly. It is important to consider the sample size as a small sample size 

will limit the ability to exclude low performing subjects. 

 

Functions (13–16) replace (mask) all detected outliers using the IQR method with NaN, 

before appending the isolated probes back into the original dataset. This is followed by 

another round of removal of low-quality probes. Function (17) imputes the remaining 

masked beta values using the weighted mean method, where extra weight is given to the 

sample that achieve top scores throughout the entire workflow. 

 

# Column Name Max Abs. Diff. Count 
QC 

Score 

1 203259750076_R02C01_DLD006_Betas 31890 75.00% 

2 203259750077_R03C01_DLD012_Betas 36592 87.50% 

3 203259750077_R04C01_DLD013_Betas 37745 100.00% 

4 203259750076_R01C01_DLD005_Betas 47025 16.67% 

5 203259750077_R01C01_DLD010_Betas 54050 31.25% 

6 203141320045_R03C01_DLD003_Betas 54704 62.50% 

7 203259750077_R02C01_DLD011_Betas 57670 29.17% 

8 203259750076_R04C01_DLD008_Betas 67241 64.58% 

9 203141320045_R04C01_DLD004_Betas 72142 58.33% 

10 203141320045_R02C01_DLD002_Betas 75714 45.83% 

11 203259750076_R03C01_DLD007_Betas 78858 79.17% 

12 203141320045_R01C01_DLD001_Betas 232594 8.33% 

Table 12. Subject performance ranking table. Lower-quality subjects are often 

associated with a higher count of beta values showing the greatest absolute deviation 

from the mean. 
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4.3. DMRs Detection 
 

The Limma package was used to perform the differential analysis. Limma is a popular choice 

among researchers in DNA methylation analysis because it offers several advantages, such as 

using the Benjamini-Hochberg method for FDR correction. Furthermore, Limma has been 

extensively tested and used over a long period of time. This step is applied over the 9 

datasets separately. The analysis of DMRs is carried out for each phenotype against its 

corresponding control dataset provided in the study. The code script used to run Limma 

analysis along with FDR correction is included in the Appendices Chapter (Section 5, Limma 

Analysis). The tables containing a list of differentially methylated probes for each dataset are 

available in supplementary material (Limma DMPs). 

 

4.4. Cross Comparison 
 

After extracting DMRs for each case dataset (a total of 9 results corresponding to 9 

phenotypes), it was observed that one of the cases (TSD) resulted in zero DMRs after FDR 

correction. For the exploratory approach intended in this study, we decided to use the DMRs 

file without FDR correction for this specific dataset only (E-MTAB-4664, Total Acute Sleep 

Deprivation). However, this will be considered one of the limitations of the study, and any 

shared DMRs/ DMPs with this specific dataset will be highlighted as weak results. The 

cross-comparison among the 9 phenotypes was conducted based on 3 criteria (Table 13). 
 

Criteria Procedure 

Shared 

Probes 

This part will look for shared probe ids that are differentially methylated 

among the 9 datasets. 

Shared 

Genes 

Using Illumina manifests, the differentially methylated probes for each 

phenotype are gene enriched, and then a cross comparison among the 9 

phenotypes is carried out to check for probes that are mapped to the same 

gene. A priority is given to probes that are mapped to promoter regions 

Shared 

Regions 

For each phenotype, using Illumina manifests, the differentially 

methylated probes are mapped to their genomic locations. Probes with 

shared regions across the 9 results are determined based on a threshold of 

base pair distance. Since this approach is exploratory, an initial threshold 

of 10,000 bp was applied, but no significant probes were identified. 

Therefore, the threshold was increased to 100,000 bp. Although a range 

of 100,000 bp is commonly used in other studies (Bondhus et al., 2022) 

when identifying DMRs, the results should be interpreted with caution.  

 

Table 13. Approach to  find shared methylation patterns across multiple phenotypes. 
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Figure 11. Workflow diagram 
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A general workflow plan is demonstrated in Fig. 11, along with the tools and sources used. 

This chapter is divided into 4 sections: 

1. Preprocessing 

2. Quality Control (QC part 2) 

3. Differential Analysis 

4. Cross Comparison 

 

1. Preprocessing 
 

All datasets (cases and controls) were processed using the SeSAME pipeline, as detailed in 

the methodology (Chapter 2). The output of this procedure comprises 13 datasets in CSV 

format (Figure 12). 
 

Abstract of the code (R programming) used for 4 datasets (controls) Output (Total 13 datasets) 

 

 

 
…… 

…... 

…. 

 

 

9 cases: 
 

 
 

4 controls: 
 

 
 

Figure 12. preprocessing samples and convert raw IDATs to Betas (.csv format) 

 

2. Quality Control (QC part 2) 
 

Unlike preprocessing, which occurs iteratively, the second round of quality control (QC) is 

conducted separately for each dataset to explore and manage the removal of probes and 

subjects. The same steps are repeated across the 13 datasets. Table 14 summarizes the output 

of this section. Since all datasets undergo the same process, one complete workflow is demo- 

 

Chapter 3 | Workflow 



P a g e  | 44 

   
 

nstrated in detail for the 01_DLD dataset (page: 39), while the others are summarized with 

experiment details and normalization curves (9 cases followed by 4 controls). 
 

# Phenotype 
Dataset 

Abbreviation 

Probes Samples  Percentage 

of 

Imputation 

Std 

Before After Before After Before After 

1 

Developmental 

Language 

Disorder 

01_DLD 

(cases) 
866553 737275 12 11 1.67% 0.019 0.0185 

2 

Sporadic 

Early-Onset 

Alzheimer's 

Disease 

02_Early_Alz 

(cases) 
866553 712035 5 5 9.97% 0.0797 0.0665 

3 

Familial 

Alzheimer 

Disease 

02_Fam_Alz 

(cases) 
866553 730137 6 6 7.90% 0.0562 0.049 

4 

Genetic 

Frontotemporal 

Dementia 

(GRN 

Mutation) 

02_FTP_GRN 

(cases) 
866553 708698 5 5 10.30% 0.0794 0.0662 

5 

Genetic 

Frontotemporal 

Dementia 

(MAPT 

Mutation) 

02_FTP_MAPT 

(cases) 
866553 734277 3 3 0.97% 0.0772 0.0769 

6 
Early Life 

Adversity 
03_ELA (cases) 866553 738553 30 27 2.28% 0.0185 0.0177 

7 
Social Anxiety 

Disorder 

03_SAD 

(cases) 
866553 738751 35 33 2.48% 0.0193 0.0182 

8 

Social Anxiety 

Disorder and 

Early Life 

Adversity 

03_SAD_ELA 

(cases) 
866553 738975 31 29 2.29% 0.0198 0.019 

9 

Total Acute 

Sleep 

Deprivation 

04_TSD (cases) 486427 406311 18 17 3.08% 0.0191 0.0184 

10 
Healthy 

Controls 

01_DLD 

(controls) 
866553 736430 12 9 1.86% 0.0208 0.0187 

11 
Healthy 

Controls 

02_FTP 

(controls) 
866553 707987 5 5 1.94% 0.0703 0.0577 

12 
Healthy 

Controls 

03_SAD 

(controls) 
866553 738597 47 42 2.83% 0.0191 0.0181 

13 
Healthy 

Controls 

04_TSD 

(controls) 
486427 406446 18 17 2.24% 0.0197 0.0179 

 
 

Table 14. A summary of QC (part 2) effect on number of probes, samples, and overall 

deviation probe wise. 
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Table 15 includes information about technical aspects and output data availability. 

 

Data Availability Notes 

Detailed Workflow for 

01_DLD dataset. 
Pages: 37 - 44 

Demonstration of 

detailed output 

Summary and Output 

of remaining datasets. 
Pages: 45 - 56 

Beta distribution 

curves before and after 

QC (part 2) 

Source Code used Supplementary Material (QC2) 
(.ipynb) files for 13 

datasets (Python)* 

Complete output ** 

Supplementary  Material (Quality 

Score) 
Tables for 13 datasets 

Supplementary Material (QC2/ 

Subject Performance) 
Tables for 13 datasets 

Table 15. Output data availability and technical information. 

 

* Using the VS Code editor on a 16GB RAM Intel Core i5 PC, processing a single 

(.ipynb) file takes approximately 4 minutes for smaller sample sizes (e.g., 5 subjects in 

the 02_Early Alz dataset) and up to ~16 minutes for larger sample sizes (e.g., 43 subjects 

in the 03_SAD control dataset). This time includes generating beta value distribution 

plots. 

 

** The large number of tables made it impractical to include this information in the thesis 

text or appendices, particularly for datasets with a high number of samples. 
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Comparison of the methylation profiles of children with developmental 

language disorder and healthy control subjects. 

Released: 2024 | Link: E-MTAB-13583 < ArrayExpress < BioStudies < EMBL-EBI 
 

 

➢ Experiment Details: 

ID E-MTAB-13583 
No. of Probes 

(CpG Sites) 

866553 Probes 

 

Source 
ArrayExpress (BioStudies, EMBL's 

European Bioinformatics Institute) 

Total 

Participants in 

Experiment 

24 Subjects (3-7 yr) 

Published Article 

Hypomethylation of Wnt Signaling 

Regulator Genes in Developmental 

Language Disorder, (2024). Link: 

https://doi.org/10.2217/epi-2023-0345 

Phenotype 

Sample Size 
12 Subjects (3-7 yr) 

Experiment Type Methylation Profiling by Array Phenotype 
Developmental 

Language Disorder 

Platform Used 
Illumina - Human Infinium Methylation 

EPIC BeadChip 
Species Homo sapiens 

Raw Data 

Available 
Yes (.idat format) 

Organism Part Peripheral Blood 
Processed Data 

Available 
Yes (.csv format) 

 

➢ Exclusion of SNP, Control, and Sex Chromosomes Probes: 

Initial Array 

Size  

Probes to be Excluded Output (Before 

Exclusion) 

Output (After 

Exclusion) 

Updated Array 

Size 

866553 Probes ➢ 19640 (chrX, chrY) 

Probes 

➢ 53 ‘rs’ Probes 

➢ 635 ‘ctl’ Probes 

cg    862927 

ch      2932 

ct       635 

rs        59 

 

cg    843386 

ch      2839 

846225 Probes 

 

 

➢ Summary of Workflow and Steps: 

 

Raw 

Signal

s 

QC (1) QC (2) 

Order 1 2 3 4 5 6 7 

Steps 

Raw 

Beta 

Values 

SeSAM

E 

Output 

Low 

Performin

g Subjects 

Low 

Performing 

Probes (1) 

* 

Isolating & 

Handling 

Probes with 

range > 0.3 

Masking 

Outliers 

in the 

isolated 

probes 

Low 

Performing 

Probes (2) 

* 

No. of 

Probes  
846225 846225 846225 737288 737288 737288 737275 

No. of 

Subjects 
12 12 11 11 11 11 11 

Total 

Masked 
0 

1322182 

(13.02%) 

1204573 

(12.94%) 

14982 

(0.18%) 

14982 

(0.18%) 

22922 

(0.28%) 

22841  

(0.28%) 

Dataset 

[1] 

https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-13583?query=E-MTAB-13583
https://doi.org/10.2217/epi-2023-0345
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Betas ** 

Details - 

13.02%o

f Betas 

are 

masked 

based on 

SeSAM

E quality 

metrics 

 One 

subject is 

excluded: 

'20314132

0045_R01

C01_DLD

001* 

Bad probes 

(108937) 

are 

removed. 

 

(10432) probes 

of which range 

> 0.3 are 

isolated for 

handling 

outliers 

separately 

from other 

probes with 

range < 0.3 

7940 

outlier 

values are 

masked 

Bad probes 

(13) are 

removed. 

 

Table 16. The effect of QC (part 2) on DLD dataset. Step 7 is followed by imputation of 

masked betas. 

 

* The removal of low performing probes using probeQC() function is carried twice; the 

first one is after removing bad samples, and the second one is after masking outlier values 

in step (6). 

