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Abstract. 
 

In the human body, the kidneys, play the important role of filtering wastes and toxic 

bodies from the blood. Chronic kidney disease (CKD) is a condition in which the human 

kidneys are damaged and unable to filter the blood in a proper way. It is a 

nontransmissible disease that causes mortality of large numbers worldwide and is very 

expensive to properly detect and diagnose, therefore, CKD patients often reach its 

chronic stages, especially in countries with limited resources. Furthermore, CKD is a 

silent killer due to the lack of physical symptoms at the initial stage, but a steady loss of 

glomerular filtration rate (GFR) occurs over a period of time longer than three months. 

CKD is a fatal disease if left undetected as it leads to renal failure, in the worst cases. 

However, the early diagnosis of CDK can significantly reduce the mortality rate. 

Moreover, if CKD is predicted early and correctly, it results in an increased probability of 

successful treatment and prolongs the patient’s life. The advances in ML, in addition to 

predictive analytics, provide promising results which in turn prove the capability of 

prediction in CKD and beyond. The utilization of ML methods in nephrology enables the 

building of ML models to better detect the at-risk patients of CKD especially in primary 

care settings. The current study carries out a prediction-based method that helps in early 

detecting of CKD patients at the early stage. In this study, we utilize on of the boosting 

method, XGBoost to achieve a higher prediction accuracy for CKD. Various 

preprocessing steps are employed to achieve better prediction performance, along with 

suitable hyperparameter tuning and feature selection. We assessed the degree of 

importance of each feature in the dataset leading to CKD. The performance of the model 

was evaluated with accuracy.  It attained 98 % accuracy for training and testing sets. The 

way the research was done leads to the conclusion that recent improvements in machine 

learning, along with the help of predictive modeling, make for an interesting way to find 

new solutions that can then be used to test the accuracy of prediction in the field of 

kidney disease and beyond. 
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Chapter 1 – Chronic Kidney Disease (CKD) 

1.1. Introduction.  
 

The urinary system, also known as the renal system, comprising the kidneys, 

ureters, bladder, and urethra, Fig (1) is responsible for the production, storage, 

and elimination of urine. The system contains two kidneys which are two 

bean-shaped organs, each about the size of a fist. They are located just below 

the rib cage, one on each side of your spine. [1] Every day kidneys filter about 

120 to 150 quarts of blood to remove wastes and balance fluids. This process 

produces about 1 to 2 quarts of urine per day. [2]     

 

Figure (1): Front view of the Urinary Tract. [2] 

1.2. Kidneys functions.  
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1.2.1. Filtration of Blood and urine formation: 

 

• Filtration: The kidneys filter waste products, toxins, and excess 

substances from the blood, such as urea, creatinine, and excess salts. [3] 

Blood enters the kidneys through the renal arteries. Inside the kidneys, 

blood flows into tiny structures called glomeruli where small 

molecules such as water, glucose, salts, and waste products are filtered 

out of the blood and into the Bowman's capsule. [4] Fig (2)  

• Reabsorption and Secretion:  As the filtrate flows through the renal 

tubules, many of the filtered substances that are important for the 

body, such as water, glucose, amino acids, and electrolytes, are 

reabsorbed back into the bloodstream. [5] 

• Excretion: After passing through the renal tubules, the remaining fluid 

is collected in the collecting ducts and eventually drains into the renal 

pelvis and then into the ureters. From there, urine is transported to the 

bladder for storage until it is excreted from the body. [4]  
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Figure (2): kidney anatomy and urine flow in it. Unfiltered blood flows 

into your kidneys through the renal artery and filtered blood exits through 

your renal vein. The ureter carries urine from the kidney to your bladder.[2] 

 

1.2.2. Acid-Base Balance. 

 

The kidneys play a critical role in maintaining acid-base balance in the body, 

ensuring that the pH of the blood remains within a narrow range (7.35-7.45). [6] 

This is done by: reabsorbing of approximately 85-90% of filtered bicarbonate 

(HCO₃⁻) [7], secreting of hydrogen ions (H⁺), which prevents the urine from 

becoming too acidic [8], generating new bicarbonate, and adjusting these 

processes in response to changes in blood ph. This intricate regulation ensures 

the stability of the body's internal environment.[6] 

1.2.3. Blood Pressure Regulation. 

Kidneys play crucial role in regulating blood pressure through the RAAS, 

controlling blood volume by adjusting sodium and water balance, interacting 

with the sympathetic nervous system, and responding to natriuretic peptides. 

These mechanisms ensure stable blood pressure, essential for proper organ 

function and overall health. Here's a brief look at these mechanisms: 

• Renin-Angiotensin-Aldosterone System (RAAS): When blood pressure 

drops, the juxtaglomerular cells in the kidneys release renin.[9] Renin 

converts angiotensinogen (from the liver) into angiotensin I, which is 

then converted to angiotensin II by the angiotensin-converting enzyme 

(ACE) primarily in the lungs. [10] Angiotensin II is a powerful 

vasoconstrictor narrows blood vessels, increasing blood pressure, and 
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stimulates aldosterone release from the adrenal glands, leading to sodium 

(Na⁺) and water retention, which further increases blood volume and 

pressure. [11] 

• Regulation of Blood Volume: “Sodium Balance”: The kidneys adjust the 

amount of sodium excreted or retained, which directly affects blood 

volume. High sodium retention increases blood volume and pressure. [12] 

“Water Balance”: The kidneys regulate water excretion through 

antidiuretic hormone (ADH). Increased ADH leads to more water 

reabsorption, increasing blood volume and pressure. [13]  

• Sympathetic Nervous System Interaction: The kidney is extensively 

innervated by sympathetic nerves playing an important role in the 

regulation of blood pressure homeostasis. Sympathetic nerve activity is 

ultimately controlled by the central nervous system (CNS). 

Norepinephrine, the main sympathetic neurotransmitter, is released at 

prejunctional neuroeffector junctions in the kidney and modulates renin 

release, renal vascular resistance, sodium and water handling, and 

immune cell response. Under physiological conditions, renal sympathetic 

nerve activity (RSNA) is modulated by peripheral mechanisms 

interaction between efferent sympathetic nerves, central mechanism, and 

afferent sensory nerves. RSNA is increased in hypertension and, 

therefore, critical for the perpetuation of hypertension and the 

development of hypertensive kidney disease. [14] 

1.2.4. Endocrine Functions of the Kidney.  
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The kidneys perform essential endocrine functions by producing hormones and 

enzymes that regulate various physiological processes. Here are the key 

endocrine functions: 

• Renin: Regulates blood pressure and fluid balance. Renin initiates the 

renin-angiotensin-aldosterone system (RAAS), which increases blood 

pressure by constricting blood vessels and promoting sodium and water 

retention.[9]  

