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1.  Abstract 

Colorectal cancer is a prevalent and deadly malignancy with a significant global 

burden. It arises from the accumulation of genetic and epigenetic changes that 

transform normal colonic epithelial cells into adenocarcinomas. The microbiome 

plays a crucial role in CRC development. Bacterial biomarkers have prognostic value 

and hold potential for CRC detection and clinical outcome prediction.  

The human gut microbiota is a vibrant ecosystem teeming with bacteria, viruses, 

fungi, and archaea, residing in a harmonious relationship with the host. It profoundly 

influences various aspects of human health, playing a crucial role in maintaining gut 

homeostasis, immune function, and metabolism.  

In recent years, the association between colorectal cancer (CRC) and the microbiota 

has gained significant attention. Emerging evidence suggests that dysbiosis, a 

disruption in the gut microbiota's composition, may contribute to the initiation and 

progression of CRC. Studies have unveiled distinct alterations in the gut microbiota 

composition and diversity in individuals with CRC compared to healthy controls. 

These alterations encompass shifts in microbial taxa, decreased microbial diversity, 

and modifications in microbial metabolites. Specific bacterial species, such as 

Fusobacterium nucleatum, Bacteroides fragilis, and certain Enterococcus and 

Escherichia coli strains, have been implicated in CRC pathogenesis due to their 

capacity to promote inflammation, produce genotoxins, or modulate the tumor 

microenvironment. Thus, in this study we used 16S rRNA data from 60 samples 

belonging to 30 patients, from the tissue and the matched normal healthy tissue, the 

data went through characterization process using Linux shell command, bash 

programming language and R programming language with RStudio with various 

microbiome processing packages and tools, we implemented the DADA2 package, 

for Amplicon Sequencing Variants based approach. DADA2 (Denoising Amplicon 

Data with Adaptive Removal of Chimeras and Dereplication) is a widely used 

pipeline for analysing amplicon sequencing data. It employs a three-step approach to 

accurately identify and quantify microbial communities: error estimation, chimera 

detection, and denoising, the denoising algorithm employed by DADA2 is particularly 

effective in handling error-prone amplicon sequencing data and can significantly 

improve the accuracy of microbial community analysis. 

The final product of the dada2 package is the corresponding taxonomy table of the 

data, next it is input to other packages for further manipulation, filtering and 

downstream analysis.   

After further statistical analysis with various measure popular for microbiome studies, 

we compared the microbiome composition between tumor and matched healthy 

tissue in patients with colorectal cancer (CRC). Our findings align with previous 

studies highlighting the dominance of Firmicutes and Bacteroidetes phyla in the gut 
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microbiome. While overall diversity may not be affected, the presence of a tumor 

may influence the abundance of specific rare taxa. Differential abundance analysis 

identified the genus Ruminococcus within the Firmicutes phylum as significantly 

enriched in cancer tissues. This finding is intriguing, considering the potential role of 

Ruminococcus species in promoting tumor growth and pro-inflammatory responses. 

2.  Introduction 

2.1 Colorectal cancer epidemiology and projections.  

CRC ranks among the most prevalent with an incidence rate of 1.9 million in 2020 

and deadly malignancies worldwide with 935,000 deaths in 2020 (Sung et al. 2021) 

According to the World Health Organization (WHO); by 2040, the burden of 

colorectal cancer will increase to 3.2 million new cases per year (an increase of 

63%) and 1.6 million deaths per year (an increase of 73%).  

The Colorectal cancer arises from the accumulation of genetic mutations and 

epigenetic alterations that drive the transformation of normal colonic epithelial cells 

into adenocarcinomas. The conventional model of CRC development involves the 

adenoma-carcinoma sequence of genetic changes and inflammatory-immunological 

factors to facilitate and shape a tumorigenic microenvironment, where benign 

adenomatous polyps gradually progress to invasive carcinomas over several years, 

allowing for potential intervention and early detection.(Farhana et al. 2018)  

Colorectal cancer has several risk factors. These include male sex, metabolic 

syndrome, hypertension, diabetes, inflammatory bowel disease, obesity, sedentary 

behaviour, smoking, high alcohol consumption, high intake of sugar and red meat, 

and family history of colorectal cancer. Other risk factors include occupational 

exposure, and pollution. Genetic factors such as genetic mutations and inherited 

predisposition syndromes like Lynch syndrome and familial adenomatous polyposis 

also contribute to the risk of colorectal cancer (Ye, Chen, and Gu 2023).  