 

** Both number and percentage represent the total number/ percentage out of the entire 

array respectively. 
 

 

➢ Details and Discussion of Steps (2-7) 

Steps (2-4): Thresholds and QC Criteria (Determining High vs Low Performing 

Samples) 

After SeSAME processing, beta values along with its corresponding p-values for all subjects 

were grouped together in one dataset and QC score is calculate for each subject following 

our methodology. Table 17 Shows the ranking for each subject where highest and lowest 

performing samples highlighted in green and red respectively. 

Rank ID_Betas 
p-value 

Mean 

p-val 

> 

0.05 

p-val 

> 

0.01 

Perc. of 

Masked 

Betas 

Resulted 

from 

SeSAME 

QC 

Score 

QC Score 

(Perc.) 

1 203259750077_R04C01_DLD013_Betas 0.00305 6844 38223 12.76% 48 100.00% 

2 203259750077_R03C01_DLD012_Betas 0.00342 8234 40331 12.90% 42 87.50% 

3 203259750076_R03C01_DLD007_Betas 0.00353 8234 43021 12.89% 38 79.17% 

4 203259750076_R02C01_DLD006_Betas 0.00345 8266 41007 12.91% 36 75.00% 

5 203259750076_R04C01_DLD008_Betas 0.00360 8236 44287 12.89% 31 64.58% 

6 203141320045_R03C01_DLD003_Betas 0.00357 8508 42202 12.93% 30 62.50% 

7 203141320045_R04C01_DLD004_Betas 0.00357 8703 41409 12.95% 28 58.33% 
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8 203141320045_R02C01_DLD002_Betas 0.00373 8787 43791 12.95% 22 45.83% 

9 203259750077_R01C01_DLD010_Betas 0.00376 9562 47265 13.05% 15 31.25% 

10 203259750077_R02C01_DLD011_Betas 0.00381 9669 44786 13.05% 14 29.17% 

11 203259750076_R01C01_DLD005_Betas 0.00402 9886 49916 13.07% 8 16.67% 

12 203141320045_R01C01_DLD001_Betas 0.00576 17737 67254 13.90% 4 8.33% 

 

Table 17. Subjects ranking (Quality score) 
 

 

This was followed by a bar plot to visualize any subject(s) with excessive outliers (Fig. 13). 

 

Figure 13. A bar plot showing the number of probes each subject achieves the highest 

absolute deviation from the mean. 

 

Sample id (203141320045_R01C01_DLD001) achieves the highest absolute difference from 

the mean average in more than 200,000 probes. Together with being the lowest score in QC 

score table, we decided to remove the sample from downstream analysis. To validate our 

decision, a comparison table is used to number of outlier values observed in one sample 

against its QC score (Table 18). As mentioned in summary table, the removal of low 

performing probes take place in step (4) to ensure that no probes have exceeds the threshold 

of masked betas. The threshold (TRPQC) for E-MTAB-13583 is decided to be 6 (12 * 0.5 = 

6). 
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# ID_Betas 

Max 

Abs. 

Diff. 

Count 

QC 

Score 
# ID_Betas 

Max 

Abs. 

Diff. 

Count 

QC 

Score 

1 203259750076_R02C01_DLD006 31890 75.00% 7 203259750077_R02C01_DLD011 57670 29.17% 

2 203259750077_R03C01_DLD012 36592 87.50% 8 203259750076_R04C01_DLD008 67241 64.58% 

3 203259750077_R04C01_DLD013 37745 100.00% 9 203141320045_R04C01_DLD004 72142 58.33% 

4 203259750076_R01C01_DLD005 47025 16.67% 10 203141320045_R02C01_DLD002 75714 45.83% 

5 203259750077_R01C01_DLD010 54050 31.25% 11 203259750076_R03C01_DLD007 78858 79.17% 

6 203141320045_R03C01_DLD003 54704 62.50% 12 203141320045_R01C01_DLD001 232594 8.33% 

Table 18. A Comparison of QC score versus maximum absolute deviation. 

 

 

Steps (5-7) Outlier Detection Based on range and IQR approach: 
 

Following our methodology, first we isolate the probes that has a range (max min) beta 

values > 0.3 using the following functions: 
 

Function: 

count_probes_with_range(df, 

thresholds=[0.2, 0.3, 0.4, 0.5]) 

 

Function: 

extract_probes_with_range(df, 

threshold=0.3) 

 

> Output: 

Probes with range > 0.2: 38540 Probes (5.23%) 

Probes with range > 0.3: 10432 Probes (1.41%) 

Probes with range > 0.4: 3026 Probes (0.41%) 

Probes with range > 0.5: 833 Probes (0.11%) 

> Output: 

Probes Above Threshold Are Successfully Isolated 

No. of Probes Isolated: 10432  

No. of Probes Not Affected: 726856 

 

The 10432 probes are then inspected separately to check the subject’s performance for this 

set of probes. The bar plot shows 1 sample to have distinguished count of probes with 

highest absolute difference. However, the count (2236 probes) is not enough to exclude this 

sample when considering its QC score, the size of array and the performance of other 

samples (Figure 14), (Table 19). 
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Figure 14. A bar plot comparing the outlier count for each subject based on the isolated 

probes using the IQR method. 

 

On the other hand, sample id (203259750077_R04C01_DLD013) highlighted in green 

shows the least amount of Max Abs. Diff. in addition to being the top performing sample in 

terms of original QC score (Table 19). This makes it  qualified to be chosen as the target 

sample when imputing missing values using weighted average in the final procedure of QC 

(2).   
 

# ID_Betas 

Max 

Abs. 

Diff. 

Count 

QC 

Score 
# ID_Betas 

Max 

Abs. 

Diff. 

Count 

QC 

Score 

1 203259750076_R02C01_DLD006 398 75.00% 7 203141320045_R03C01_DLD003 879 62.50% 

2 203259750077_R04C01_DLD013 490 100.00% 8 203259750077_R01C01_DLD010 1121 31.25% 

3 203259750077_R03C01_DLD012 494 87.50% 9 203259750076_R03C01_DLD007 1419 79.17% 

4 203259750076_R01C01_DLD005 544 16.67% 10 203259750077_R02C01_DLD011 1428 29.17% 

5 203259750076_R04C01_DLD008 684 64.58% 11 203141320045_R02C01_DLD002 2236 45.83% 

6 203141320045_R04C01_DLD004 739 58.33%         

Table 19. Highest and lowest performing subjects are highlighted in green and blue 

respectively. 
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The next step is to replace outlier values in the 10432 Probes based on IQR approach 

followed by re-joining them again to the existing array using below functions: 

Function: 

replace_outliers_withNaN(df) 

 

Function: 

append_masked_to_original(df_masked, 

df_remaining)  

Validation of 

dimensions 

 

> Output: 

7940 Outliers have been replaced 

with NaN using IQR approach. 

> Output: 

Isolated Probes Are Re-joined Back to the 

Remaining Array 

 Check Dimensions: 

737288 Probes, 11 Samples 

> Output: 

Checking 

Dimensions of df5.. 

737288 Probes, 11 

Subjects   >>> 

Dimensions 

Confirmed 
 

After masking the 7940 outliers, the total missing betas increased to 22922 values in the 

whole array. Therefore, another exclusion of low performing probes took place to exclude 

probes that has more than 6 missing betas. This has resulted in exclusion of only 13 probes. 

Below is a comparison of number of probes with certain ranges before and after masking the 

outliers: 
 

 

Before Masking Outliers 

 

After Masking Outliers 

Function: 

count_probes_with_range(df, 

thresholds=[0.2, 0.3, 0.4, 0.5]) 

Function: 

count_probes_with_range(df, 

thresholds=[0.2, 0.3, 0.4, 0.5]) 

> Output: 

Probes with range > 0.2: 27719 Probes 

(6.82%) 

Probes with range > 0.3: 8481 Probes (2.09%) 

Probes with range > 0.4: 2830 Probes (0.70%) 

Probes with range > 0.5: 858 Probes (0.21%) 

> Output: 

Probes with range > 0.2: 24604 Probes 

(6.06%) 

Probes with range > 0.3: 3294 Probes 

(0.81%) 

Probes with range > 0.4: 1052 Probes 

(0.26%) 

Probes with range > 0.5: 428 Probes (0.11%) 
 

After Step (7), the final procedure will be to impute any remaining masked betas. 

 

Imputation of Masked Betas: 

Following our methodology which uses weighted mean for imputation, we have chosen 

sample id (9297962042_R04C01) highlighted in green to be the target sample. A weight of 3 

is decided since the sample achieves the top score in QC score and the least number of 

probes for Max. Abs. Diff. column.  Total of 22841values were imputed with WM using 

impute_WM() function: 
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Parameters: Function: 

Top_Scorer: 

203259750077_R04C01_DLD013_Betas 

Target_Weight: 3 

impute_WM(df6, target_col=Top_Scorer, 

target_weight=Target_Weight, 

default_weight=1) 
 

Application: 
 

 

Imputation of Masked Betas 

 

 

Validation of the Result Probe 

Wise (Before and After 

Imputation) 

Overall effect of QC (2) 

Procedure on the Array: 

Function: 

impute_WM(df6, 

target_col=Top_Scorer, 

target_weight=Target_Weight, 

default_weight=1) 

Function: 

probe_QC(df, threshold=1, 

remove=False) 

Subtraction of affected 

probes from the whole array 

> Imputation: 

Total Missing Betas Replaced with 

WM are 22841, (0.24% Out of Total 

Betas) 

> Output:(Before Imputation) 

Number of probes with >= 1 

masked betas: 12331  (1.67%) 

---------------------------- 

> Output:(After Imputation) 

Number of probes with >= 1 

masked betas: 0  (0.00%) 

> Output: 

 No. of Probes Not Modified 

by Imputation: 724944 

(98.33%) 

 Final Dimensions 737275 

Probes, 11 Subjects 

 

Visualization 

A comparison (Visualization and quantification of the changes happened to raw data) is done 

through beta distribution curves. Figure 15 shows the difference in normalization that took 

place for the probes (10432) that were > 0.3 in range: 

  

Before Imputation After Imputation 

Figure 15. Beta value distribution for the isolated probes before and after imputation.  
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Another visualization (Figure 16.) using beta distribution curves is carried for the entire array 

during the three stages of data: 

1- Raw Data (The output from getBetas() without preprocessing) 

2- Data after SeSAME. 

3- Data after QC(2) (The final output after imputation). 

Graphs ➔ 

  

Raw Data SeSAME Output 

  

QC(2) Output ➔ Final Array. 
Standard deviation (std) For the three 

datasets 

Figure 16. Beta value distribution curve for E-MTAB-13583 (01_DLD cases) 

 

Quantification: 

To quantify the difference in normalization over the three stages, we have measured the 

mean average of standard deviation among the entire probes in the array for each stage: 
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Raw Data After SeSAME After QC(2) 

Function: 

raw_betas['std'] = 

raw_betas.filter(like='_Beta

s').std(axis=1) 

 

avg_std_raw_betas = 

raw_betas['std'].mean() 

Function: 

df2['std'] = 

df2.filter(like='_Betas'

).std(axis=1) 

 

avg_std_df2 = 

df2['std'].mean() 

 

Function: 

dfFinal['std'] = 

dfFinal.filter(like='_Betas

').std(axis=1) 

 

avg_std_dfFinal = 

dfFinal['std'].mean() 

 

Output: 

Average std in raw data: 0.0293 

 

Output: 

Average std after SeSAME: 

0.0190 

Output: 

Average std after QC(2): 0.0185 

 

The results match the distribution curves we see in Figures (15, 16), since the amount of 

decrease from 0.0293 in raw data to 0.0190 in data after SeSAME is more noticeable than the 

decrease from 0.0190 in SeSAME to 0.0185 in data after QC(2). However, the slight 

improvement in variability reduction observed in QC(2) compared to the SeSAME output is 

satisfactory, as the procedure aims to minimally adjust weak and unreliable values without 

introducing extreme modifications, thereby preserving biological variability. 