• Erythropoietin (EPO):  Erythropoietin (EPO) is a glycoprotein hormone, 

naturally produced by the peritubular cells of the kidney, in response to 

low oxygen levels (hypoxia), which acts on the bone marrow to increase 

red blood cell production, enhancing the blood's oxygen-carrying 

capacity. [15] 

•  Calcitriol (Active Form of Vitamin D): Vitamin D can be synthesized in 

the skin or ingested in the diet and is transported to the liver where it is 

metabolized into 25-hydroxyvitamin D. This vitamin D metabolite is the 

main storage form of vitamin D, and subsequently is converted to 1,25-

dihydroxy vitamin D in the kidney. This is the major active metabolite of 

vitamin D and is responsible for the classical effects of vitamin D on 

calcium-phosphorus metabolism, maintenance of skeletal health, and the 

regulation of parathyroid function. [16] 

1.3. Acute Kidney Injury (AKI). 
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Acute Kidney Injury (AKI) is the term that has recently replaced the term 

Acute renal failure (ARF). Acute kidney injury (AKI) is defined as an abrupt 

(within hours) decrease in kidney function, which encompasses both injury 

(structural damage) and impairment (loss of function), [17] leading to an 

inability to filter waste products from the blood effectively. This can cause an 

accumulation of waste products and disturbances in electrolyte, acid-base, and 

fluid balance.[18] Causes of AKI: include, Prerenal AKI- Occurs because 

plasma flow and intraglomerular pressure are inadequate to maintain filtration 

capacity, Postrenal AKI- caused by an obstruction of urinary such as, benign 

prostatic hyperplasia, urethral stricture, pelvic or abdominal cancers, etc. and 

Renal AKI-may be linked to nephrotoxic drugs, other nephrotoxins, infection, 

etc. [19] 

1.4.  Chronic Kidney Disease (CKD). 
 

The definition and classification of chronic kidney disease (CKD) have 

evolved over time, but current international guidelines define this condition as 

decreased kidney function shown by glomerular filtration rate (GFR) of less 

than 60 mL/min per 1·73 m2, or markers of kidney damage, or both, of at 

least 3 months duration, regardless of the underlying cause. [20] CDK is highly 

prevalent (10-13% of the population), irreversible and progressive. [21] kidney 

biopsy samples can show definitive evidence of CKD, through common 

changes such as glomerular sclerosis, tubular atrophy, and interstitial fibrosis 

[20] Fig (3). Patients with this pathology remain asymptomatic most of the 

time, presenting the complications typical of renal dysfunction only in more 
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advanced stages. [21] Diabetes Mellitus (DM) and hypertension are the most 

common causes of chronic kidney disease (CKD) [20]. Other causes of kidney 

disease include, polycystic kidney disease (PKD),[22] Neurogenic bladder 

dysfunction, [23] urinary tract infection (UTI), Drug-Induced Nephrotoxicity, 

Lupus nephritis, IgA glomerulonephritis disorders in which the body’s 

immune system attacks its own cells and organs, heavy metal poisoning, such 

as lead poisoning, rare genetic conditions, such as Alport syndrome, hemolytic 

uremic syndrome in children, and, renal artery stenosis. [22]  

Figure (3): Primary causes and morphological outcomes of CKD. Regardless of the etiology, 

the progressive reduction in glomerular filtration rate occurs accompanied by two common 

histological changes: glomerular sclerosis and tubular necrosis.[24] 

 

1.5. Stages of CKD:  
 

CKD is classified into six categories based on GFR shown in (Table1) [25], as defined 

by the Kidney Disease Improving Global Outcomes (KDIGO) guidelines. It also 

includes the staging based on three levels of albuminuria (A1, A2, and A3) shown in 
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(Table2) [25], with each stage of CKD being sub-categorized according to the urinary 

albumin-creatinine ratio. [26] Given the greater risk of disease progression, those with 

higher risk of disease progression should undergo more frequent monitoring Fig (4). 

[27] 

Table 1. The six categories based on GFR include: [25] 

 

Table 2. The three levels of albuminuria include an albumin-creatinine ratio (ACR): 

[25] 
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Figure (4): Frequency of monitoring glomerular filtration rate (GFR) and albuminuria in 

people with CKD. Albuminuria and GFR grid reflect the risk of progression by intensity of 

coloring (green, yellow, orange, red, and deep red). The numbers in the boxes are a guide to 

the frequency of monitoring (number of times per year). [27} 

1.6. Most common causes of CKD. 

 

1.6.1. Diabetes Mellitus (DM).  

 

Diabetes Mellitus (DM) is the leading cause of CKD worldwide. The condition, 

termed diabetic nephropathy (DN) when referring specifically to kidney damage 

caused by diabetes, results from the long-term effects of hyperglycemia -high 

blood sugar levels- kidney function. [28] [29] The pathogenesis of DN development 

and progression is complex and multifactorial with the involvement of many 

pathways and mediator, shown in Fig (5). Conventionally, the developmental 

mechanism of DN is the result of abnormal homeostasis, which includes 
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hemodynamic abnormalities, metabolic disorders, and hormone synthesis such as 

Ang-II. [29]  

 

 

Figure (5): Depicts the glomerulus and tubular cells with some changes that happen 

in diabetes. [30] 

• Hyperglycemia and Glomerular Hyperfiltration: Chronic high blood 

glucose levels cause increased glucose filtration by the kidneys.[31] 

Initially, increased blood flow and pressure in the glomeruli lead to 

hyperfiltration, causing damage over time.[32] 

• Formation of Advanced Glycation End Products (AGEs): Persistent 

hyperglycemia leads to the formation of AGEs, harmful compounds 

formed when proteins or fats combine with sugars. These compounds 

promote inflammation and fibrosis in the kidneys, contributing to 

structural damage and functional decline. [33] 
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• Activation of the Renin-Angiotensin-Aldosterone System (RAAS): 

Hyperglycemia triggers RAAS, increasing blood pressure and glomerular 

damage. Angiotensin II elevated levels promote vasoconstriction, increase 

glomerular pressure, and stimulate inflammatory and fibrotic pathways.[29] 

• Oxidative Stress: Conventionally, oxidative stress is a condition of 

oxidative damage to tissues include, glomerulus, resulting in proteinuria 

and tubulointerstitial fibrosis due to an imbalance between oxidants and 

antioxidants. Increased ROS due to hyperglycemia is central to the 

pathogenesis of DN. [29] 

1.6.2. Hypertension. 

 

Hypertension presents in approximately 80–85% of patients with CKD, 

with the more severe glomerular diseases having a higher incidence of 

hypertension. For any given cause of CKD including hypertension itself, 

the elevation in systemic blood pressure (BP) accentuates the rate at which 

glomerular filtration rate (GFR) declines which makes hypertension an 

independent risk factor for end-stage renal disease (ESRD). [34] The 

interaction between hypertension and CKD is complex and increases the 

risk of adverse cardiovascular and cerebrovascular outcomes.   This is 

particularly significant in the setting of resistant hypertension commonly 

seen in patient with CKD. [35] Hypertension mainly cause vascular and 

glomerular lesions as shown in Fig (6). [36] The pathophysiology of CKD 

associated hypertension is multi-factorial with different mechanisms 

contributing to hypertension. [35] 
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Figure (6): Schematic representation of vascular and glomerular lesions in hypertension-

attributed nephropathy. a | Features of arteriolar nephrosclerosis caused by 

hypoperfusion; thickening of arteries; thickening of the Bowman capsule. b | Features of 