Additionally, gut microbiota alterations, bacterial genotoxicity, biofilm formation, 

oxidative stress, bacterial metabolome, and dysbiosis are assessed as risk factors 

(Feizi et al). In the last few years, the role of the microbiome in the development of 

CRC has been increasingly emphasized. It is well known that the gut microbiome 

has an important role in the carcinogenesis of CRC, during the development of 

cancer, a complex interaction is established among the gut microbiome, tumour 

microbiome and immune system causing initial inflammation (Y.-Z. Zhang et al. 

2018) and modulating different signalling pathways. Because bacterial biomarkers 

have the potential to detect CRC and predict clinical outcome, they have prognostic 

value (Rebersek 2021). 

  

https://www.who.int/news-room/fact-sheets/detail/colorectal-cancer
https://www.who.int/news-room/fact-sheets/detail/colorectal-cancer
https://www.who.int/news-room/fact-sheets/detail/colorectal-cancer
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2.2 Microbiota and CRC: Emerging Paradigm 

The human gut microbiota is a complex ecosystem comprising bacteria, viruses, 

fungi, and archaea, existing in a symbiotic relationship with the host. It influences 

various aspects of human health, and it plays a crucial role in maintaining gut 

homeostasis, immune function, and metabolism. Perturbations in the gut microbiota 

composition or function have been associated with numerous diseases, including 

inflammatory bowel diseases (IBD), metabolic disorders, and cancer.  

The association between colorectal cancer (CRC) and the microbiota has garnered 

significant attention in recent years, Emerging evidence suggests that alterations in 

the gut microbiota composition, termed dysbiosis, may contribute to the initiation and 

progression of CRC.  

Studies have revealed distinct alterations in the gut microbiota composition and 

diversity in individuals with CRC compared to healthy controls. These changes 

involve shifts in microbial taxa, decreased microbial diversity, and alterations in 

microbial metabolites. Specific bacterial species such as Fusobacterium Nucleatum, 

Bacteroides fragilis, and certain Enterococcus and Escherichia coli strains have 

been implicated in CRC pathogenesis due to their ability to promote inflammation, 

produce genotoxins, or modulate the tumor microenvironment (Gong et al. 2023). 

 

2.3 Microbiota and CRC: Implications for understanding and Intervention 

Differentiating the microbiota profiles between healthy colonic tissue and neoplastic 

cells within the colorectal environment is pivotal in understanding the dynamic 

interplay between the microbiota and tumorigenesis.(Masood et al. 2023) 

Characterizing the microbiota in both settings could offer insights into the early 

events that precede carcinogenesis, potential biomarkers for early detection (Burns 

et al. 2018). Furthermore, understanding these differences may aid in the 

development of innovative strategies, such as microbiota-based therapies or early 

diagnostic tools, to mitigate CRC incidence, progression, or improve treatment 

outcomes. (Chen et al. 2022) 

some researchers have hypothesized that modulating the microbiota could be a lead 

for new targeted therapy. As a very prevailing therapy, microbiome-targeted therapy 

or cancer bacteriotherapy were designed based on how to modulate gut microbiota 

with a change of diet, probiotics, and faecal transplantation (Conti et al. 2023) 

This field is evolving rapidly, and further exploration is necessary to comprehensively 

understand the complex interactions between the gut microbiota and CRC, ultimately 

aiming for improved clinical outcomes for patients. 
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2.4 Literature Review. 