 

 

Remaining datasets (12) are summarized with experimental details and beta value 

distribution curves (pages: 48 - 60). The adjustments that took place in QC(2) for each 

dataset is previously mentioned in Table 14. 
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Genome-wide DNA methylation analysis identifies epigenetic differences in 

Alzheimer’s disease and frontotemporal dementia in brain tissue and 

lymphoblastoid cell lines. 

Released: 2024 | Link: E-MTAB-11975 < ArrayExpress < BioStudies < EMBL-EBI 
 

➢ Experiment Details: 

ID E-MTAB-11975 
No. of Probes 

(CpG Sites) 

866553 Probes 

 

Source 
ArrayExpress (BioStudies, EMBL's 

European Bioinformatics Institute) 

Total Participants 

in Experiment 

64 Subjects (31-92 

yr), 

(prefrontal cortex 

tissue is excluded ➔ 

24 Subjects (40-76 yr) 

Published Article 

Genome-Wide DNAMethylation in Early-

Onset-Dementia Patients Brain Tissue and 

Lymphoblastoid Cell Lines, (2024). Link: 

https://doi.org/10.3390/ijms25105445 

Phenotype Sample 

Size 
5 Subjects (52-63 yr) 

Experiment Type Methylation Profiling by Array Phenotype 

Sporadic Early-

Onset Alzheimer's 

Disease 

Platform Used 
Illumina - Human Infinium Methylation 

EPIC BeadChip 
Species Homo sapiens 

Raw Data Available Yes (.idat format) 

Organism Part Peripheral Blood Processed Data 

Available 
No 

 

  

  

Figure 17. Beta value distribution curve curves for E-MTAB-11975, dataset 02_Early_Alz 

(cases). 
 

Dataset 

[2-1] 

https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11975?query=E-MTAB-11975
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11975?query=E-MTAB-11975
https://doi.org/10.3390/ijms25105445
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Genome-wide DNA methylation analysis identifies epigenetic differences in 

Alzheimer’s disease and frontotemporal dementia in brain tissue and 

lymphoblastoid cell lines. 

Released: 2024 | Link: E-MTAB-11975 < ArrayExpress < BioStudies < EMBL-EBI 
 

➢ Experiment Details: 

ID E-MTAB-11975 
No. of Probes 

(CpG Sites) 

866553 Probes 

 

Source 
ArrayExpress (BioStudies, EMBL's 

European Bioinformatics Institute) 

Total Participants 

in Experiment 

64 Subjects (31-92 

yr), 

(prefrontal cortex 

tissue is excluded ➔ 

24 Subjects (40-76 

yr) 

Published Article 

Genome-Wide DNAMethylation in Early-

Onset-Dementia Patients Brain Tissue and 

Lymphoblastoid Cell Lines, (2024). Link: 

https://doi.org/10.3390/ijms25105445 

Phenotype Sample 

Size 
6 Subjects (42-59 yr) 

Experiment Type Methylation Profiling by Array Phenotype 
Familial Alzheimer 

Disease 

Platform Used 
Illumina - Human Infinium Methylation 

EPIC BeadChip 
Species Homo sapiens 

Raw Data Available Yes (.idat format) 

Organism Part Peripheral Blood Processed Data 

Available 
No 

 

  

  

Figure 18. Beta distribution curves for E-MTAB-11975, dataset 02_Fam_Alz (cases). 

Dataset 

[2-2] 

https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11975?query=E-MTAB-11975
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11975?query=E-MTAB-11975
https://doi.org/10.3390/ijms25105445
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Genome-wide DNA methylation analysis identifies epigenetic differences in 

Alzheimer’s disease and frontotemporal dementia in brain tissue and 

lymphoblastoid cell lines. 

Released: 2024 | Link: E-MTAB-11975 < ArrayExpress < BioStudies < EMBL-EBI 
 

➢ Experiment Details: 

ID E-MTAB-11975 
No. of Probes 

(CpG Sites) 

866553 Probes 

 

Source 
ArrayExpress (BioStudies, EMBL's 

European Bioinformatics Institute) 

Total 

Participants in 

Experiment 

64 Subjects (31-92 yr), 

(prefrontal cortex tissue 

is excluded ➔ 24 

Subjects (40-76 yr) 

Published Article 

Genome-Wide DNAMethylation in Early-

Onset-Dementia Patients Brain Tissue and 

Lymphoblastoid Cell Lines, (2024). Link: 

https://doi.org/10.3390/ijms25105445 

Phenotype 

Sample Size 
5 Subjects (54-63 yr) 

Experiment Type Methylation Profiling by Array Phenotype 

Genetic 

Frontotemporal 

Dementia (GRN 

Mutation) 

Platform Used 
Illumina - Human Infinium Methylation 

EPIC BeadChip 
Species Homo sapiens 

Raw Data Available Yes (.idat format) 

Organism Part Peripheral Blood Processed Data 

Available 
No 

 

  

  

Figure 19. Beta value distribution curves for E-MTAB-11975, dataset 02_FTP_GRN (cases) 

Dataset 

[2-3] 

https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11975?query=E-MTAB-11975
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11975?query=E-MTAB-11975
https://doi.org/10.3390/ijms25105445
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Genome-wide DNA methylation analysis identifies epigenetic differences in 

Alzheimer’s disease and frontotemporal dementia in brain tissue and 

lymphoblastoid cell lines. 

Released: 2024 | Link: E-MTAB-11975 < ArrayExpress < BioStudies < EMBL-EBI 
 

➢ Experiment Details: 

ID E-MTAB-11975 
No. of Probes 

(CpG Sites) 

866553 Probes 

 

Source 
ArrayExpress (BioStudies, EMBL's 

European Bioinformatics Institute) 

Total 

Participants in 

Experiment 

64 Subjects (31-92 yr), 

(prefrontal cortex tissue 

is excluded ➔ 24 

Subjects (40-76 yr) 

Published Article 

Genome-Wide DNAMethylation in Early-

Onset-Dementia Patients Brain Tissue and 

Lymphoblastoid Cell Lines, (2024). Link: 

https://doi.org/10.3390/ijms25105445 

Phenotype 

Sample Size 
5 Subjects (54-63 yr) 

Experiment Type Methylation Profiling by Array Phenotype 

Genetic 

Frontotemporal 

Dementia (MAPT 

Mutation) 

Platform Used 
Illumina - Human Infinium Methylation 

EPIC BeadChip 
Species Homo sapiens 

Raw Data Available Yes (.idat format) 

Organism Part Peripheral Blood Processed Data 

Available 
No 

 

  

  

Figure 20. Beta value distribution curves for E-MTAB-11975, dataset 02_FTP_MAPT (cases) 

Dataset 

[2-4] 

https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11975?query=E-MTAB-11975
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11975?query=E-MTAB-11975
https://doi.org/10.3390/ijms25105445
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DNA Methylation Differences Associated with Social Anxiety Disorder and Early Life 

Adversity. 

Released: 2021 | Link: GSE164056 <  Accession Display < GEO < NCBI   
 

➢ Experiment Details: 

ID GSE164056 
No. of Probes 

(CpG Sites) 

866553 Probes 

 

Source 

GEO Accession Viewer (National 

Center for Biotechnology Information 

NCBI) 

Total 

Participants in 

Experiment 

143 Subjects (19-50 

yr), 

Published Article 

DNA methylation differences associated 

with social anxiety disorder and early 

life adversity, (2021). Link: 

https://doi.org/10.1038/s41398-021-

01225-w 

Phenotype 

Sample Size 

30 Subjects (19-50 

yr) 

Experiment Type Methylation Profiling by Array Phenotype Early Life Adveristy 

Platform Used 
Illumina - Human Infinium Methylation 

EPIC BeadChip 
Species Homo sapiens 

Raw Data 

Available 
Yes (.idat format) 

Organism Part Peripheral Blood 
Processed Data 

Available 
Yes 

 

  

  

Figure 21. Beta value distribution curves for GSE164056, dataset 03_ELA (cases). 

 

Dataset 

[3-1] 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://doi.org/10.1038/s41398-021-01225-w
https://doi.org/10.1038/s41398-021-01225-w
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DNA Methylation Differences Associated with Social Anxiety Disorder and Early Life 

Adversity. 

Released: 2021 | Link: GSE164056 <  Accession Display < GEO < NCBI   
 

➢ Experiment Details: 

ID GSE164056 
No. of Probes 

(CpG Sites) 

866553 Probes 

 

Source 

GEO Accession Viewer (National 

Center for Biotechnology Information 

NCBI) 

Total 

Participants in 

Experiment 

143 Subjects (19-50 

yr), 

Published Article 

DNA methylation differences associated 

with social anxiety disorder and early 

life adversity, (2021). Link: 

https://doi.org/10.1038/s41398-021-

01225-w 

Phenotype 

Sample Size 

35 Subjects (19-37 

yr) 

Experiment Type Methylation Profiling by Array Phenotype 
Social Anxiety 

Disorder 

Platform Used 
Illumina - Human Infinium Methylation 

EPIC BeadChip 
Species Homo sapiens 

Raw Data 

Available 
Yes (.idat format) 

Organism Part Peripheral Blood 
Processed Data 

Available 
Yes 

 

  

  

Figure 22. Beta value distribution curves for GSE164056, dataset 03_SAD (cases). 

Dataset 

[3-2] 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://doi.org/10.1038/s41398-021-01225-w
https://doi.org/10.1038/s41398-021-01225-w
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DNA Methylation Differences Associated with Social Anxiety Disorder and Early Life 

Adversity. 

Released: 2021 | Link: GSE164056 <  Accession Display < GEO < NCBI   

 

➢ Experiment Details: 

ID GSE164056 
No. of Probes 

(CpG Sites) 

866553 Probes 

 

Source 

GEO Accession Viewer (National 

Center for Biotechnology Information 

NCBI) 

Total 

Participants in 

Experiment 

143 Subjects (19-50 

yr), 

Published Article 

DNA methylation differences associated 

with social anxiety disorder and early 

life adversity, (2021). Link: 

https://doi.org/10.1038/s41398-021-

01225-w 

Phenotype 

Sample Size 

31 Subjects (19-45 

yr) 

Experiment Type Methylation Profiling by Array Phenotype 

Social Anxiety 

Disorder & Early 

Life Adversity 

Platform Used 
Illumina - Human Infinium Methylation 

EPIC BeadChip 
Species Homo sapiens 

Raw Data 

Available 
Yes (.idat format) 

Organism Part Peripheral Blood 
Processed Data 

Available 
Yes 

 

  

  

Fig. 23. Beta value distribution curves for GSE164056, dataset 03_SAD_ELA (cases). 

Dataset 

[3-3] 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://doi.org/10.1038/s41398-021-01225-w
https://doi.org/10.1038/s41398-021-01225-w


P a g e  | 62 

Epigenomics of Total Acute Sleep Deprivation in Relation to Genome-wide DNA 

Methylation Profiles and RNA Expression. 

Released: 2016 | Link: E-MTAB-4664 < ArrayExpress < BioStudies < EMBL-EBI 

 

➢ Experiment Details: 

ID E-MTAB-4664 No. of Probes 

(CpG Sites) 

486427 Probes 

 

Source ArrayExpress (BioStudies, EMBL's 

European Bioinformatics Institute) 

Total 

Participants in 

Experiment 

36 Subjects (19-31 

yr) 

Published Article Epigenomics of Total Acute Sleep 

Deprivation in Relation to Genome-

Wide DNA Methylation Profiles and 

RNA Expression, (2016). Link: 

https://doi.org/10.1089/omi.2016.0041 

Phenotype 

Sample Size 

18 Subjects (19-31 

yr) 

Experiment Type Methylation Profiling by Array Phenotype Total Acute Sleep 

Deprivation 

Platform Used Illumina Infinium 

HumanMethylation450 BeadChip 

Species Homo sapiens 

Raw Data 

Available 

Yes (.idat format) 

Processed Data 

Available 

No Organism Part Peripheral Blood 

 

  

  

Figure 24. Normalization curves for E-MTAB-4664, dataset 04_TSD (cases) 

 

 

Dataset 

[4] 

https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-4664?query=E-MTAB-4664
https://doi.org/10.1089/omi.2016.0041
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Comparison of the methylation profiles of children with developmental language 

disorder and healthy control subjects. 