APOL1-associated glomerulosclerosis include solidified glomerulosclerosis, often with 

'disappearing glomeruli' and vascular lesions. [36] 

 

• The Renin-Angiotensin-Aldosterone System (RAAS) regulation: It is well 

known that RAAS is activated in CKD. Renin is secreted from the kidney and 

converts angiotensinogen to angiotensin I, which in turn is converted to 

angiotensin II (Ang II) by angiotensin-converting enzyme (ACE). Activation 

RAAS increases renin secretion ultimately leading to high circulating plasma 

concentrations of Ang II, a common feature of CKD.  [37] Ang II, further increase 

blood pressure and promote sodium and water retention. Angiotensin II Effects: 

Elevated angiotensin II levels cause vasoconstriction, increasing glomerular 
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pressure, and stimulating the production of inflammatory and fibrotic cytokines. 

[38]  

• Sympathetic nervous system regulation: Ang II also plays an important role in 

regulating sympathetic outflow from the brainstem. Ang II potentate 

norepinephrine release from sympathetic nerve terminals. [38] resulting in 

decreased urinary sodium excretion. [37] The renal artery is highly innervated, with 

efferent renal nerves that originate from the central nervous system, and afferent 

renal nerves that originate from the kidneys. [38] 

• Oxidative Stress: Elevated levels of Ang II also contribute to overproduction of 

ROS as Ang II is a potent activator of nicotinamide adenine dinucleotide 

phosphate (NAD(P)H) oxidase, the primary source of superoxide. Although Ang 

II receptor blockers and ACE inhibitors are a first-line choice of treatment in 

CKD patients. [37] 

• Vascular Damage: Hypertension causes “Arteriolar Thickening” where the walls 

of the arterioles in the kidneys to thicken and narrow, reducing blood flow to the 

nephrons (functional units of the kidney). Reduced blood flow leads to ischemia 

(lack of oxygen) in the kidney tissues, causing tubular and interstitial damage. [38] 

Hypertension damages the endothelial cells lining the blood vessels, reducing 

their ability to produce vasodilators like nitric oxide.[39] Reduced vasodilation 

capacity exacerbates hypertension and renal ischemia, further damaging the 

kidneys. [34] 

• Pro-inflammatory Cytokines: Hypertension induces the production of pro-

inflammatory cytokines, which contribute to chronic renal inflammation.[40] This 



22 
 

chronic inflammation leads to fibrosis (scarring) in the renal glomeruli, impairing 

kidney function.[41] 

1.7. CKD Management: 
 

The Objectives of CKD Management are, “Prevent” or “Delay” the progression of 

CKD to end-stage renal disease (ESRD), address complications arising from 

reduced kidney function, maintain patient well-being and functional status, shown 

in Fig (7), and prepare for “Renal Replacement Therapy”, dialysis or kidney 

transplantation if necessary.[42]  

Figure (7). Holistic approach to chronic kidney disease (CKD) treatment and risk 

modification. [42] 

 

1.7.1. Blood Pressure Control.  
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• Target BP, Generally, aim for <130/80 mmHg. ACE Inhibitors/ARBs: First-line 

agents, especially for patients with proteinuria. [42] [43] 

• Diuretics: Thiazide such as (HCT and chlorthalidone), in early stages, [44] and 

recent studies chose that they seem to maintain their effectiveness in in patients 

with advanced CKD too. [43] In CKD Stages 4-5, loop diuretics such as, 

furosemide should be started at a dose of 40 to 80 mg once daily. [42] 

• Methyldopa: reduces glomerular filtration rate and increases sodium retention 

and most commonly used in dialysis CKD patients. [44] 

1.7.2. Glycemic Control.  

 

• Target HbA1c: Typically, <7%, individualized based on patient risk factors. [42] 

• Glycemic control may delay progression of CKD, with most guidelines 

recommending the ideal target hemoglobin A1c is approximately ~7.0 %. [46] 

• Dose adjustments in oral hypoglycemic agents and Insulin may be necessary. [29] 

• Use of specific medication classes such as SGLT-2 inhibitors in those with 

severely increased albuminuria should be considered, [29] SGLT-2 inhibitors 

shown to provide renal protection. [42] 

1.7.3. Management of Anemia.  

 

• Erythropoiesis-Stimulating Agents (ESAs): Initiate when hemoglobin <10 g/dL 

and aim to keep it between 10-11.5 g/dL. [47] 

• Iron Supplementation: Oral or IV iron to maintain ferritin >100 ng/mL and 

transferrin saturation >20%.[48] 

• Monitoring: Hemoglobin every 1-3 months, iron studies every 3 months. [42] 
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1.7.4. Bone and Mineral Disorder Management.  

 

• Phosphate Binders: 90% of daily phosphate load gets excreted by kidneys; a 

decrease in renal function causes decreased secretion and increased retention of 

phosphate. High serum phosphate levels are seen only in the late stages of chronic 

kidney disease. Activation of compensatory mechanisms, including an increase in 

fibroblast growth factor 23 and parathyroid hormone secretion, prevent an 

increase in serum phosphate during the early stages of CKD. As CKD progresses, 

these mechanisms are unable to overcome the input of phosphate from dietary 

intake, leading to hyperphosphatemia. In this case, when phosphate levels are 

very high (greater than 6 mg/dl), phosphate binders are the agent of choice, where 

they reduce the absorption of dietary phosphate in the gastrointestinal tract, by 

exchanging the anion phosphate with an active cation (carbonate, acetate, 

oxyhydroxide, and citrate) to form a nonabsorbable compound that gets excreted 

in the feces, such as, Calcium-based binders (e.g., calcium carbonate and calcium 

acetate), and Sevelamer -is a crosslinked polymer that exchanges phosphate with 

HCl or carbonate in the gastrointestinal tract. [49] 

• Vitamin D Analogues: To correct secondary hyperparathyroidism. [50] 

• Monitoring: Serum calcium, phosphate, PTH levels every 3-6 months. [42] 

 

1.7.5. Renal Replacement Therapy (RRT). 

 

• Indications for RRT: Initiate dialysis when eGFR <15 mL/min/1.73m² with 

symptoms of uremia, fluid overload unresponsive to diuretics, hyperkalemia, or 
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acidosis. [42] Dialysis makes it possible to continue living with end-stage kidney 

disease for many years or even decades.[51] 