Colorectal cancer (CRC) is a multifactorial disease resulting from both genetic 

predisposition and environmental factors including the gut microbiota (GM) 

(Moskowitz et al. 2020)The relationship between CRC and the human GIT 

microbiome is a significant focus in current research. The microbiome serves as a 

crucial interface for environmental factors in the body and possesses a genomic 

makeup much larger than the unique human genes. This genetic richness 

contributes molecules that aid in maintaining the body's balance and health, 

supporting digestion, and educating the immune system. A healthy microbiome also 

prevents harmful bacteria from colonizing the gut by occupying spaces and 

competing for nutrients. However, in CRC patients, an imbalance (dysbiosis) in the 

gut microbiome exists, suggesting that bacteria might interfere with the molecular 

mechanisms behind CRC (Ternes et al. 2020)Most studies that have investigated 

the tumor microbiome composition have examined biopsies from the tumor sites and 

adjacent healthy tissues. Flemer et al. showed that a CRC-associated microbiota 

was found also in adjacent healthy tissues 2–30 cm away from the tumor and argued 

that a CRC distinctive microbiota was established prior to CRC development 

(Senthakumaran et al. 2023)  (Dejea et al. 2014)   

Though various effects of bacteria associated with CRC have been identified, the 

specific ways in which they promote cancer development remain unclear. To 

understand this link better, further exploration is needed to uncover how CRC-

associated bacteria influence tumor initiation and progression.(Tjalsma et al. 2012) 

Bacteria potentially impact CRC by directly or indirectly affecting host cells or their 

surrounding environment through different mechanisms such as bacterial 

metabolism and secreted molecules (e.g., extracellular superoxide, genotoxins, 

short-chain fatty acids), attachment, invasion, translocation processes and 

modulation of host defences (Ternes et al. 2020). 

Recent advancements in culture-based methods and qRT-PCR have allowed the 

identification of specific bacteria in colorectal tissue and patient stool samples. Next-

generation sequencing techniques like 16S rRNA gene and metagenomic profiling 

provide essential data on CRC-associated microbiomes. (Wensel et al. 2022) 

Although 16S rRNA sequencing helps identify bacterial genera, it lacks resolution at 

the strain level. Nonetheless, it offers valuable insights into prevalent genera, serving 

as a starting point for more sensitive approaches like qRT-PCR and RNA/whole-

genome sequencing studies (Lian et al. 2020). The choice of the hypervariable 

region for the 16S rRNA gene affects analysis depth and may introduce bias in 

microbial diversity. The 16S rRNA gene works as a rapid and effective marker for the 

identification of microorganisms in complex communities; hence, a huge number of 

microbiomes have been surveyed by 16S amplicon-based sequencing. The 

resolution of the 16S rRNA gene is always considered only at the genus level; 
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however, it has not been verified on a wide range of microbes yet (Zhang et al. 

2023).  

When comparing various studies, differences often exist between control and CRC 

patient groups in basic parameters like gender ratios, ethnic groups and age  

(Fusobacterium nucleatum's role in CRC is significant. Its abundance in the gut is 

considered a possible biomarker for CRC, seen in both stool and tissue samples. 

FadA, a virulence factor in Fusobacterium, interacts with E-cadherin, fueling cancer 

cell growth through Wnt signaling (Smith et al. 2002). Additionally, higher FadA 

levels are detected in adenomas and adenocarcinomas compared to healthy tissues 

(Gong et al. 2023).  

While certain bacteria like F. nucleatum, E. coli pks+, or B. fragilis directly engage 

with host receptors on tumor or immune cells, numerous bacterial effects might stem 

from secreted metabolites. The gut microbiome serves as a rich source of secretory 

proteins (secretome) and metabolites (metabolome), contributing to a shared 

reservoir of metabolites within the tumor microenvironment which can play a role in 

cancer progression [17]. Oncometabolites, such as l-2-hydroxyglutarate, succinate, 

and fumarate (upstream), or d-2-hydroxyglutarate and lactate (downstream), 

accumulate in cancer due to metabolic defects (Senthakumaran et al. 2023) 

In the context of CRC, the microbiome associated with this cancer type serves as a 

potential source for such metabolites. For instance, B. fragilis, Prevotellaceae, and F. 

nucleatum have demonstrated the ability to produce succinate, which activates 

proinflammatory pathways through the succinate receptor 1 on immune cells].  

The large intestine hosts a vast array of microbes that progressively increases from 

the small intestine (103–104 bacteria/mL) to the colon (1011 bacteria/mL), 

correlating with varying cancer risks along the GIT [24.]. Environmental selection and 

competition among microbes are key factors shaping the diversity of these microbial 

populations. As a result, distinct microenvironments emerge, potentially influencing 

tumor progression [25]. This becomes particularly pertinent when considering the 

contrasting biological, pathological, and epidemiological aspects of right-sided (RCC) 

versus left-sided (LCC) colorectal cancers. 