Released: 2024 | Link: E-MTAB-13583 < ArrayExpress < BioStudies < EMBL-EBI 

 

➢ Experiment Details: 

ID E-MTAB-13583 
No. of Probes 

(CpG Sites) 

866553 Probes 

 

Source 
ArrayExpress (BioStudies, EMBL's 

European Bioinformatics Institute) 

Total 

Participants in 

Experiment 

24 Subjects (3-7 yr) 

Published Article 

Hypomethylation of Wnt Signaling 

Regulator Genes in Developmental 

Language Disorder, (2024). Link: 

https://doi.org/10.2217/epi-2023-0345 

Phenotype 

Sample Size 
12 Subjects (3-7 yr) 

Experiment Type Methylation Profiling by Array Phenotype Healthy Controls 

Platform Used 
Illumina - Human Infinium Methylation 

EPIC BeadChip 
Species Homo sapiens 

Raw Data 

Available 
Yes (.idat format) 

Organism Part Peripheral Blood 
Processed Data 

Available 
Yes (.csv format) 

 

  

  

Figure 25. Beta value distribution curves for E-MTAB-13583, dataset 01_DLD (controls). 

 

Dataset [1] - 

Controls 

https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-13583?query=E-MTAB-13583
https://doi.org/10.2217/epi-2023-0345
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Genome-wide DNA methylation analysis identifies epigenetic differences in 

Alzheimer’s disease and frontotemporal dementia in brain tissue and 

lymphoblastoid cell lines. 

Released: 2024 | Link: E-MTAB-11975 < ArrayExpress < BioStudies < EMBL-EBI 
 

➢ Experiment Details: 

ID E-MTAB-11975 
No. of Probes 

(CpG Sites) 

866553 Probes 

 

Source 
ArrayExpress (BioStudies, EMBL's 

European Bioinformatics Institute) 

Total Participants 

in Experiment 

64 Subjects (31-92 

yr), 

(prefrontal cortex 

tissue is excluded ➔ 

24 Subjects (40-76 yr) 

Published Article 

Genome-Wide DNAMethylation in Early-

Onset-Dementia Patients Brain Tissue and 

Lymphoblastoid Cell Lines, (2024). Link: 

https://doi.org/10.3390/ijms25105445 

Phenotype Sample 

Size 
5 Subjects (40-65 yr) 

Experiment Type Methylation Profiling by Array Phenotype Healthy Controls 

Platform Used 
Illumina - Human Infinium Methylation 

EPIC BeadChip 
Species Homo sapiens 

Raw Data Available Yes (.idat format) 

Organism Part Peripheral Blood Processed Data 

Available 
No 

 

  

  

Figure 26. Beta value distribution curves for E-MTAB-11975, dataset 02_FTP (controls). 

 

Dataset [2] - 

Controls 

https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11975?query=E-MTAB-11975
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11975?query=E-MTAB-11975
https://doi.org/10.3390/ijms25105445
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DNA Methylation Differences Associated with Social Anxiety Disorder and 

Early Life Adversity. 

Released: 2021 | Link: GSE164056 <  Accession Display < GEO < NCBI   

 

➢ Experiment Details: 

ID GSE164056 
No. of Probes 

(CpG Sites) 

866553 Probes 

 

Source 

GEO Accession Viewer (National 

Center for Biotechnology Information 

NCBI) 

Total 

Participants in 

Experiment 

143 Subjects (19-50 

yr) 

Published Article 

DNA methylation differences associated 

with social anxiety disorder and early 

life adversity, (2021). Link: 

https://doi.org/10.1038/s41398-021-

01225-w 

Phenotype 

Sample Size 

47 Subjects (19-42 

yr) 

Experiment Type Methylation Profiling by Array Phenotype Healthy Controls 

Platform Used 
Illumina - Human Infinium Methylation 

EPIC BeadChip 
Species Homo sapiens 

Raw Data 

Available 
Yes (.idat format) 

Organism Part Peripheral Blood 
Processed Data 

Available 
Yes 

 

  

  

Figure 27. Beta value distribution curves for GSE164056, dataset 03_SAD (controls). 

 

Dataset [3] - 

Controls 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://doi.org/10.1038/s41398-021-01225-w
https://doi.org/10.1038/s41398-021-01225-w


P a g e  | 66 

Epigenomics of Total Acute Sleep Deprivation in Relation to Genome-wide 

DNA Methylation Profiles and RNA Expression. 

Released: 2016 | Link: E-MTAB-4664 < ArrayExpress < BioStudies < EMBL-EBI 

 

➢ Experiment Details: 

ID E-MTAB-4664 No. of Probes 

(CpG Sites) 

486427 Probes 

 

Source ArrayExpress (BioStudies, EMBL's 

European Bioinformatics Institute) 

Total 

Participants in 

Experiment 

36 Subjects (19-31 

yr) 

Published Article Epigenomics of Total Acute Sleep 

Deprivation in Relation to Genome-

Wide DNA Methylation Profiles and 

RNA Expression, (2016). Link: 

https://doi.org/10.1089/omi.2016.0041 

Phenotype 

Sample Size 

18 Subjects (19-31 

yr) 

Experiment Type Methylation Profiling by Array Phenotype Healthy Controls 

Platform Used Illumina Infinium 

HumanMethylation450 BeadChip 

Species Homo sapiens 

Raw Data 

Available 

Yes (.idat format) 

Processed Data 

Available 

No Organism Part Peripheral Blood 

 

  

  

Fig. 28. Beta value distribution curves for E-MTAB-4664, dataset 04_TSD (controls). 

 

Dataset [4] 

- Controls 

https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-4664?query=E-MTAB-4664
https://doi.org/10.1089/omi.2016.0041
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3. Differential Analysis 
 

Each phenotype dataset is analysed against its corresponding control dataset. A threshold of 

0.05 for FDR adjusted p values is used to subset the initial amount of differentially 

methylated probes for each dataset. Table 18 summarizes the resulted output of this 

procedure. 

File name 

No. of probes 

with P val < 

0.05 

File name 

No. of 

probes with 

adjusted P 

val < 0.05 

01 DLD Results.csv 102588 
01 DLD Significant 

Probes.csv 
746 

02 Early Alz Results.csv 32375 
02 Early Alz Significant 

Probes.csv 
489 

03 Fam Alz Results.csv 38551 
03 Fam Alz Significant 

Probes.csv 
45 

04 FTP GRN Results.csv 37751 
04 FTP GRN Significant 

Probes.csv 
265 

05 FTP MAPT Results.csv 50554 
05 FTP MAPT Significant 

Probes.csv 
5 

06 ELA Results.csv 54620 
06 ELA Significant 

Probes.csv 
42 

07 SAD Results.csv 75303 
07 SAD Significant 

Probes.csv 
33 

08 SAD_ELA Results.csv 42821 
08 SAD_ELA Significant 

Probes.csv 
9 

09 TSD Results.csv 15484 
09 TSD Significant 

Probes.csv 
0 

Table 18. The initial differentially methylated probes are filtered to include only those that 

passes the FDR correction of 0.05. 
 

All DMPs extracted from the 9 datasets are available in the supplementary material (Limma 

DMPs). The DMPs for each phenotype are mapped to their genomic information using 

Illumina manifests (HG19) and are provided in a separate folder within the supplementary 

material (Probe Info). 
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Note: As mentioned in the methodology (Chapter 2), the DMPs included from the 04_TSD 

dataset were not FDR-corrected, as no probes passed the FDR correction. Therefore, the 

initially detected differentially methylated probes were used for analysis. 
 
 

4. Cross Comparison 
 

Following the methodology in (chapter 2), the comparison is carried out over three sections: 

 

A. Shared probes 
 

A matrix of 1 and 0 values is created to check which phenotype contains a certain probe (1 

means probe is found in the list of DMPs for that phenotype). All differentially methylated 

probes from all phenotypes are combined into one column, while phenotypes represent the 

remaining columns, as demonstrated in (Tables 20, 21). This procedure is performed twice: 

once for hypermethylated probes (Table 20) and once for hypomethylated probes (Table 21). 
 

  
 
Output*: 

 
 

*Availability: Supplementary Material (Shared Probes) 

 

ProbeList 
(1) 

DLD 

(2) 

Early 

Alz 

(3) 

Fam 

Alz 

(4) 

FTP 

GRN 

(5) 

FTP 

MAPT 

(6) 

ELA 

(7) 

SAD 

ELA 

(8) 

SAD 

(9) 

TSD 
phenoCount 

cg09945813 0 1 0 1 0 0 0 0 0 2 

cg21374153 0 0 1 1 0 0 0 0 0 2 

cg26187194 0 1 0 1 0 0 0 0 0 2 

Table 20. Hypermethylated probes that are shared among phenotypes 

Chapter 3 | Workflow 



P a g e  | 69 

 
 

ProbeList 
(1) 

DLD 

(2) 

Early 

Alz 

(3) 

Fam 

Alz 

(4) 

FTP 

GRN 

(5) 

FTP 

MAPT 

(6) 

ELA 

(7) 

SAD 

ELA 

(8) 

SAD 

(9) 

TSD 
phenoCount 

cg15454820 0 1 1 0 1 0 0 0 0 3 

cg04586579 0 1 1 1 0 0 0 0 0 3 

cg25782229 0 1 0 1 0 0 0 0 0 2 

cg24291747 0 1 0 1 0 0 0 0 0 2 

cg06952310 0 1 0 1 0 0 0 0 0 2 

cg20022454 0 0 0 0 0 1 0 1 0 2 

cg08259796 0 0 0 0 0 1 1 0 0 2 

cg15370054 0 1 0 1 0 0 0 0 0 2 

cg20824804 0 0 1 1 0 0 0 0 0 2 

cg07529625 0 1 0 1 0 0 0 0 0 2 

cg16288713 0 1 1 0 0 0 0 0 0 2 

cg00531088 0 0 0 0 0 1 1 0 0 2 

cg07257571 0 1 0 1 0 0 0 0 0 2 

cg22579590 0 1 0 1 0 0 0 0 0 2 

cg11335335 0 1 1 0 0 0 0 0 0 2 

Table 21. Hypomethylated probes that are shared among phenotypes 

 

The column phenoCount is created to track the number of phenotypes that are associated 

with one probe. Since TSD dataset was excluded from FDR correction, a conservative 

approach to include only probes that are shared with TSD and at least 2 phenotypes. 

However, none of the probes achieves such criteria (Tables 20, 21). 

 

Source code and output for the three sections (A. Shared probes, B. Shared Genes, C. shared 

Regions) is available in supplementary material (Folders: Shared Probes, Shared Genes, 

Shared Regions) 

 

 

 

Next, shared genes... 

 

 

 

 

 

 

 

 

 

Chapter 3 | Workflow 



P a g e  | 70 

 
 

B. Shared Genes 

 

Differentially methylated probes were mapped and sorted based on gene occurrence (i.e. 

genes that are mapped to multiple probes are ranked higher). 

 

  

 

Two lists of genes are extracted for each phenotype: hypermethylated and hypomethylated 

genes. 