• Types of Dialysis: Hemodialysis or peritoneal dialysis based on patient preference 

and clinical suitability. [42] 

• Hemodialysis: is the most commonly used type of dialysis. In this method, blood 

is transported out of the body through tubes and cleaned in a machine using 

dialysis fluid. The dialysis is typically carried out three times per week at a 

dialysis center, each session lasts about four to five hours. Hemodialysis usually 

doesn’t lead to any complications. [52]  

• Peritoneal dialysis: here, the blood isn't cleaned outside the body but on the 

inside, in the abdominal cavity (the hollow space surrounding the organs in the 

abdomen), with the help of dialysis fluid. Patients are given a special 

abdominal catheter: About two liters of the dialysis fluid are transported into the 

abdominal cavity through this catheter. After some time, this fluid is then removed 

and replaced with new dialysis fluid. This type of dialysis can also be done at 

home on your own. The most common complications of peritoneal dialysis have 

to do with the catheter, like peritonitis, painful irritation of the abdomen. [51] 

• Kidney Transplant: Evaluation for transplantation as a long-term solution for 

suitable candidates. [42] A kidney transplant is often the best option for people who 

have end-stage kidney disease, but it's not always possible. In that case, and while 

waiting for a donor kidney, it’s necessary to have renal (kidney) replacement 

therapy with dialysis. [51] 

https://www.ncbi.nlm.nih.gov/books/n/pmh_iqwig/glossary/def-item/def308/
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1.8. Prevalence of Chronic Kidney Disease (CKD). 
 

Chronic Kidney Disease (CKD) is a significant global health issue [53] and 

emerged as one of the most prominent causes of death and suffering in the 

21st century, with rising prevalence, due to increasing rates in risk factors, such as 

obesity and diabetes mellitus, hypertension, and aging populations. [53] The Global 

Burden of Disease Study 2017 estimated that the global prevalence of CKD is 

approximately 9.1%, affecting around 843.6 million individuals worldwide [54] [55] 

and represents an especially large burden in low- and middle-income countries, 

which are least equipped to deal with its consequences, summary CKD 

epidemiology shown in Fig.8. [55] CKD prevalence increases significantly with 

age. In individuals over 65, the prevalence can be as high as 40-50% due to age-

related decline in kidney function and higher rates of comorbid conditions. Some 

studies suggest that CKD prevalence is slightly higher in women compared to 

men, also reported important differences by geographic region classified by 

income level, with a CKD age-standardized prevalence of 8.6% and 9.6% in men 

and women, respectively, in high-income countries, and 10.6% and 12.5% in men 

and women, respectively, in low- and middle-income countries. which are least 

equipped to deal with its consequences.   [55] 
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Figure (8). A summary of chronic kidney disease epidemiology. [55] 

1.9. Most Important Renal Function Tests.  
 

1.9.1. Glomerular filtration rate (GFR).  

 

The best overall indicator of the glomerular function is the glomerular filtration rate 

(GFR). GFR is the rate in milliliters at which substances in plasma [57] in other 

words, the clearance of a substance from the blood, [56] are filtered through the 

glomerular capillaries and into the Bowman’s capsule per unit of time (minute). [57] 

The normal GFR is 90 to 120 mL per minute. [56] The clearance rate for a given 

substance equals the GFR when it is neither secreted nor reabsorbed by the kidneys. 

For such a given substance, the urine concentration multiplied by the urine flow 

equals the mass of the substance excreted during urine collection. This mass divided 

by the plasma concentration is equivalent to the volume of plasma from which the 

mass was originally filtered. [57] Below is the equation used to determine GFR, 
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typically recorded in volume per time (e.g., mL/min): GFR = [UrineX (mg/mL)] * 

urine flow (mL/min)/ [PlasmaX (mg/mL)], where X is a substance that is completely 

excreted. [57]  

1.9.2. Serum Creatinine (SC). 

 

The most commonly used endogenous marker for the assessment of glomerular 

function is creatinine. [56] Creatinine is the by-product of creatine phosphate in 

muscle, and it is produced at a constant rate by the body. For the most part, 

creatinine is cleared from the blood entirely by the kidney. Decreased clearance 

by the kidney results in increased blood creatinine. [56] Elevated levels indicate 

impaired kidney function. [57] Serum creatinine is also utilized in GFR estimating 

equations such as the CKD-EPI (Chronic Kidney Disease Epidemiology 

Collaboration) equation. These eGFR equations are superior to serum creatinine 

alone since they include race, age, and gender variables. [56] [57]  

1.9.3. Blood Urea Nitrogen (BUN). 

 

Urea or BUN is a nitrogen-containing compound formed in the liver as the end 

product of protein metabolism and the urea cycle. About 85% of urea is 

eliminated via kidneys; the rest is excreted via the gastrointestinal (GI) tract. 

Serum urea levels increase in conditions where renal clearance decreases (in 

acute and chronic renal failure/impairment). Urea is increased earlier in renal 

disease. [56] 

1.9.4. Random blood glucose. 
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Random blood glucose test measures the glucose concentration in the blood at 

any given time, regardless of when the patient last ate. Chronic Kidney Disease 

(CKD) patients, especially those with diabetes, require careful monitoring of 

blood glucose levels. Random blood glucose testing provides an essential 

snapshot of glycemic control, helping to guide treatment adjustments and 

prevent complications. [58]  

1.9.5. Packed cell volume (PCV). 

 

Packed Cell Volume (PCV), also known as hematocrit (Hct), is the volume 

percentage of red blood cells (RBCs) in whole blood. It is a crucial 

measurement in evaluating the overall health and function of the blood and the 

body's ability to transport oxygen. [59] It is a critical parameter in evaluating the 

health of CKD patients. It reflects the proportion of blood volume occupied by 

red blood cells and provides insights into anemia and overall blood health, both 

of which are significantly impacted in CKD. [60] Low PCV (Anemia) Common 

in CKD, characterized by fatigue, weakness, and pallor. Causes include EPO 

deficiency, iron deficiency, and chronic inflammation. [60] 

1.9.6. White blood cell (WBC) count.  

 

White blood cell (WBC) count is a critical parameter in evaluating the immune 

status and overall health of CKD patients. CKD can significantly impact the 

immune system, leading to alterations in WBC count and function. Elevated 

WBC counts can indicate underlying inflammation, which is common in CKD 

and contributes to cardiovascular disease and other complications. [61] Patient on 
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hemodialysis or peritoneal dialysis are particularly prone to infections, which 

can affect WBC counts. [52] WBC count should be monitored regularly, typically 

every 1-3 months, depending on the patient's condition and treatment regimen. 