Survival rates among CRC patients based on tumor location have sparked debate 

due to contradictory findings. Some studies suggest a poorer prognosis for tumors 

on the right side (caecum to ascending and transverse colon), while others indicate 

worse outcomes for tumors on the left side (splenic flexure and descending colon to 

rectosigmoid junction). These discrepancies in results may stem from differences in 

statistical methodologies and diverse characteristics within study cohorts, including 

variations in cohort size and age. 
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In CRC, certain characteristics like hypermutable microsatellite instability (MSI)-high, 

CpG island methylator phenotype (CIMP)-high phenotypes, and BRAF mutation 

rates are recognized to decrease from the ascending colon to the rectum [26]. This 

gradient might influence how intestinal microbiota potentially impacts the disease 

along the proximal–distal axis. Notably, research by (Dejea et al). highlights that the 

arrangement of bacteria into biofilm structures within the gut's mucus layer is 

consistently seen in RCC but not LCC [27]. Interestingly, these biofilms in RCC 

invade the colonic crypts and predominantly comprise bacteria associated with CRC 

[28]. Furthermore, Purcell et al. demonstrated that these bacteria are linked to the 

consensus molecular subtype (CMS) 1, known as the MSI immune subtype, 

characterized by MSI, CIMP-high, BRAF mutations, and immune cell infiltration [29]. 

Hence, evaluating the microbiomes of RCC and LCC separately is crucial to 

comprehend their unique traits. 

However, bacterial distributions in the gut don't always directly interact with tumors. 

For instance, while B. fragilis is abundant in the proximal colon, its IL-17-dependent 

NF-κB activation triggers a gradient of chemokines from the proximal to distal 

mucosa, influencing immune cell infiltration and distal colon tumorigenesis [67]. 

When considered together, the correlation between tumor location and bacterial 

distribution becomes significant, particularly concerning patient prognosis and 

treatment strategies.  

Among the various molecular events that contribute to CRC development and 

progression, mutations in key genes involved in cell proliferation, differentiation, 

apoptosis, and DNA repair are of particular importance [6]. The most common 

mutations in CRC include mutations in the KRAS gene, TP53 gene, and APC gene, 

which have been detected in 30-50%, 40-60%, and 60-80% of CRC cases, 

respectively. 

The KRAS gene encodes a GTPase that acts as a molecular switch in the 

RAS/RAF/MEK/ERK signalling pathway, which regulates cell growth and survival [8]. 

Mutations in the KRAS gene result in a constitutively active protein that promotes 

oncogenic transformation and resistance to anti-EGFR therapy [9]. The most 

prevalent mutation in the KRAS gene is the codon 12-G12D mutation, where Glycine 

is changed to Aspartic acid, which accounts for 25-30% of all KRAS mutations in 

CRC.  Other common mutations in the KRAS gene include codon 12-G12V, codon 

12-G12A, and codon 12-G12S, which represent 15-20%, 10-15%, and 5-10% of 

KRAS mutations in CRC, respectively. These mutations have similar functional 

effects and clinical implications, as they impair the GTPase activity of the KRAS 

protein and confer a poor prognosis and reduced response to anti-EGFR therapy 

[10]. 

The TP53 gene encodes a tumor suppressor protein that regulates cell cycle arrest, 

DNA repair, apoptosis, and senescence in response to cellular stress [11]. Mutations 

in the TP53 gene lead to the loss of its function and the accumulation of genomic 
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instability and malignant cells [12]. In CRC, various substitution and insertion-

deletion mutations have been observed in the TP53 gene, including nonsense and 

missense mutations that affect the DNA-binding domain and the oligomerization 

domain of the p53 protein. These mutations are associated with advanced tumor 

stage, lymph node metastasis, and poor survival in CRC patients [13]. Moreover, 

some TP53 mutations have been shown to confer a gain-of-function phenotype, 

which enhances the oncogenic potential and chemoresistance of CRC cells [14]. 