 

  
 

This procedure is done for the 9 phenotypes. Fig. 29 shows an abstract of the final output. In 

the next step, all available genes are combined under one column in order to create a matrix 

that shows gene availability in each phenotype (Table 22 for hypermethylated genes 

combined datasets, and Table 23 for hypomethylated genes combined dataset). 
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Figure 29. Abstract of the output after gene enrichment for all phenotypes (hyper methylated 

genes/ promoters). Complete Output is available in supplementary material (Shared Genes) 

 

Genes DLD 
Early 

Alz 

Fam 

Alz 

FTP 

GRN 

FTP 

MAPT 
ELA 

SAD 

ELA 
SaD TSD phenoCount 

MAD1L1 1 1 1 0 0 0 0 0 0 3 

PTPRN2 0 1 0 0 0 0 0 0 1 2 

EBF3 0 1 0 0 0 0 0 0 1 2 

SLC39A11 0 1 0 1 0 0 0 0 0 2 

DIP2C 0 1 0 0 0 0 0 0 1 2 

CAMTA1 0 0 0 1 0 0 0 0 1 2 

CELF4 0 0 0 0 0 1 0 1 0 2 

MED12L 1 0 0 0 0 0 0 0 1 2 

IFRD1 0 1 0 0 0 0 0 0 1 2 

HDAC4 0 0 0 1 0 0 0 0 1 2 

DENND2D 1 1 0 0 0 0 0 0 0 2 

KIAA0182 1 0 0 0 0 0 0 0 1 2 

MSI2 0 1 0 0 0 0 0 0 1 2 

N4BP1 1 1 0 0 0 0 0 0 0 2 

GATAD2A 1 1 0 0 0 0 0 0 0 2 

ASAP2 1 0 0 0 0 0 0 0 1 2 

PRDM16 1 0 0 0 0 0 0 0 1 2 

FGFR2 0 0 1 0 0 0 0 0 1 2 

GPD2 0 1 0 0 0 0 0 0 1 2 

KCNQ1 1 1 0 0 0 0 0 0 0 2 

JADE1 1 1 0 0 0 0 0 0 0 2 

IER3 1 0 0 0 0 0 0 0 1 2 

NRP1 1 0 0 0 0 0 0 0 1 2 
 

Table 22. Hypermethylated genes that are shared among phenotypes. 
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Genes DLD 
Early 

Alz 

Fam 

Alz 

FTP 

GRN 

FTP 

MAPT 
ELA 

SAD 

ELA 
SaD TSD phenoCount 

CD81 1 1 0 1 0 0 0 0 0 3 

SDR42E1 0 1 1 1 0 0 0 0 0 3 

MAD1L1 1 1 0 0 0 0 0 0 1 3 

LOC101928708 0 0 1 1 0 0 0 0 0 2 

TRPS1 0 0 0 1 0 0 1 0 0 2 

LPCAT1 0 1 0 0 0 0 0 0 1 2 

RNF219 0 1 1 0 0 0 0 0 0 2 

SLC6A16 1 1 0 0 0 0 0 0 0 2 

RPS6KA2 1 0 0 0 0 0 0 0 1 2 

PIP4K2A 0 1 0 1 0 0 0 0 0 2 

FOXN3 0 1 0 1 0 0 0 0 0 2 

MUT 0 0 0 0 0 1 1 0 0 2 

CNTNAP2 1 0 1 0 0 0 0 0 0 2 

ARHGAP26 1 0 0 1 0 0 0 0 0 2 

HOOK2 0 1 0 1 0 0 0 0 0 2 

ADARB2 1 0 0 0 0 0 0 0 1 2 

WT1 0 1 0 1 0 0 0 0 0 2 

SPATA4 0 1 0 1 0 0 0 0 0 2 

CCDC26 0 1 0 1 0 0 0 0 0 2 

NCAN 0 1 0 1 0 0 0 0 0 2 

EPM2AIP1 0 0 0 0 0 1 1 0 0 2 

SP100 1 0 0 1 0 0 0 0 0 2 

DRD4 0 1 1 0 0 0 0 0 0 2 

HIVEP3 1 1 0 0 0 0 0 0 0 2 
 

Table 23. Hypomethylated genes/ promoters that are shared among phenotypes. 
 

 

 

C. Shared Regions 
  

After mapping the differentially methylated probes to their genomic coordinates, clusters of 

regions were detected using a maximum threshold of 100,000 bp. A data frame that contains 

chromosome number in the first column is created and the clusters of regions are appended 

as columns. An abstract of the output is available in Table 24. Each phenotype has two 

datasets similar to Table 24 (one for hyper- and one for hypomethylated regions). The mean 

average for each pair of coordinates (e.g., min_coord_1 and min_coord_2) is calculated for 

each dataset. Datasets from 9 phenotypes are then combined into two datasets: 

hypermethylated regions and hypomethylated regions (Supplementary Material: Shared 

Regions). 
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ch

r 

min_coord_

1 

max_coord_

1 

min_coord_

2 

max_coord_

2 

min_3,4, 

etc.. 

max_3,4, 

etc.. 

1 6420713 6454339 17766917 17829087 // // 

2 47077192 47077388   // // 

3 100581781 100594209 150996563 151036761 // // 

12 26348011 26349129 32638669 32654929 // // 

6 14117402 14117423 75898357 75922610 // // 

16 2058189 2058701 21161842 21162212 // // 

7 7142996 7162892 100463206 100464145 // // 

10 81946545 81965771 82247853 82265445 // // 

5 10522197 10601638   // // 

17 7283774 7283897 26683926 26699551 // // 

4 55618746 55650446   // // 

19 1068561 1074425 46932069 46946599 // // 

14 51288521 51288740 104345945 104397864 // // 

15 72409092 72409169 86296229 86296274 // // 

8 134307728 134369320   // // 

9 130860583 130866500   // // 

20 43343304 43343997   // // 

18 48404401 48404491   // // 
 

Table 24. Abstract of output for one dataset that shows the detected clusters in each 

chromosome. 
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Each dataset is then inspected for regions that share the same chromosome and are located 

within a pre-determined threshold of 100K base pairs*. The output** of detected regions is 

represented in a dictionary where chromosomes are the keys and phenotype names are the 

values. If any pairs are detected, another function is used to get the corresponding 

coordinates***. An example of this procedure (from hypermethylated regions) is 

demonstrated below: 
 

*Detection of phenotypes that shares close regions 

 
**Output of previous code: 

 
***Next, Extract the coordinates of detected phenotypes… 
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How significant probes are selected? 
 

From each of the previous sections (A. Shared probes, B. Shared genes, C. Shared regions), a 

set of significant probes/ genes is extracted based on the following criteria: 

• Overall logFC value which represent the magnitude of differentiation. 

• Number of probes mapping to a specific gene. 

• Number of phenotypes sharing a specific probe/gene. 

• Number of probes/phenotypes sharing a similar region. 

The top differentiated candidates are presented in the results section, where the probes are 

visualized with detailed information. All initial results are provided in the supplementary 

material, along with the source code for reproducibility (Supplementary Material: Limma 

DMPs, Probe Info). 

 

 

 

 

 

End of Chapter 3 | Workflow 

Next: Chapter 4 | Results and Discussion 
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1. Results 
 

To distinguish between hypermethylated and hypomethylated probes, figures were 

highlighted in green in sections 1.1, 1.2, 1.3 for hypermethylation and highlighted in yellow 

in sections 1.4, 1.5, and 1.6 for hypomethylation. 

 

1.1.  Hypermethylated probe ids that are shared among 2 or more phenotypes: 
 

The maximum match detected in hyper methylated probes (Table 20) was two phenotypes. 

The probes that achieve this match are 'cg09945813', 'cg21374153', 'cg26187194' as shown 

in Figures (30, 31, 32) respectively. 

 

 

  

Figure 30. Probe ID 'cg09945813' 
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Figure 31. Probe ID 'cg21374153' 
 

  

Figure 32. Probe ID 'cg26187194' 
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1.2. Hypermethylated probes that share the same gene among 2 or more 

phenotypes: Figures (33, 34, 35, 36). 
 

   

Figure 33. Gene: MAD1L1 
 

 

 
Figure 34. Gene: DENND2D 
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Figure 35. Gene: MSI2 

 

 

 

Figure 36. Gene: FGFR2 
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1.3. Hypermethylated probes in nearby regions (< 100K bp) shared between two 

or more phenotypes: (Figures 37, 38, 39) 
 

Chromosome 3 

  

Figure 37. Shared probes within the genomic loci (chr3:151,016,761-151,077,307) 

 

Chromosome 10 

  

Figure 38. Shared probes within the genomic loci (chr10:822,478,53-822,918,86) 
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Chromosome 16 

  

Figure 39. Shared probes within the genomic loci (chr16:307,054,91-307,246,04) 

 

 

 

Next: Hypomethylated probes (Sections: 1.4, 1.5, 1.6) 

 

1.4. Hypomethylated probe IDs that are shared among 2 or more phenotypes: 
 

The maximum match detected in hypo methylated probes (Table 21) was three phenotypes. 

The probes that achieve this match are 'cg15454820', 'cg04586579' as shown in Figures (40, 

41) respectively. 

 

 

 

 

 

Figures (40, 41) ➔ 
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Figure 40. Probe ID 'cg15454820' 
 

   

Figure 41. Probe ID 'cg04586579' 
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1.5.  Hypomethylated probes that share the same gene among 2 or more 

phenotypes: Figures (42, 43, 44, 45). 
 

  

 

Figure 42. Gene: MAD1L1 
 
 

Chapter 4 | Results and Discussion 



P a g e  | 84 

 

 

Figure 43. Gene: RPS6KA2 
 

   

Figure 44. Gene: CD81 
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Figure 45. Gene: SDR42E1 (the same probes available in Figure 41) 

 
 

1.6. Hypomethylated probes in nearby regions (< 100K bp) shared between two or 

more phenotypes: 
 

None of the chromosomes expresses shared regions among the 9 phenotypes even with 

threshold of 100K bp. 

Note: The source code used to plot all previous results is available in the 

supplementary material (Shared probes, Shared Genes, Shared Regions) 

 

2. Discussion 
 

The list of genes extracted for each dataset generally differed from the original results 

provided in each experiment. While a detailed comparison with the original results is beyond 

the scope of our study, the observed differences highlight the significant impact of varying 

normalization methods and pipelines on DMR results. 
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Based on logFC and the number of shared phenotypes, the most significant differentiations 

were selected. For hypermethylation, SLC39A11, MAD1L1, and DENND2D showed the 

highest differentiation. For hypomethylation, SDR42E1, CD81, and again MAD1L1 were 

identified as top candidates. Tables 25 and 26 highlight the most significant differentiations 

for hypermethylated and hypomethylated genes, respectively. The maximum number of 

phenotypes that are detected to share certain loci is 3 for both hypermethylated and 

hypomethylated regions. 

 

MAD1L1(Hypermethylation & Hypomethylation) 
 

For hypermethylated genes, MAD1L1 is the only to express availability in 3 phenotypes 

(DLD, Early Alz, Fam Alz). Interestingly, the same gene expresses hypomethylation in other 

locations (Figure 42) among also 3 phenotypes (DLD, Early Alz, and minimal differentiation 

in TSD). Upon reviewing available literature on the possible contribution of MAD1L1 in 

behavior and psychiatric health, we found a recent study by Sokolov et al. (2023) that 

specifically identifies Three methylation loci (cg02825527, cg18302629, and cg19624444) 

as consistently hypomethylated in minor allele carriers of depression candidates. Su et al. 

(2015) and Levey et al. (2020), on the other hand, provide evidence for the association of 

MAD1L1 variants with schizophrenia and anxiety, respectively. From an environmental 

perspective, Bozack et al. (2021) detected an association of the differentially methylated 

probe cg26462130 (MAD1L1) in cord blood linked to prenatal metal exposure (specifically 

Mn), with their findings showing that the differentiation persisted when blood samples were 

collected during childhood. However, in our study, the environmental effect of sleep 

deprivation in the TSD group should be interpreted conservatively, as the DMRs for TSD did 

not pass FDR correction. 