[61] 

1.9.7. Hemoglobin (Hb).  

 

Hemoglobin (Hb) is a key indicator of anemia, a common complication in CKD 

patients. Monitoring hemoglobin levels helps in diagnosing, managing, and 

treating anemia, thus improving patient outcomes and quality of life. The 

kidneys produce EPO, which stimulates red blood cell production in the bone 

marrow. CKD leads to reduced EPO production, causing decreased red blood 

cell production and anemia. In addition, CKD patients often have iron 

deficiency due to reduced dietary absorption, blood loss during dialysis, and 

increased iron requirements for erythropoiesis. General Target in CKD patients 

aim for hemoglobin levels of 10-11.5 g/dL to balance the risk of cardiovascular 

events with the benefits of reducing anemia symptoms. [60] 

1.9.8. Uric Acid.  

 

Uric acid is a waste product formed from the breakdown of purines, which are 

found in certain foods and are also produced by the body. In CKD patients, the 

kidneys' ability to excrete uric acid is impaired, leading to elevated blood levels. 

[26] CKD impairs the kidneys' ability to filter and excrete uric acid, leading to 

hyperuricemia (high blood uric acid levels. High uric acid levels can contribute 

to the progression of CKD, making it crucial to monitor and manage these levels 
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effectively. High uric acid levels can contribute to the progression of CKD, 

making it crucial to monitor and manage these levels effectively. [62] 

1.9.9. Albumin. 

 

The Albumin-to-Creatinine Ratio (ACR) urine test is a key diagnostic tool for 

detecting and monitoring kidney damage in CKD patients. Elevated urinary 

albumin levels are an early marker of kidney disease, often preceding reductions 

in glomerular filtration rate (GFR).[63] ACR is a sensitive test for early detection 

of kidney damage, often used in screening patients with risk factors like diabetes 

and hypertension. Persistent elevation in ACR over 3-6 months confirms CKD. 

ACR helps in staging CKD and determining the severity of kidney damage. [26] 

Albuminuria:  Albuminuria refers to abnormal loss of albumin in the urine. 

Albumin is one type of plasma protein found in the urine in normal subjects and 

in larger quantity in patients with kidney disease. Albuminuria is the earliest 

marker of glomerular diseases (kidney damage), where it generally appears 

before the reduction in GFR. [64] A summary of potential mechanisms of 

albuminuria as a result of diabetic complications is shown in Fig (8). Early 

stages of CKD often show microalbuminuria (30-300 mg/g), which can progress 

to macroalbuminuria (>300 mg/g) with worsening kidney function. [63] 
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Figure (9). A summary of potential mechanisms of albuminuria as a result of micro and 

macrovascular diabetic complications. [64] 

1.9.10. Specific Gravity. 

 

The specific gravity (SG) test measures the concentration of solutes in the 

urine.[65] In CKD patients, it helps assess the kidney's ability to concentrate urine 

(depends on the functioning of the renal tubules), providing insights into kidney 

function and detecting potential abnormalities. CKD often impairs this function, 

leading to diluted urine even when dehydration should prompt concentrated 

urine. [26] High solute load in the urine may indicate kidney damage or impaired 

filtration.[65] SG testing can help detect early changes in kidney function before 

significant reductions in GFR occur and regular SG tests can monitor the 

progression of CKD. [26] For example, Isosthenuria (SG ~1.010), Indicates 

impaired tubular function, common in advanced CKD.[65] 
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1.10. Importance of Early Prediction of Chronic Kidney Disease (CKD) 
 

• Prevention of Disease Progression: Early prediction allows for timely 

intervention strategies that can slow the progression of CKD. Lifestyle 

modifications, strict blood pressure control, and blood sugar management 

in diabetic patients can significantly delay the advancement to more 

severe stages of CKD. [42] Interventions initiated at early stages can help 

preserve remaining kidney function, thereby preventing or delaying the 

onset of end-stage renal disease (ESRD) which requires dialysis or kidney 

transplantation. [55] 

• Reduction in Morbidity: Early identification and management of CKD 

can reduce complications associated with the disease, such as 

cardiovascular disease, which is the leading cause of death in CKD 

patients. Effective management of CKD risk factors contributes to lower 

morbidity and mortality rates.[26] 

• Enhanced Quality of Life: Patients diagnosed early can avoid the severe 

symptoms associated with advanced CKD, such as fatigue, fluid 

retention, and cognitive impairment, thus maintaining a better quality of 

life. [55] 

• Cost-Effectiveness: Early prediction and management of CKD can result 

in significant cost savings for healthcare systems. Treating advanced 

CKD and ESRD is expensive due to the high costs of dialysis and kidney 

transplantation. Preventative measures and early treatments are far less 

costly. [55 
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Chapter 2 – Machine Learning (ML) Role in (CKD). 

2.1. Role of Bioinformatics in Chronic Kidney Disease (CKD).  
 

Bioinformatics is an interdisciplinary field that combines biology, computer 

science, information technology, and statistics to analyze and interpret biological 

data. It involves the development and application of computational tools and 

techniques to understand biological processes and relationships. Bioinformatics is 

used extensively for the management and analysis of large sets of biological data, 

such as genomic sequences, protein structures, and metabolic pathways. [66] 

Bioinformatics plays a crucial role in advancing the understanding, early 

diagnosis, and treatment of CKD through various applications, including genomic 

analysis, biomarker discovery, data integration, building machine learning models 

for early diagnosis and personalized medicine. For example, bioinformatics tools 

are used in “Genomic and Proteomic Analysis” to identify genetic variants 

associated with CKD by analyzing large genomic datasets. [67] Proteomic analysis 

involves studying the protein composition of kidney tissues or urine samples. 

Bioinformatics tools can process mass spectrometry data to identify protein 

biomarkers that may indicate CKD or its progression.[68] Another example, 

bioinformatics tools help in “Drug Discovery and Development” by analyzing 

molecular data to understand the underlying mechanisms of CKD. Potential 

targets can include proteins, genes, or pathways involved in disease progression., 
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such as specific kinases or cytokines, involved in CKD inflammation and fibrosis. 

[69] 

2.2.  AI and ML in Chronic Kidney Disease (CKD) 
 

2.2.1. Artificial Intelligence (AI). 

 

Artificial Intelligence (AI) refers to the simulation of human intelligence in 

machines that are programmed to think and learn. These systems can perform 

tasks that typically require human intelligence. [70] The term AI was coined by 

John McCarthy in 1956 during a conference held on this subject. However, the 

possibility of machines being able to simulate human behavior and actually think 

was raised earlier by Alan Turing who developed the Turing test in order to 

differentiate humans from machines. [71] AI encompasses a variety of 

technologies, including machine learning (ML), natural language processing 

(NLP), robotics, and neural networks. [70] More recently, AI has also begun to be 

incorporated into medicine to improve patient care by speeding up processes and 

achieving greater accuracy, opening the path to providing better healthcare 

overall. [71] 

2.1.2. Machine Learning (ML).  

 