The APC gene encodes a multifunctional protein that regulates the WNT/β-catenin 

signaling pathway, which controls cell fate, polarity, and adhesion [15]. Mutations in 

the APC gene result in the activation of the WNT/β-catenin pathway and the 

transcription of target genes that promote cell proliferation and invasion [16]. The 

APC gene also shows pathogenic mutations, such as the c.4348C>T mutation, 

which causes a premature stop codon and a truncated protein that lacks the β-

catenin binding domain. This mutation is found in 10-15% of CRC cases and is 

associated with familial adenomatous polyposis (FAP), a hereditary syndrome 

characterized by the development of hundreds of colorectal polyps and a high risk of 

CRC. Other APC mutations include frameshift and nonsense mutations that occur in 

the mutation cluster region (MCR) of the gene, which spans exons 14 and 15.  

These mutations are detected in 60-70% of sporadic CRC cases and are considered 

as early events in the adenoma-carcinoma sequence. 

These mutations in the KRAS, TP53, and APC genes play a significant role in CRC 

tumorigenesis and can affect treatment response and prognosis 5. Understanding 

the molecular diversity and frequency of these mutations is crucial for personalized 

therapy and better management of CRC patients. Therefore, molecular testing and 

profiling of these genes are recommended for CRC diagnosis, staging, and 

treatment selection. 

To sum up, the unique spatial arrangement of bacterial species not only acts as a 

prognostic indicator but can also be a target for enhancing treatment effectiveness. 

It's crucial to analyse bacterial community structures and comprehend how they 

adapt within their environments to explore ways of modifying these communities, 

potentially leading to improved patient outcomes. (Louis, Hold, and Flint 2014)) 

2.5 Microbiota characterization:  from raw sequences to Amplicon 

sequencing variants ASV (amplicon sequencing variant):   

Recent explosion of research in the field of microbiome has led to the development 

of a wide range of tools, packages, and algorithms to analyse microbiome data. 

Advances in high-throughput sequencing (HTS), for example, Next Generation 

Sequencing (NGS) have fostered rapid developments in the area of microbiome 

research, with massive microbiome datasets are now being generated. The two most 

commonly used methodologies of Next Generation Sequencing for microbial 

https://hdl.handle.net/2144/33004
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identification and genotyping are based on gene amplicon/marker genes (e.g., 16S 

rRNA) and shotgun metagenomics.  

2.5.I Gene Amplicon Sequencing:  

 

(i) Overview on Gene Amplicon Sequencing. 

Over the past decades, gene amplicon sequencing has been the primary technique 

utilized to examine the phylogeny and taxonomy of complex microbiomes that were 

previously considered difficult to characterize. Also, sequencing is useful for the 

discovery of rare somatic mutations in complex samples (such as tumors mixed with 

germline DNA). 

For bacteria, archaea, fungi, and mycobacteria, there are several specific 

marker/target genes that have been identified and extensively used for amplicon 

sequencing. One of these genes is the 16S rRNA gene. The 16S rRNA gene is 

present in all bacteria and works as a rapid and effective marker for the identification 

of microorganisms in complex communities. It is sufficiently large for informatics and 

analysis purposes, at the same time, short enough for NGS, conserved in a way that 

allows for comparison across different organisms, and divergent enough to identify 

species unambiguously (Grimm 2019); hence, a huge number of microbiomes have 

been surveyed by 16S amplicon-based sequencing and it has been employed in 

numerous works such as the Human Microbiome Project (HMP), Earth Microbiome 

Project (EMP), and Metagenomics of the Human Intestinal Tract (MetaHIT) (W. 

Zhang et al. 2023).  

More recently, 16S rRNA-based NGS analysis has helped to identify changes in 

microbial community structures along with its associated alterations in community 

functions. It helped obtaining a deeper understanding of several gut-associated 

diseases, including Crohn’s disease, ulcerative colitis, diabetes and gastrointestinal 

cancers.  

Gene amplicon sequencing technique utilizes PCR to target and amplify specific 

portions of the hypervariable regions of the bacterial 16S ribosomal RNA subunit 

gene (Gao et al. 2021). There are nine hypervariable regions in the 16S rRNA gene 

(termed V1–V9), and most of these regions are used for metabarcoding in diverse 

ecosystems (Lee et al. 2023).  