 

Other studies did not reveal a role for MAD1L1 relative to our phenotypes. For example, 

Jansen et al. (2006) highlights MAD1L1 as a potential target to improve survival in patients 

with ovarian cancer. The study demonstrates that MAD1L1 overexpression delays cell 

proliferation, while its downregulation through hypermethylation contributes to disease 

progression. Similarly, Bandala-Jacques et al. (2020) shows that patients with the MAD1L1 

rs1801368 polymorphism are less likely to achieve optimal cytoreduction (a critical factor in 

improving overall survival in ovarian adenocarcinomas) compared to the non-polymorphic 

group. However, the study did not investigate an epigenetic contribution. 

 

SLC39A11 Hypermethylation 
 

Figure 31 shows significant hypermethylation of probe ID 'cg09945813', which corresponds 

to the SLC39A11 gene. The hypermethylation was detected in the Early Alz and Fam Alz-  
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groups. Given that both phenotypes exhibit overall low quality of life and considering that 

hypermethylation is often associated with gene downregulation (reduced expression), we 

were particularly interested in the recent findings by Xia et al. (2024), which suggest a 

possible role of SLC39A11 in overall longevity. The study found that a mutation in 

SLC39A11, leading to reduced expression, results in an accelerated aging phenotype in 

zebrafish. Additionally, the study reported that SLC39A11 expression is significantly reduced 

in patients with Hutchinson-Gilford Progeria Syndrome (HGPS). 

 

Chr Gene/  Loci 
(1) 

DLD 

(2) 

Early 

Alz 

(3) 

Fam 

Alz 

(4) 

FTP 

GRN 

(5) 

FTP 

MAPT 

(6) 

ELA 

(7) 

SAD 

ELA 

(8) 

SAD 

(9) 

TSD 

17 SLC39A11     1   1           

13 NaN       1 1           

10 NaN     1   1           

7 MAD1L1   1 1 1             

1 DENND2D   2 1               

17 MSI2     2             2 

10 FGFR2       1           2 

3 P2RY14 ~ 151M bp 1               1 

3 MED12L ~ 151M bp 1                 

3 P2RY13 ~ 151M bp                 1 

10 TSPAN14 ~ 82M bp 2               1 

10 NaN ~ 82M bp                   

16 NaN ~ 30M bp 1                 

16 SNORA30 ~ 30M bp 1                 

16 PRR14 ~ 30M bp                 1 

16 SRCAP ~ 30M bp                 1 

Table 25. Hypermethylated genes availability among the 9 phenotypes. Values (1,2) 

represents the number of probes). 

 

DENND2D Hypermethylation 
 

Figure 34 shows hypermethylation of 3 different probes that are mapped to DENND2D gene. 

Associated phenotypes were DLD and Early Alz groups. The differentiation was more 

obvious in Early Alz group. Although www.genecards.org stated that diseases associated 

with DENND2D include autism spectrum disorder, we could not actually identify studies 

with this information. On the other hand, the available literature shows that candidates of 

DENN family are poorly characterized (Yoshimura et al., 2010, Kumar et al., 2023). Kumar 

et al. (2023) suggests that DENND2B (another candidate from DENN damily) is involved in 

cancer and neurodevelopmental disorders. As per the study, loss-of-function mutation in 

DENND2B leads to severe mental retardation, seizures, neural hearing loss, unilateral cystic 

kidney dysplasia, frequent infections, and other congenital anomalies.  
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On the other hand, the only study that specifically discusses DENND2D hypermethylation is 

Kanda et al. (2013). The study highlights the frequent hypermethylation of DENND2D in 

hepatocellular carcinoma (HCC) tissues (75%) and its significant association with the 

downregulation of DENND2D mRNA expression. The study concluded that DENND2D 

plays an important role in hepatocarcinogenesis (Kanda et al., 2013). 

 

TSPAN14 Hypermethylation in DLD & TSD groups 
 

Our findings revealed two probes that are hypermethylated on chromosome 10 within the 

coordinate range (82247853.0 - 82265445.0) in the DLD group. Another two probes in a 

nearby region (82213490.0 - 82291886.0) were also detected to be hypermethylated in the 

TSD group. However, the differentiation in the DLD group was more significant than in the 

TSD group (Figure 38). According to www.genecards.org, TSPAN14 is involved in the 

positive regulation of the Notch signaling pathway. Upon reviewing the available literature, 

Artavanis-Tsakonas and Muskavitch (2010) explain that Notch signalling plays a role in 

various developmental decisions in the nervous system. Salazar et al. (2020) also highlight 

the importance of Notch signalling in learning and memory across multiple species. The 

study further suggests that modulation of Notch activity may be effective in treating some 

symptoms associated with neurological disorders. These findings highlight the need for in-

depth investigation of TSPAN14 in developmental delays, such as the DLD phenotype. 

 

Chr Gene 
Probe/ 

Loci 

(1) 

DLD 

(2) 

Early 

Alz 

(3) 

Fam 

Alz 

(4) 

FTP 

GRN 

(5) 

FTP 

MAPT 

(6) 

ELA 

(7) 

SAD 

ELA 

(8) 

SAD 

(9) 

TSD 

16 SDR42E1     1 1 1           

7 MAD1L1   1 1             3 

6 RPS6KA2   1               2 

11 CD81   1 1   1           

10 NaN cg15454820   1 1   1         

Table 26. Hypomethylated genes availability among the 9 phenotypes. Values (1,2,3) 

represents the number of probes).  

 

 

SDR42E1 Hypomethylation 
 

The most hypomethylation was observed in probe ID 'cg04586579' that maps to SDR42E1 

gene, shown in Figure 41. This probe was hypomethylated across three phenotypes (Early 

Alz, Fam Alz, FTP GRN), all belonging to the same experiment (E-MTAB-11975). We could 

not find relevant information in the available literature regarding SDR42E1 role in nervous 

system symptomology. However, Bouhouche et al. (2021) which uses blood samples in their- 
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Study reveals an essential role of SDR42E1 in maintaining connective tissue. Apart from 

relevant neurological symptoms, Meyer et al. (2021) on the other hand used TNBC samples 

(triple-negative breast cancer biopsy samples) and finds that SDR42E1 is the only DMR that 

shows both altered methylation and expression in TNBC patients after Neoadjuvant 

chemotherapy (NAC).  

 

CD81 Hypomethylation 
 

Three hypomethylated probes were mapped to CD81 which interestingly was associated 

among DLD, Early Alz, and FTP GRN groups (Fig. 44). Available literature demonstrates 

that CD81 main role is to mediate signal transduction events (Hasterok et al, 2019). An 

analysis of single cell RNAseq of human Alzheimer’s disease brains showed that CD81 is 

upregulated in microglia module Mathys et al. (2019). The study uses samples from the 

prefrontal cortex of 48 individuals with varying degrees of Alzheimer’s disease pathology 

across six major brain cell types (Figure 46). Together with our findings, this suggests a 

possible correlation between CD81 hypomethylation in blood cells and the upregulation of 

the same gene in microglia cells in Alzheimer’s disease. 
 

  

Figure 46. Diagram from Mathys et al. (2019) demonstrates 

differentially expressed genes in six cell types from prefrontal cortex 

tissue of Alzheimer’s candidates. 
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Hypermethylated regions 

MED12L has been reported to overlap with several genes, including P2RY13 and P2RY14 

(Nizon et al., 2019). Notably, our approach for detecting probes with shared regions revealed 

hypermethylation within the genomic locus at chr3:151,016,761-151,077,307 (Figure 37) 

that includes MED12L, P2RY13, and P2RY14. MED12L is associated with Nizon-Isidor 

Syndrome, a neurodevelopmental disorder characterized by developmental delay, poor 

speech, and various symptoms, including sleep disturbances (Online Mendelian Inheritance 

in Man [OMIM], 2025). Given this context, our findings may offer promising insights in the 

field of epigenetics, potentially shedding light on the role of sleep in the development of 

such conditions or in explaining language delays in children without specific diagnoses. 

However, these interpretations should be approached with caution, specifically in terms of 

TSD group which did not pass the FDR correction. 
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3. Limitations 

 

Further enrichment of the results, particularly for MAD1L1, TSPAN14, and CD81, could have 

provided deeper insights, especially when compared to results in other studies. This could be 

achieved using a tailored tool that accounts for multiple phenotypes. However, time 

constraints limited our ability to explore and test a sufficient number of tools. Additionally, 

data availability posed a limitation, as phenotype selection depended on publicly accessible 

datasets. On the other hand, our exclusion criteria in terms of platform compatibility needs to 

be re-evaluated, this is because our results mainly targeted probes that shares the same gene, 

rather than finding matched probes. Finally, the complete failure of the TSD dataset to pass 

FDR correction requires further investigation, particularly regarding the parameter settings 

of the Limma function for the 450K array. 

 

4. Conclusion 

 

Our research, alongside other studies, provides further evidence supporting the potential of 

peripheral blood biomarkers in reflecting neurological symptomatology. Phenotypes that 

exhibited patterns of alteration on identical probes were limited to Alzheimer’s disorders 

groups from the same experiment (E-MTAB-11975). These probes need to be investigated in 

a separate study primarily dedicated to Alzheimer’s disease. A key finding from our results is 

the hypomethylation of CD81 in Alzheimer’s samples (Early Alz and FTP GRN), which has 

also been reported as upregulated in the prefrontal cortex in another study. The alteration in 

methylation levels detected in this study was limited to a single probe differentiation. 

However, the methylation changes in MAD1L1-mapped probes in individuals with 

Developmental Language Disorder (DLD) and Early-onset Alzheimer's Disease (EOAD) are 

noteworthy, especially considering the existing literature discussing the methylation of the 

same gene in psychiatric and environmental conditions. These findings should serve as 

motivation for further investigation of MAD1L1 to explore its potential contribution to 

neuro-system symptomology. From an analytical standpoint, it is clear that DNA methylation 

analysis would benefit from standardized methods tailored to specific cell types or 

phenotypes. Such standardization could improve result consistency and enhance the 

reliability of DNA methylation studies, especially for diseases lacking global methylation 

changes. On the other hand, our approach of performing QC procedures after a standard 

pipeline provides greater insights and easier sample-wise visibility into data quality but 

requires more processing time. Despite this, it remains valuable for large arrays with 

potential quality risks from specific samples. For smaller arrays, while less useful for 

removing low-performing samples, it offers a method to impute missing or masked beta 

values using weighted mean (WM). 
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Section 1 Pipelines Comparison 

 

Comparison (1) between: 

Raw Data Raw reads extracted using minfi package from the idat files provided on 

ArrayExpress. 

 

Processed 

data 

SWAN-Processed Data: Processed beta values provided by the publisher on 

ArrayExpress.  

 
 

Fig 1. Shows the beta distribution curve for both outputs. From the provided metadata file 

(E-MTAB-13583.txt.idf) available with the experiment E-MTAB-13583 on ArrayExpress, the 

quality control protocol includes the following information: 

• R packages minfi, ChAMP and RnBeads were used. 

• The limma package was used by RnBeads to compute the p-values for all the 

covered CpGs. 

• Samples and CpG islands (CpGs) that contained a substantial fraction of low 

technical quality measurements were discarded. 

• Normalization done using SWAN method available in minfi package. 
 

  

Fig 1. A comparison between processed and raw data publicly available on ArrayExpress for 

the experiment E-MTAB-13583 
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Section 1 Pipelines Comparison 

 

Comparison (2) between: 

Processed 

data 

SWAN-Processed Data: Processed beta values provided by the publisher on 

ArrayExpress.  

Quantile 

pipeline 

(Minfi 

package) 

 

 

preprocessQuantile(data, fixOutliers = TRUE, removeBadSamples = 

TRUE, badSampleCutoff = 10.5, quantileNormalize = TRUE, stratified = 

TRUE).  

 

To compare the processed data with a complete pipeline, we have chosen preprocessQuantile 

from Minfi library as it provides full workflow including the removal of low-quality points in 

addition to fixing outlier (Fig. 2). 

  

Fig 2. Comparing preprocessQuantile() from Minfi with the processed data from the 

experiment E-MTAB-13583 which used SWAN method. 
 