Machine Learning (ML) is a subset of AI that involves the development of 

algorithms and statistical models that enable computers to perform specific tasks 

without using explicit instructions. [69] [72] The main purpose of ML is to introduce 

algorithms that ingest input data, use computer analysis to predict output values 
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within an acceptable range of accuracy, identify patterns and trends within the 

data, and learn from previous experience. [69] Instead, these systems rely on 

patterns and inference derived from data. ML techniques can be broadly classified 

into supervised learning, unsupervised learning, semi-supervised learning, and 

reinforcement learning. [72] Algorithms are rules that precisely define a sequence 

of operations and examples include random forest algorithm (RF), support vector 

machine (SVM), and eXtreme gradient boosting (XGBoost). Because ML is 

highly effective in detecting hidden patterns in large datasets, its use in medicine 

can significantly improve the accuracy of diagnostic algorithms and personalize 

patient treatment. [69] 

2.3. Role of AI and ML in Chronic Kidney Disease (CKD). 

  
AI and ML has significant potential to transform the management and treatment of 

chronic kidney disease (CKD) through various applications, including early 

diagnosis, personalized treatment, predictive analytics, patient monitoring, [69] [73] as 

well as AI systems can detect anomalies in the performance of dialysis machines, 

alerting technicians to potential issues before they lead to equipment failure or patient 

harm. [73] 
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Figure (10):  Clinical Applications of AI in Renal Disease. [69] 

2.3.1. Early Detection and Diagnosis 

 

• Pattern Recognition: ML algorithms can analyze large datasets from electronic 

health records (EHRs) to identify patterns and risk factors associated with CKD. 

This helps in the early detection of the disease, even before symptoms appear. [74] 

For example, supervised learning models can classify patients into different stages 

of CKD by analyzing clinical data, lab results, and imaging studies.[75] 

• Feature Selection: ML techniques can identify the most relevant features (e.g., 

biomarkers, clinical parameters) that contribute to CKD, improving the accuracy 

and efficiency of diagnostic models.[76] 

• Predictive Analytics: ML algorithms can predict the likelihood of CKD 

progression by analyzing longitudinal patient data. Predictive models can help 
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healthcare providers identify patients at high risk of rapid progression and 

intervene early to slow disease progression. [73] 

• ML algorithms can analyze medical imaging (e.g., kidney ultrasounds, CT scans) 

to detect structural abnormalities and early signs of kidney damage, often with 

greater accuracy and speed than human radiologists. [74] 

2.3.2. Personalized Treatment Plans. 

 

ML algorithms can analyze individual patient data to recommend personalized 

treatment plans. This includes optimizing medication dosages, dietary 

recommendations, and lifestyle changes based on the patient's specific 

characteristics and disease stage. [78] ML-powered decision support systems 

provide clinicians with evidence-based recommendations for managing CKD. 

These systems can suggest the best treatment options, monitor patient progress, 

and alert providers to potential complications.[69] Patients can use wearable 

devices to track vital signs, blood pressure, and other health metrics, which are 

then analyzed by AI algorithms to detect any concerning trends. [79] 

2.3.3. Enhancing Research and Clinical Trials. 

  

ML can analyze large datasets from clinical trials and research studies to identify 

new insights into CKD pathophysiology, treatment efficacy, and patient outcomes. 

[75] For example, ML models can identify potential biomarkers for CKD, aiding in 

the development of new diagnostic tests and therapies. [80] 

2.4. Developing a ML model for early prediction of CKD. 
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By following these steps, you can develop an effective machine learning model 

for early prediction of chronic kidney disease using Python as shown in Fig(11). 

First, “Data Collection”: Gather a dataset containing relevant information about 

patients with chronic kidney disease. Second, “Data Preprocessing”: This step is 

essential to ensure the quality of the data for training the model. Third, “Feature 

Selection”: Identify the most important features that are likely to contribute to the 

prediction of chronic kidney disease. Forth, “Model Selection and Training”: 

Choose an appropriate machine learning algorithm for building the prediction 

model then split the dataset into training and testing sets to train the model.  Fifth, 

“Model Evaluation”: Assess the performance of the trained model using 

evaluation metrics such as accuracy. 
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Figure (11). The workflow of the proposed ensemble learning based CKD prediction. [81] 
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Chapter 3– Methods and Materials. 

3.1. Data Collection. 
 

• Gather a dataset containing relevant information about patients with 

chronic kidney disease, including test results, and other relevant features. 

• We get dataset from Kaggle.com which is publicly available at the UCI 

machine learning repository, for the experiment 

(https://archive.ics.uci.edu/ml/datasets/chronic_kidney_disease). 

• The dataset contains 400 instances and 25 features in relation to Chronis 

kidney Disease. The first 24 features are predicate/independent, and the 

last one is a dependent/target attribute. Among the attributes, 11 are 

numeric, and 14 are categorical. The features are described in Table 3.  

Table 3. features information of the dataset. 

 
Feature Abbrev

iation 

Type description 

1 Age Age numerical Ages of participants taken in years 

2 Blood Pressure bp numerical Blood Pressure of participants 

taken in mm/Hg 

3 Specific Gravity sg nominal Urine specific gravity of the 

participant results 

(1.005,1.010,1.015,1.020,1.025) 

4 Albumin al nominal Albumin blood volume of the 

participant results (0,1,2,3,4,5) 

5 Sugar su nominal Participant’s sugar level in the 

blood results (0,1,2,3,4,5) 

6 Red Blood 

Cells 

rbc nominal Red Blood Cells of urinalysis 

results (normal, abnormal) 

7 Pus Cell pc nominal Pus Cell of urinalysis results 

(normal, abnormal) 

https://archive.ics.uci.edu/ml/datasets/chronic_kidney_disease
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3.2. Data Analysis and Preprocessing. 

 

8 Pus Cell clumps pcc nominal Presence of pus cell clumps in the 

participant’s urine (present, not 

present) 

9 Bacteria ba nominal Presence of bacteria in the 

participant’s urine (present, not 

present) 

10 Blood Glucose 

Random 

bgr numerical Blood Glucose Random in results 

in mgs/dl 

11 Blood Urea bu numerical Blood Urea results in mgs/dl 

12 Serum 

Creatinine 

sc numerical Serum Creatinine results in mgs/dl 

13 Sodium sod numerical Sodium level in the participant’s 

blood results in mEq/L 

14 Potassium pot numerical Potassium level in the participant’s 

blood results in mEq/L 

15 Hemoglobin hb numerical Hemoglobin measure in the 

participant’s blood results in gms 

16 Packed Cell 

Volume 

Packed 

Cell 

Volume 

numerical Measure and size of RBCs in the 

participant’s blood 

17 White Blood 

Cell Count 

wbc numerical WBCs count in the participant’s 

blood results in cells/cmm 

18 Red Blood Cell 

Count 

rbc 

count 

numerical RBCs count in the participant’s 

blood results in millions/cmm 

19 Hypertension htn nominal Dose the participant has 

Hypertension?  (yes, no) 

20 Diabetes 

Mellitus 

dm nominal Dose the participant has Diabetes 

Mellitus? (yes, no) 

21 Coronary Artery 

Disease 

cad nominal Dose the patient has coronary 

artery disease? (yes, no) 

22 Appetite ppet nominal Participant’s desire or need for 

something to eat (good, poor) 

23 Pedal Edema pe nominal Dose the participant has participant 

has swelling in the ankles and feet?  