Most of the 16S rRNA-based genotyping protocols use V5–V6, V3–V4, or V4 

hypervariable regions to identify and catalogue microbial profiles.  
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Figure 2.5.I.A 16S rRNA structure 

For instance, dominated by Firmicutes and Bacteroidetes, the optimal amplification 

region for the gut microbiome is V4. Alternatively, the V3 region works better for 

specimens with abundant Proteobacteria and Actinobacteria (W. Zhang et al. 2023) 

Other variable regions, including V1–V2 and V3–V4, have been utilized for 

genotyping archaeal species in complex microbial communities. Therefore, different 

microbes have their preference for the 16S rRNA gene variable region in 

amplification sensitivity and nucleotide sequence recognizability. Thus, the choice of 

primer set design used to amplify the hypervariable regions of the 16S rRNA gene is 

critical, and can affect the specify and resolution of the sequencing results. 

Moreover, the length of sequencing reads and sequencing strategy can also impact 

the accuracy and coverage of the results. In summary, this highly conserved nature 

of the 16S rRNA gene plays a vital role in cellular function and survival, making it an 

essential tool for accurately classifying both known and unknown microbial taxa. 

Furthermore, the relatively short size of the 16S rRNA gene (∼1542 bp) makes it 

easier to sequence even for very large sample sizes.(Gao et al. 2021).  

 

(ii) NGS Platforms and Methodologies.  

Currently, the most popular NGS method for single marker/target gene is based on 

the Illumina platform, Second-generation sequencers, e.g., Illumina’s MiSeq, enable 

sequencing of amplicons up to 600 bp with high accuracy. This length allows 

targeting about one to three adjacent variable regions of the 16S rRNA gene using 

“universal” primers for the conserved regions, while maintaining a significantly 

reduced sequencing cost in comparison to alternative high-throughput sequencers. 

The initial steps involve the amplification of target sequences using barcode primer 

pairs, followed by a subsequent PCR to add sequencing adapters to the amplicons 

(Abellan-Schneyder et al. 2021). Commonly utilized DNA isolation kits compatible 

with the Illumina platform encompass Nextera DNA Flex, Nextera XT, and TruSeq 

DNA PCR-Free, which accommodate diverse genome sizes and necessitate varying 

quantities of input DNA. After a clean-up step, the purified DNA libraries are 
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prepared for sequencing on the Illumina MiSeq platform, which is predominantly 

employed for amplicon sequencing due to its ability to generate longer reads (2× 300 

bp). The resulting reads are used to analyse similarities and differences between 

samples with different microbial compositions (e.g., alpha- and beta-diversity). 

(iii) Bioinformatics Analysis of Amplicon Sequencing Data.  

A variety of bioinformatics tools have been developed to analyse 16S rRNA amplicon 

sequencing data. These tools typically follow a three-step process: data pre-

processing and quality control, taxonomic assignment, community characterization 

and downstream analysis. One of the key challenges of gene marker-based analysis 

is distinguishing between true biological signals and sequencing artifacts. To 

address this challenge, two main tool categories exist: 

(i) operational taxonomic unit (OTU)-based (QIIME and Mothur).  

(ii) amplicon sequence variant (ASV)-based (DADA2, Deblur, MED,and 

UNOISE).  

Due to recent advances in high-throughput sequencing technologies, OTUs are 

increasingly being replaced by ASVs, which are un-clustered error-corrected reads 

(Callahan et al., 2017). After clustering (in case of OTUs) or denoising (in case of 

ASVs) and feature classification and annotation, the OTU/ASV table with the 

correspondent abundances is generated. OTUs are increasingly being replaced by 

amplicon sequence variants (ASVs), which are un-clustered error-corrected reads 

After clustering (in case of OTUs) or denoising (in case of ASVs) and feature 

classification and annotation, the OTU/ASV table with the correspondent 

abundances is generated (Marcos-Zambrano et al. 2021). 

OUT Clustering:  

In order to minimize the risks of sequencer error in targeted sequencing, clustering 

approaches were initially developed. Clustering approaches are based upon the idea 

that related/similar organisms will have similar target gene sequences and that any 

rare sequencing errors will have a minimal, if not none, impact to the consensus 

sequence for these clusters, known as operating taxonomic units (OTUs). These 

clusters are often being generated using a similarity threshold of 97% sequence 

identity.  