The difference between the two methods is primarily due to difference in normalization 

technique in Quantile versus SWAN. However, the details of the SWAN-processed data 

published on ArrayExpress did not declare the specific arguments used in the function. To 

further confirm that different processing methods result in different distribution of beta 

values, we have tested one more pipeline used by Enmix, which is another popular library 

from R Bioconductor packages.  
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Section 1 Pipelines Comparison 

 

Comparison (3) between: 

Quantile 

pipeline 

(Minfi 

package) 

 

 

preprocessQuantile(data, fixOutliers = TRUE, removeBadSamples = 

TRUE, badSampleCutoff = 10.5, quantileNormalize = TRUE, stratified = 

TRUE).  

mpreprocess() 

(Enmix 

standard 

pipeline) 

mpreprocess(data, nCores=2,bgParaEst="oob",dyeCorr="RELIC", 

qc=TRUE,qnorm=TRUE,qmethod="quantile1", 

fqcfilter=FALSE,rmcr=FALSE,impute=TRUE)   

 
 

One of the main differences observed in Enmix library, is the availability of RELIC method 

in adjusting dye bias. The corresponding method used in Minfi is the non-linear approach 

(dyeCorr = NL). Despite that both functions use quantile and applies outlier imputation, The 

difference of distribution in beta values is still available (Fig. 3). Different factors that can 

contribute to such a difference. For example, one obvious factor is the application of 

different dye bias correction methods (RELIC vs Non-Linear). 
 

  

Fig 3. A comparison between mpreprocess() from Enmix and preprocessQuantile() from 

Minfi 
 

 

 

 

 

 

 

 

 

 

 



P a g e  | 104 

Section 1 Pipelines Comparison 

 

 

Comparison (4) between: 

Processed data SWAN-Processed Data: Processed beta values provided by the 

publisher on ArrayExpress.  

 

Standard 

preprocessSWAN() 

(Minfi package) 

if (require(minfiData)) { dat <- preprocessRaw(RGsetEx) 

preprocessMethod(dat) datSwan <- preprocessSWAN(RgsetEx, mSet = 

dat) datIlmn <- preprocessIllumina(RgsetEx) 

preprocessMethod(datIlmn) datIlmnSwan <- 

preprocessSWAN(RgsetEx, mSet = datIlmn) } 

 
 

Attempting to mimic SWAN of the processed data, we used preprocessSWAN() expecting 

that this attempt will give the same result. The code used for SWAN is as per Minfi reference 

manual (K. D. Hansen & Fortin, [Minfi User Guide]). Although the same normalization 

algorithm is used in pipelines, there is still a difference in the beta distribution curve that 

mostly resulted from quality control steps and thresholds used in each pipeline (Fig. 4). 

 

  

Fig 4. A comparison between preprocessSWAN() standard approach as per Minfi reference 

manual versus the preprocessSWAN() pipeline used in E-MTAB-13583 experiment.   
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Section 2 P-value Methods Comparison 

 
# P value detection methods comparison 

for (path in c( 

    "C:/Users/Saeed.LAPTOP-0UBK4QVG/Documents/Target/001_HealthyChildren/E-MTAB-

12728", 

    "C:/Users/Saeed.LAPTOP-0UBK4QVG/Documents/Target/01_DLD/E-MTAB-13583", 

    "C:/Users/Saeed.LAPTOP-0UBK4QVG/Documents/Target/02_FTP/E-MTAB-11975", 

    "C:/Users/Saeed.LAPTOP-0UBK4QVG/Documents/Target/03_SAD/GSE164056", 

    "C:/Users/Saeed.LAPTOP-0UBK4QVG/Documents/Target/04_AcuteSleepDep/E-MTAB-4664", 

    "C:/Users/Saeed.LAPTOP-0UBK4QVG/Documents/Target/05_LowSleepImpact/E-GEOD-80559" 

)) { 

     

    print("calculating p values . . ") 

     

    # Define input path 

    setwd(path) 

    input <- path 

     

    # Initialize a data frame to store results 

    result <- data.frame(row.names = c( 

        "'pOOBAH' Method by SeSAME", 

        "'detectionP(M+U)' Method by Minfi", 

        "'oob' Method by ENmix", 

        "'negative' Method by ENmix" 

    )) 

     

    # Sesame - pOOBAH 

    idat_files <- searchIDATprefixes(input) 

    sesame_counts <- c() 

     

    for (prefix in idat_files) { 

        sset <- readIDATpair(prefix) # Process each IDAT pair individually 

        sset <- pOOBAH(sset) # Apply pOOBAH for detection p-values 

        sesame_counts[basename(prefix)] <- sum(sset$mask) # Count failed probes 

    } 

    result["'pOOBAH' Method by SeSAME", names(sesame_counts)] <- sesame_counts 

     

    # Minfi - detection P values 

    rgSet <- read.metharray.exp(input) 

    p_val_minfi <- detectionP(rgSet) 

    count_minfi <- colSums(p_val_minfi > 0.05) 

    result["'detectionP(M+U)' Method by Minfi", names(count_minfi)] <- count_minfi 

     

    # ENmix - oob method 

    rgSetEX <- read.metharray.exp(input, extended = TRUE) 

    p_val_oob <- calcdetP(rgSetEX, detPtype = "oob") 

    count_oob <- colSums(p_val_oob > 0.05) 

    result["'oob' Method by ENmix", names(count_oob)] <- count_oob 

     

    # ENmix - negative method 

    p_val_neg <- calcdetP(rgSetEX, detPtype = "negative") 

    count_neg <- colSums(p_val_neg > 0.05) 
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    result["'negative' Method by ENmix", names(count_neg)] <- count_neg 

     

    # Add a column for averages 

    result$Average <- rowMeans(result, na.rm = TRUE) 

     

    # Write the result to a CSV file 

    write.csv(result, file = "[1] Pval_Detec_Methods.csv", row.names = TRUE) 

     

    print("Check csv comparison table") 

} 
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Section 3 Preprocessing IDATs 

 

print("[4] Processing Group of Idats..") 

# Loop over each path and perform the tasks 

for (path in c( 

    "C:/Users/Saeed.LAPTOP-0UBK4QVG/Documents/Target/01_DLD/E-MTAB-13583", 

    "C:/Users/Saeed.LAPTOP-0UBK4QVG/Documents/Target/02_FTP/E-MTAB-11975", 

    "C:/Users/Saeed.LAPTOP-0UBK4QVG/Documents/Target/03_SAD/GSE164056", 

    "C:/Users/Saeed.LAPTOP-0UBK4QVG/Documents/Target/04_AcuteSleepDep/E-MTAB-4664", 

    "C:/Users/Saeed.LAPTOP-0UBK4QVG/Documents/Target/05_LowSleepImpact/E-GEOD-80559" 

)) { 

    print("Processing Starts. . . ") 

    # Set Working Directory as same as the input 

    setwd(path) 

    input = path 

     

    # Load the Required Libraries 

    library(parallel) # in order to use mclapply() 

    library(sesame) 

     

    ### ------------------------------------ 

    ### Function to process each IDAT pair 

    process_idat <- function(px) { 

        # Step 1: Apply qualityMask 

        masked_data <- qualityMask(readIDATpair(px)) 

         

        # Step 2: Apply dyeBiasNL and extract p-values 

        corrected_data <- dyeBiasNL(masked_data, mask = TRUE) # Equal to standard 

dyBiasNL() 

        pvalues <- pOOBAH(corrected_data, return.pval = TRUE) # Extract p-values 

         

        # Step 3: Apply pOOBAH (using corrected_data from step 2) 

        p_value_data <- pOOBAH(corrected_data, combine.neg = TRUE, pval.threshold = 

0.05) # Equal to standard pOOBAH() 

         

        # Step 4: Apply noob 

        noob_data <- noob(p_value_data, combine.neg = TRUE, offset = 15) # qual to 

standard noob() 

         

        # Step 5: Get betas 

        betas <- getBetas(noob_data) 

         

        return(list(betas = betas, pvalues = pvalues)) # Return both betas and p-

values 

    } 

     

    # Define input directory (Assign Multipe Inputs For Multi Experiments). 

    # Each Input Needs to Be Different Path In Order Not To Mix Up The Outputs. 

     

    ### ------------------------------------ 

    # Locate IDAT files and process using above function 

     

    idat_prefixes <- searchIDATprefixes(input) 
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    results <- mclapply( 

        idat_prefixes, 

        process_idat 

    ) 

     

    # Combine betas and p-values 

    betas <- do.call(cbind, lapply(results, `[[`, "betas")) 

    pvalues <- do.call(cbind, lapply(results, `[[`, "pvalues")) 

     

    # Convert betas and pvalues to data frames 

    betas <- as.data.frame(betas) 

    pvalues <- as.data.frame(pvalues) 

     

    # Rename columns to end with _Betas and _Pval 

    colnames(betas) <- paste0(colnames(betas), "_Betas") 

    colnames(pvalues) <- paste0(colnames(pvalues), "_Pval") 

     

    # Merge betas and p-values 

    merged_data <- data.frame(ProbeID = rownames(betas)) # Start with ProbeID 

    rownames(betas) <- NULL # Remove row names for binding 

    rownames(pvalues) <- NULL 

     

    # Interleave columns from betas and pvalues 

    for (i in 1:ncol(betas)) { 

        merged_data <- cbind(merged_data, betas[, i], pvalues[, i]) 

        colnames(merged_data)[(2 * i)] <- colnames(betas)[i] # Rename to beta column 

        colnames(merged_data)[(2 * i + 1)] <- colnames(pvalues)[i] # Rename to p-

value column 

    } 

     

    # Write merged data to CSV file 

    write.csv(merged_data, "[4] Betas_Pval.csv", row.names = FALSE) 

     

    # Optional: frees up memory 

    rm(list = ls()) 

    gc() 

     

    # Check Betas QC in Python 

    print("Check Betas in Python") 

} 
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Section 4 Masking Summary 

 

print("[2-3] Masking summary") 

 

# Loop over each path and perform the tasks 

for (path in c( 

    "C:/Users/Saeed.LAPTOP-0UBK4QVG/Documents/Target/001_HealthyChildren/E-MTAB-

12728", 

    "C:/Users/Saeed.LAPTOP-0UBK4QVG/Documents/Target/01_DLD/E-MTAB-13583", 

    "C:/Users/Saeed.LAPTOP-0UBK4QVG/Documents/Target/02_FTP/E-MTAB-11975", 

    "C:/Users/Saeed.LAPTOP-0UBK4QVG/Documents/Target/03_SAD/GSE164056", 

    "C:/Users/Saeed.LAPTOP-0UBK4QVG/Documents/Target/04_AcuteSleepDep/E-MTAB-4664", 

    "C:/Users/Saeed.LAPTOP-0UBK4QVG/Documents/Target/05_LowSleepImpact/E-GEOD-80559" 

)) { 

    # Set Working Directory as same as the input  

    setwd(path) 

    input <- path 

     

    # Locate IDAT file prefixes 

    idat_files <- searchIDATprefixes(input) 

     

    # Initialize list to store results 

    results <- list() 

    results_1 <- list() 

     

    # Iterate over each IDAT pair 

    for (file in idat_files) { 

        s <- readIDATpair(file) 

         

        # Check if SeSAME Identifies the platform: 

        platform <- sdfPlatform(s) 

         

        # Step 1: Check initial masking 

        initial_mask <- sum(s$mask) 

         

        # How Many Missing Betas Before QC: 

        qcstat <- sesameQC_calcStats(s) 

        missing_betas <- sesameQC_getStats(qcstat, "frac_na_cg") 

         

        # Modification 1: Calculate Probe Success rate using: 

        rate_05_1 <- probeSuccessRate(s, mask = TRUE, max_pval = 0.05) 

        rate_01_1 <- probeSuccessRate(s, mask = TRUE, max_pval = 0.01) 

         

        # Step 2: Apply Quality Mask 

        s1 <- qualityMask(s) 

        quality_mask <- sum(s1$mask) # Masks the un unique mapping or influenced by 

SNPs (SeSAME tutorial) 