(yes, no) 

24 Anemia ane nominal Dose the participant has Anemia? 

(yes, no) 

25 Class class nominal Class of the participant current 

kidney disease (CKD, not CKD) 
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• This step is essential to ensure the quality of the data for training the 

model.  

• We performed some preprocessing on the considered CKD dataset to 

make the dataset most usable. The purpose was to transform the available 

raw data into a format easily understood by the ensemble learning 

algorithms. The most important steps in this stage are, handling missing 

data, and encoding categorical features. 

• We employed “Anaconda” for writing scientific codes in Python, to 

develop our model. 

• Before working we imported many libraries using the following codes: 

 

 

 

 

3.2.1. Handling Missing Values. 

 

It involves various techniques depending on the type of data and the specific 

requirements of the analysis. [82] There were numerous missing values in the collected 

data. Therefore, the data must be clean of noise and complete in order to have reliable 

predictions for future decision making. The missing data were:  

import numpy as np  

import pandas as pd 

import matplotlib.pyplot as plt 

%matplotlib inline  

import seaborn as sns 

import warnings 

warnings.filterwarnings('ignore') 
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So, here we used “median” to fill missing values of nominal data and “random values” 

in categorical data.  

Out [62]: age 0 

blood pressure 0 

specific gravity 0 

albumin 0 

sugar 0 

red blood cells 0 

pus cell 0 

pus cell clumps 0 

bacteria 0 

blood glucose random 0 

blood urea 0 

serum creatinine 0 

sodium 0 

potassium 0 

hemoglobin 0 

packed cell volume 0 

white blood cell count 0 

red blood cell count 0 

hypertension 0 

diabetes mellitus 0 

coronary artery disease 0 

appetite 0 

pedal edema 0 

anemia 0 

class 0 

dtype: int64  

 

Out [40]: red blood cells 152 

red blood cell count 131 

white blood cell count 106 

potassium 88 

sodium 87 

packed cell volume 71 

pus cell 65 

hemoglobin 52 

sugar 49 

specific gravity 47 

albumin 46 

blood glucose random 44 

blood urea 19 

serum creatinine 17 

blood pressure 12 

age 9 

bacteria 4 

pus cell clumps 4 

hypertension 2 

diabetes mellitus 2 

coronary artery disease 2 

anemia 1 

appetite 1 

pedal edema 1 

class 0 

dtype: int64  
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3.2.2. Label distribution of Nominal Data. We check the nominal data by drawing 

histograms describe the nominal features of the dataset and we got this plot:  

Figure (12): Histogram of the nominal dataset features. 

3.2.3. Label distribution of categorical Data: we did it by drawing bar charts describing 

the categorical features of the dataset by and we got this output:  
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Figure (13): Charts of the categorical features. 

3.2.4. CKD distribution 

 

Hypertension 
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we did it by drawing the following plot Fig. (14), which shows that the largest number of 

participants in the dataset are CKD patients among 250 participants. 

Figure (14): CKD distribution in the study sample 

3.2.5. Encoding categorical features:  

 

Machine learning models can only work with numerical values. For this reason, it is 

necessary to transform the categorical values of the relevant features into numerical ones. 

In this step we used label Encoding, because there are categories in each column. 

“LabelEncoder” can be used to normalize labels. It can also be used to transform non-

numerical labels to numerical labels. [83] 

3.3. Feature Selection. 
 

Identify the most important features that are likely to contribute to the prediction of 

chronic kidney disease.  

3.3.1. Data distribution.  
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We start studying by drawing the following plot for data features classification 

and distribution.  

Figure (15): Features classification and distribution. 
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The output in Fig (14) shows that patients who have CKD are labeled with blue color and 

patients who haven’t CKD are labeled with orange color. For example:  

• “Red blood cell” plot shows that majority of patients have normal RBC urinalysis 

test results while most of CKD patients have abnormal results. 

• “Hypertension” plot shows that majority of CKD patients have hypertension. 

• “Diabetes mellites” plot shows that majority of CKD patients have diabetes 

mellites. 

3.3.2. Correlation between features:  

 

• Finding the correlation between features in a dataset is important for several 

reasons in data analysis and machine learning tasks.  

• Identifying relationships: Correlation analysis helps in understanding the 

relationships between different features in a dataset. It helps to identify which 

features are positively correlated, negatively correlated, or not correlated at all. [84]  

• Feature selection and Model performance: Correlation analysis can be used as a 

feature selection technique to identify redundant features. Understanding the 

correlation between features can help improve the performance of machine 

learning models and provides insights into how features are related to each other 

which can help in making informed decisions during data preprocessing. [85] 

• strong relationship between the set of independent and dependent features 

indicates a good-quality dataset. In Fig (15) we draw a heatmap to illustrate 

correlation between features presents the CCA of the dataset features used in the 
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experiment. The relationship range lies between +1 to -1 along the X- and Y-axes. 

Fig (16) shows that:  

✓ RBC count is positively correlated with specific gravity, hemoglobin, 

packed cell volume.  

✓ RBC count is negatively correlated with albumin, blood urea. 

✓ Packed cell volume and hemoglobin are highly positive 

correlated. 

✓ Packed cell volume is negatively correlated with albumin and 

blood urea.  

✓ Hemoglobin and albumin are negatively correlated. 
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Figure (16): Correlation coefficient analysis of the dependent and independent 

features in the dataset. 

3.3.3. Relationship between hemoglobin and red blood cell count. 

 

 For more intense, we draw scattered plot between hemoglobin and red blood cell 

count in CKD patients and participant who doesn’t CKD, which gave some kind 

of linearity in all the relationships, whenever hemoglobin is below 13-14, he is 

positive for CKD, whenever hemoglobin is near 18, he is negative.  

Figure (17): Relationship between hemoglobin and red blood cell count. 

3.3.4. Analyze distribution of red blood cell count. 
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 Here, by drawing distribution plot of red blood cell count distribution in CKD patients 

and participant who doesn’t CKD, we can say that person with lower RBC count has 

high chances of having chronic kidney disease. 

Figure (18): Red blood cell count distribution in study sample. 

 

3.3.5. Analyze distribution of Hemoglobin.  

 

Here, by drawing distribution plot of Hb distribution in CKD patients and participant who 

doesn’t CKD, we can say that person with lower Hemoglobin has high chances of having 

chronic kidney disease.  

Figure (19): Hemoglobin distribution in study sample. 