This approach poses the risk as it may result with several similar species being 

clustered into a single OTU, with their unique identifications being lost within the 

abstraction of grouping. Alternatively, some have tried the approach of requiring 

extremely high levels of sequence identity to minimize the risk of losing diversity to 

clustering, with thresholds closer to 100% being used, but this created a significant 

risk of identifying sequencing errors as new species and false diversity.  

While methods based on OTU clustering attempt to blur similar sequences into an 

abstracted consensus sequence, reducing the impact of potential sequencing errors 
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within a set of reads, the Amplicon Sequence Variant (ASV) approach attempts to go 

the opposite direction (Chiarello et al. 2022).   

The ASV approach  

Amplicon sequencing variants (ASVs) are an alternative approach to operational 

taxonomic units. It will start by identifying which exact sequences were read and 

quantifying the frequency of each sequence.  

These data will be integrated with an error model specific to the sequencing run, 

which enables the comparison of similar reads to determine the likelihood that a 

given read at a given frequency is not a result to sequencer error. (Jeske and Gallert 

2022).  

While there is also a risk of clustering ASVs from different species into the same 

cluster when using broad distance thresholds, the risk of splitting a genome into 

separate ASVs is a more significant concern, this risk was investigated by analysing 

the intragenomic variation of 16S rRNA genes from bacterial genomes.  

The number of ASVs increased with the number of copies of the 16S rRNA gene in a 

genome (Schloss 2021).  

 

2.5.II Analysis Pipelines.  

As of January 23, 2020, the words “amplicon” and “metagenome” were mentioned 

more than 200,000 and 40,000 times in Google Scholar, respectively.  

Analysis pipeline” refers to specialized software, programs, algorithms or scripts that 

are needed to convert raw sequencing data into biologically meaningful information 

by combining several or even dozens of software programs and tools organically in a 

certain order to complete the analysis task.  

While different bioinformatic pipelines are available in a rapidly changing and 

improving field, users are often unaware of limitations and biases associated with 

individual pipelines and there is a lack of agreement regarding best practices 

(Prodan et al. 2020). So, it is important to select a workflow that is appropriate for the 

research question and the type of microbiome being analysed.  

The choice of bioinformatics pipeline for analysing 16S rRNA gene sequencing data 

from the gut microbiome can significantly impact the downstream statistical analysis 

results. For instance, (Prodan et al. 2020; Szopinska-Tokov et al. 2023) compared 5 

workflows for microbiome characterization, different pipelines resulted in variations in 

the number of ASVs/OTUs and genera obtained, as well as in the case versus 

control comparison results. Currently the best-practice for amplicon analysis-NGS 

based are performed with the Shell environment and R language (Liu et al. 2021).   
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(iv) Quality control  

The first step in the analysis pipeline. It involves quality checking, adapter removal, 

filtering and trimming to remove artifacts and non-biological sequences, low-quality 

and contaminant sequencing reads resulting from sample impurities or inadequate 

samples preparation steps. Many quality control software packages use PHRED 

algorithm score to assess the base quality.(Reitmeier et al. 2021). A Phred quality 

score is a measure of the quality of the identification of the nucleobases generated 

by automated DNA sequencing. It was originally developed for the computer 

program Phred to help in the automation of DNA sequencing in the Human Genome 

Project. 

 

(v) The taxonomic assignments.  

A key step in the 16S rRNA sequencing data analysis pipeline, and the most 

important output file from amplicon analysis pipeline.   

Taxonomic assignments refer to the process of classifying an organism or a gene 

sequence to a particular taxon based on their similarity to known sequences in a 

reference database.(Sharma et al. 2012) 

As mentioned before, an OTU-based analysis, first clusters sequences into different 

OTUs and then performs taxonomic assignment. On the other hand, ASV-based 

methods utilize a denoising approach to infer the biological sequences in the sample 

before the introduction of amplification and sequencing errors. This allows to resolve 

sequences differing by as little as a single nucleotide. Therefore, an ASV-based 

analysis is able to provide a higher-resolution taxonomic result. 