         

        # How Many Missing Betas After QC: 

        qcstat_1 <- sesameQC_calcStats(s1) 

        missing_betas_1 <- sesameQC_getStats(qcstat_1, "frac_na_cg") 

         

        # Mddification 2: Calculate Probe Success rate using: 
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        rate_05_2 <- probeSuccessRate(s1, mask = TRUE, max_pval = 0.05) 

        rate_01_2 <- probeSuccessRate(s1, mask = TRUE, max_pval = 0.01) 

         

        # Step 3: Apply dyeBiasNL (mask not modified) 

        s2 <- dyeBiasNL(s) 

        dyeBiasNL_mask <- sum(s2$mask) 

         

        # Step 4: Apply pOOBAH over the original data 

        s3 <- pOOBAH(s) 

        pOOBAH_mask <- sum(s3$mask) 

         

        # Apply pOOBAH over the corrected Data 

        s2_1 <- dyeBiasNL(s1) # s2_1 is the corrected Data 

        s3_1 <- pOOBAH(s2_1) 

        rate_05_3 <- probeSuccessRate(s3_1, mask = TRUE, max_pval = 0.05) 

        rate_01_3 <- probeSuccessRate(s3_1, mask = TRUE, max_pval = 0.01) 

         

        # How Many Missing Betas After pOOBAH for the original data: 

        qcstat_2 <- sesameQC_calcStats(s3) 

        missing_betas_2 <- sesameQC_getStats(qcstat_2, "frac_na_cg") 

         

        # Step 5: Apply noob 

        s4 <- noob(s) 

        noob_mask <- sum(s4$mask) 

         

        # How Many Missing Betas After noob for the original data: 

        qcstat_3 <- sesameQC_calcStats(s4) 

        missing_betas_3 <- sesameQC_getStats(qcstat_3, "frac_na_cg") 

         

        # Mddification 3: Calculate Probe Success rate using: 

        s4_1 <- noob(s3_1) 

        rate_05_4 <- probeSuccessRate(s4_1, mask = TRUE, max_pval = 0.05) 

        rate_01_4 <- probeSuccessRate(s4_1, mask = TRUE, max_pval = 0.01) 

         

        # How many missing Betas After Complete Processing 

        # QC Mask + Dye Corr + pOOBAH + noob: 

        qcstat_4 <- sesameQC_calcStats(s4_1) 

        missing_betas_4 <- sesameQC_getStats(qcstat_4, "frac_na_cg") 

         

        # Calculate Total Masked 

        Total_Masked_Probes <- sum(s1$mask) + sum(s2$mask) + sum(s3$mask) + 

sum(s4$mask) 

        Total_Missing_Betas <- missing_betas_4 

         

        # Store results with base name of IDAT file 

        results[[basename(file)]] <- c(platform, initial_mask, missing_betas, 

quality_mask, missing_betas_1, dyeBiasNL_mask, pOOBAH_mask, missing_betas_2, 

noob_mask, missing_betas_3, Total_Missing_Betas, Total_Masked_Probes) 

        results_1[[basename(file)]] <- c(rate_05_1, rate_05_2, rate_05_3, rate_05_4, 

rate_01_1, rate_01_2, rate_01_3, rate_01_4) 

    } 

     

    # Convert the results list to a data frame 

    summary_df <- as.data.frame(do.call(cbind, results)) 

    summary_df_1 <- as.data.frame(do.call(cbind, results_1)) 
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    # Ensure only numeric rows are used for averaging 

    numeric_cols <- sapply(summary_df, is.numeric) 

     

    # Calculate average for only the numeric columns 

    summary_df$avg <- rowMeans(summary_df[, numeric_cols], na.rm = TRUE) 

     

    # Assign row names for steps 

    rownames(summary_df) <- c("Platform Recognized", "No. of Masked Probes in The 

Raw Sample", "Perc. Of Missing Betas in The Raw Sample", "No. of Masked Probes After 

qualityMask()", "Perc. Of Missing Betas After qualityMask()", "No. of Masked Probes 

with dyeBiasNL()", "No. of Masked Probes with pOOBAH()", "Perc. Of Missing Betas As 

a Result of pOOBAH", "No. of Masked Probes with noob()", "Perc. Of Missing Betas As 

a result of noob()", "Perc. Of Missing Betas After (qualityMask() + dyeBiasNL() + 

pOOBAH() + noob())", "Total Masked probes") 

    rownames(summary_df_1) <- c("05 Rate for Raw Data", "05 Rate after 

qualityMask()", "05 Rate after pOOBAH()", "05 Rate after noob()", "01 Rate for Raw 

Data", "01 Rate after qualityMask()", "01 Rate after pOOBAH()", "01 Rate after 

nnob()") 

     

    # Write summary to CSV 

    write.csv(summary_df, "[2] Masking_Summary.csv", row.names = TRUE) 

    write.csv(summary_df_1, "[3] SuccessRate_Summary.csv", row.names = TRUE) 

     

     

    # Optional: frees up memory 

    rm(list = ls()) 

    gc() 

 

    print("One iteration is done..")  

} 
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Section 5 Limma Analysis 

 

perform_limma_analysis <- function(case_path, control_path, filename) { 

    # Load necessary library 

    library(limma) 

     

    # Load datasets 

    case_data <- read.csv(case_path) 

    control_data <- read.csv(control_path) 

     

    # Ensure 'ProbeID' column exists in both datasets 

    case_data <- case_data[, c("ProbeID", grep("_Betas$", names(case_data), value = 

TRUE))] 

    control_data <- control_data[, c("ProbeID", grep("_Betas$", names(control_data), 

value = TRUE))] 

     

    # Merge datasets on 'ProbeID' 

    merged_data <- merge(case_data, control_data, by = "ProbeID") 

     

    # Set ProbeID as row names and remove the column 

    rownames(merged_data) <- merged_data$ProbeID 

    merged_data <- merged_data[, -1] 

     

    # Create group labels 

    group <- factor(c(rep("Case", ncol(case_data) - 1), rep("Control", 

ncol(control_data) - 1))) 

     

    # Design matrix 

    design <- model.matrix(~ group) 

     

    # Fit the linear model 

    fit <- lmFit(merged_data, design) 

     

    # Apply empirical Bayes moderation 

    fit <- eBayes(fit) 

     

    # Get top differentially methylated probes 

    results <- topTable(fit, coef = 2, number = Inf)  # coef=2 represents the 

"group" variable 

     

    # Save results to CSV 

    write.csv(results, paste0(filename, " Results.csv"), row.names = TRUE) 

     

    # Filter probes based on adjusted p-value 

    significant_probes <- results[results$adj.P.Val < 0.05, ] 

     

    # Save significant probes to CSV 

    write.csv(significant_probes, paste0(filename, " Significant Probes.csv"), 

row.names = TRUE) 

     

    # Return significant probes for further analysis 

    return(significant_probes) 

} 
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############################################################### 

# Paths 

> cases_path <- "C:/Users/Saeed.LAPTOP-

0UBK4QVG/Documents/Target/0001_CASES/Normalized" 

>  

    >  

    > # Print the list of files 

    > print(list.files(path = cases_path, full.names = TRUE)) 

[1] "C:/Users/Saeed.LAPTOP-

0UBK4QVG/Documents/Target/0001_CASES/Normalized/01_DLD(11)cases(NORM).csv"      

[2] "C:/Users/Saeed.LAPTOP-

0UBK4QVG/Documents/Target/0001_CASES/Normalized/02_Early_Alz(5)cases(NORM).csv" 

[3] "C:/Users/Saeed.LAPTOP-

0UBK4QVG/Documents/Target/0001_CASES/Normalized/02_Fam_Alz(6)cases(NORM).csv"   

[4] "C:/Users/Saeed.LAPTOP-

0UBK4QVG/Documents/Target/0001_CASES/Normalized/02_FTP_GRN(5)cases(NORM).csv"   

[5] "C:/Users/Saeed.LAPTOP-

0UBK4QVG/Documents/Target/0001_CASES/Normalized/02_FTP_MAPT(3)cases(NORM).csv"  

[6] "C:/Users/Saeed.LAPTOP-

0UBK4QVG/Documents/Target/0001_CASES/Normalized/03_ELA(27)cases(NORM).csv"      

[7] "C:/Users/Saeed.LAPTOP-

0UBK4QVG/Documents/Target/0001_CASES/Normalized/03_SAD(32)cases(NORM).csv"      

[8] "C:/Users/Saeed.LAPTOP-

0UBK4QVG/Documents/Target/0001_CASES/Normalized/03_SAD_ELA(29)cases(NORM).csv"  

[9] "C:/Users/Saeed.LAPTOP-

0UBK4QVG/Documents/Target/0001_CASES/Normalized/04_TSD(17)cases(NORM).csv"      

[10] "C:/Users/Saeed.LAPTOP-

0UBK4QVG/Documents/Target/0001_CASES/Normalized/05_LSI(1)cases(NORM).csv"  

 

 

 

> controls_path <- "C:/Users/Saeed.LAPTOP-

0UBK4QVG/Documents/Target/0001_CONTROLS/Normalized" 

>       

    > # Print the list of files 

    > print(list.files(path = controls_path, full.names = TRUE)) 

[1] "C:/Users/Saeed.LAPTOP-

0UBK4QVG/Documents/Target/0001_CONTROLS/Normalized/01_DLD(9)controls(NORM).csv"  

[2] "C:/Users/Saeed.LAPTOP-

0UBK4QVG/Documents/Target/0001_CONTROLS/Normalized/02_FTP(5)controls(NORM).csv"  

[3] "C:/Users/Saeed.LAPTOP-

0UBK4QVG/Documents/Target/0001_CONTROLS/Normalized/03_SAD(42)controls(NORM).csv" 

[4] "C:/Users/Saeed.LAPTOP-

0UBK4QVG/Documents/Target/0001_CONTROLS/Normalized/04_TSD(15)controls(NORM).csv" 

[5] "C:/Users/Saeed.LAPTOP-

0UBK4QVG/Documents/Target/0001_CONTROLS/Normalized/05_LSI(1)controls(NORM).csv" 

 

############################################################### 

# Example usage 

 

case_path <- "C:/Users/Saeed.LAPTOP-

0UBK4QVG/Documents/Target/0001_CASES/Normalized/02_Early_Alz(5)cases(NORM).csv" 

control_path <- "C:/Users/Saeed.LAPTOP-

0UBK4QVG/Documents/Target/0001_CONTROLS/Normalized/02_FTP(5)controls(NORM).csv" 

filename <- "02 Early Alz" 
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significant_probes <- perform_limma_analysis(case_path, control_path, filename) 
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Note: project pipeline will be uploaded on github after official publishing. 

Github link: https://github.com/users/saeed-svu/projects/1.    

 

Access using google drive (link). List of contents available below: 

#  Folder Name Content 

1 Limma DMPs Differentially Methylated Probes for 9 phenotypes 

2 Probe Info 
Mapped DMPs infomration from Illumina manifest 

(HG19) 

3 QC2 .ipynb notes (9 cases and 4 controls)* 

4 Quality Score Masked percentage per subject (9 tables) 

5 Shared Genes Genes list per phenotypes + combined 

6 Shared Probes Probes that are shared among phenotypes 

7 Shared Regions 
Detected coordinates for 9 phenotypes + a table for 

the shared regionsphenotypes 

8 Subject Performance 
A table that include subject quality score + outlier 

counts 

9 DNA_Meth_Module_Limma.ipynb A module that includes all functions and libraries** 

* Pipeline example available on https://github.com/saeed-svu/DNAmeth_QC2_Pipeline.  

**To be used in all steps except QC2.  

 

Supplementary Material 

https://github.com/users/saeed-svu/projects/1
https://drive.google.com/drive/folders/1KVeyuvymHaiNgjT6Ccn2KXqgRbLimi3F?usp=sharing
https://github.com/saeed-svu/DNAmeth_QC2_Pipeline