3.3.6. Selecting important features. 
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 We used “SelectKBest” method which is a feature selection method in Python's 

scikit-learn library that selects the top k features based on univariate statistical 

tests such as “The chi-square” statistic which compares the size any discrepancies 

between the expected results and the actual results, given the size of the sample 

and the number of variables in the relationship. SelectKBest is commonly used to 

improve model performance by reducing the number of features, thereby helping 

to prevent overfitting and improving computational efficiency. [86] Here, we used 

the highest scored features which were:  

3.4. Model selection and training.  
 

In this step we should choose an appropriate machine learning algorithm for 

building the prediction model then split the dataset into training and testing sets to 

train the model on the training data and evaluate its performance on the testing 

data. The dataset was split into training (60%) and test (40%) subsets. In the 

 features score 

16 white blood cell count 9701.050391 

10 blood urea 2343.097145 

9 blood glucose random 2241.651289 

11 serum creatinine 357.792101 

15 packed cell volume 308.181415 

3 albumin 216.000000 

14 hemoglobin 123.856342 

0 age 115.859940 

4 sugar 94.800000 

18 hypertension 88.200000 
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context of CKD prediction, machine learning has the potential to improve 

accuracy and reduce costs by identifying early signs of disease progression and 

predicting the risk of developing CKD in at-risk populations.[75] 

3.4.1. Traditional machine learning techniques. 

 

Traditional machine learning techniques suffer from some crucial limitations, 

including:[87] 

• Overfitting, where the algorithm becomes too specialized to the training data 

and fails to generalize to new data. 

• Large, high-quality datasets are needed to train and validate the algorithms, 

which can be challenging to obtain in some clinical settings. 

• Training and evaluating machine learning algorithms may require 

considerable computational time and resources, especially for large datasets. 

• High dependency on the quality and quantity of data available for training. 

If the data is incomplete, biased, or otherwise of poor quality, the resulting 

algorithm will be inaccurate or may not work at all. 

• The machine learning algorithms can inadvertently incorporate biases 

present in the training data, leading to unfair or discriminatory outcomes. 

3.4.2. Ensemble learning approaches. 

The ensemble learning approaches are gaining attention for disease prediction 

with higher accuracy. Among the ensemble learning techniques, boosting 

algorithm is one of the effective approaches in the ensemble learning 

family.[88]  
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3.4.3. XGBoost. 

 XGBoost (eXtreme gradient boosting) is an optimized distributed gradient 

boosting library designed to be highly efficient, flexible and portable. It 

implements machine learning algorithms under the Gradient Boosting 

framework. XGBoost provides a parallel tree boosting (also known as GBDT, 

GBM) that solve many data science problems in a fast and accurate way. [89] 

[90] It works by combining different kinds of decision trees (weak learners) to 

calculate the similarity scores independently. [91] It helps to overcome the 

problem of overfitting during the training phase by adapting the gradient 

descent and regularization process. The mathematical formula for the 

XGBoost algorithm is shown in Eq:  

where fθ(x) is XGBoost model with parameters θ,hm is the mth weak decision tree 

with parameters θm, and γm is the weight associated with mth tree. T denotes the 

number of decision trees, l denotes the loss function, and Rjm is an indicator function 

that returns 1 if x is in region Rjm, otherwise 0. [89] 
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Figure (20): How XGBoost optimizes standard GBM algorithm. [92] 

3.4.4. Model training.  

 

3.4.4.1. XGBoost parameters.  

XGBoost have parameters we used the following code to shows them: 

Table.4 Description of some of XGBoost key parameters: [89] 

Parameter Description Range 

“eta”(or 

learning_rate): 

Step size shrinkage used in update to prevent 

overfitting. 

[0,0.5,0.20,0.25] 

“max_depth”  Maximum depth of a tree. Increasing this value will 

make the model more complex and more likely to 

overfit. 

 

[5,8,10], 

“min_child_weight” Minimum sum of instance weight (hessian) needed in 

a child. Used to control overfitting. 

 

[1,3,5,7], 

“gamma” Minimum loss reduction required to make a further [0.0,0.1,0.2,0.4] 
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partition on a leaf node. A larger value leads to more 

conservative models. 

 

“colsample_bytree” Control the subsampling of features (columns) when 

constructing each tree in the ensemble. Specifically, it 

determines the fraction of features that will be 

randomly selected for building each individual tree. 

This can help to reduce overfitting and improve the 

model's generalization ability. 

 

[0.3,0.4,0.7] 

 

3.4.4.2. Random search techniques:  

The best parameters can vary based on your specific dataset and problem, so it's 

essential to experiment and validate your choices. This is done by the use of grid 

search or random search techniques to automate the hyperparameter tuning 

process. [93] In our case, data is very large so using random search techniques is 

the best choice. As its name suggests, they use random combinations of 

hyperparameters. This means that not all of the parameter values are tried, instead, 

parameters will be sampled with fixed numbers of iterations.  [93] [94] Random 

search techniques give us the best parameters; we got this output:  

 

  

 

Out [107]: {'min_child_weight': 3, 

'max_depth': 8, 

'learning-rate': 0.2, 

'gamma': 0.4, 

'colsample_bytree': 0.3} 
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Figure (21): Grid search or random search techniques to automate the 

hyperparameter tuning process. [94] 

 

3.5. Model evaluation:  

  
Assess the performance of the trained model using evaluation metrics such as 

accuracy.  In this section, the performance of the proposed prediction model for 

the XGBoost algorithms is discussed in terms of different performance metrics. 

Assess the performance of the trained model using evaluation metrics such as 

accuracy. Here’s the code using “sklearn” for accuracy calculation:  

 

 

from sklearn.metrics import confusion_matrix,accuracy_score 

0.9833333333333333 
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As we performed all the methods and trained our model using different techniques and 

methods, we have got 98% prediction accuracy, which conceded a high accuracy score.   

Conclusion, limitations, and future directions 
 

Diagnosis and prevention of chronic kidney disease have become challenging for 

healthcare professionals and other concerned authorities. It can be mitigated to some 

extent if it can be pre-diagnosed in well advance. In this thesis, we attempted to predict 

CKD using one of ensemble learning approach the XGBoost. We employed different 

preprocessing techniques like the handling missing values, label distribution of nominal 

and categorical data, and encoding the categorical features. In addition, hyperparameter 

techniques like random search techniques were used to find the optimal parameter values. 

XGBoost emerged a high-performance accuracy (98%). Though the proposed model 

performed relatively well, it has some obvious limitations. The size of the considered 

dataset is small, which may limit the prediction model’s performance in generic 

situations. It is observed that most of the features are having least contribution towards 

CKD. A more balanced dataset would lead to a better prediction model. As an extension 

of this work, other ensemble learning techniques, like bagging, stacking, etc., can be 

explored to improve the results. Additionally, deep learning techniques can also be 

experimented with the exercised dataset. To validate the effectivity of the proposed 

model, additional and larger datasets are needed in future. We expect more powerful 

disease prediction models to be developed and implemented in medical diagnosis and 

treatment. 
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