Currently, the 16S-based microbial taxonomy profiling and species recognition are 

still limited by the shortage of reference databases. Some of the most commonly 

used taxonomic reference databases are:  the NCBI RefSeq database (National 

Centre for Biotechnology Information) which provides high-resolution annotations at 

the species level, while Greengenes; A database of the work of hundreds of 

scientists and Silva; for quality checked and aligned rRNA sequence data, have the 

advantage of comprehensiveness of taxonomy units (W. Zhang et al. 2023), and the 

RDP database (Ribosomal Database Project). The quality of the reference database 

can significantly impact the accuracy of taxonomic assignment. Thus, reference 

databases are constantly being updated, and it is important to use databases that 

are well-maintained, have a high level of coverage, and are appropriate for the type 

of microbiome being studied. 
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(vi) Within Sample Alpha Diversity.  

Alpha diversity provides an idea of the diversity of species within a particular sample. 

This metric is often used as a biomarker in disease association studies (Prehn-

Kristensenetal.,2018), and used as a check of sample quality (Schlossetal.,2009).  

Typically, alpha diversity metrics can be distinguished into two types: richness-and 

evenness-measures; Chao1 being the most used richness metric, and Shannon the 

most used evenness metric. The differences in alpha diversity among or between 

groups could be statistically evaluated using Analysis of Variance (ANOVA), Mann-

Whitney U test, or Kruskal-Wallis test.  

 

(vii)  Between Sample (Beta) Diversity  

Beta diversity represents the diversity of species across samples, commonly used to 

find clusters of similar samples.  

Typically, this feature is calculated in the exploratory analysis, as it provides a first 

impression on which taxa are important to distinguish samples, also on how 

microbial compositions are related to environmental and personal meta data. Beta 

diversity analysis is expressed as a distance matrix calculation on relative ASV/ OUT 

abundance, which serves as an input for visual exploration of sample divergence 

and similarity.  

Often occurring distance metrics are: (weighted) UniFrac, Jaccard, Bray-Curtis and 

Jenson-Shannon (Oliveira et al., 2018; Chong et al., 2020; Shamsaddini et al., 

2020). However it is important to note that none of these measures account for the 

compositional nature of the data, as there are newer methods that have been 

developed and designed to be “compositionally aware” and can better resolve 

microbiomes associated with phenotype (Martino et al. 2022) 

 

(viii) Differential Abundance 

With differential abundance analysis, OTUs/ASVs that differ significantly between 

samples, cohorts or populations are identified using statistical hypothesis testing. In 

doing so, taxa can be related to a certain response (e.g., disease state, growth 

process). (Peeters et al. 2021).  

3.  Purpose of the study 

In this study, an overview of the aforementioned purviews is provided by covering 

the three main areas of:  

(i) Identification of CRC-associated bacteria. 
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(ii) Comparison between cancer tissue and matched healthy tissue-associated 

microbiota.  

(iii) Investigate the correlation between CRC mutational profile and the 

significantly differentiated microbiome.  

 

4.  Materials and Methods  

4.1 Collection of biological samples and tissue processing (DNA extraction 

and amplification of 16SrRNA gene):   

In order to detect differences specific to the cancer-associated microbiome, samples 

taken directly from the tumor microenvironment are preferable to bulk stool samples, 

at least at the initial characterization phase. Minimising unwanted variation in an 

experiment is dependent on good experimental design. 

Moreover, the use of traditional case-control studies of the colon cancer microbiome 

makes it difficult to control for all of the external effects on the microbiome. For 

example, Diet and the variations of host genetics are two of the strongest influences 

on the composition of gut microbiota.(Burns et al. 2014).  

The microbiome data used in this study was generated previously and is 

described exhaustively in (Roelands et al. 2023).  

Briefly, snap-frozen tumor and healthy colon tissue were extracted from patient 

tumor tissue and matched normal samples were collected from colon cancer patients 

who underwent surgical resection of the primary tumor between 2001 and 2015 at 

Leiden University Medical Centre, resulting in a final cohort of 348 patients with 

available clinicopathological and survival data. Tissue processing involved sectioning 

tumor and healthy tissue samples, removing non-target tissue, and collecting frozen 

tissue for DNA and RNA extraction. DNA and RNA extraction was performed using 

the QIAGEN AllPrep DNA/RNA Mini kit, and the samples were stored at -80 °C. The 

Hypervariable regions V3–V4 of 16S rRNA gene were amplified with PCR using the 

amplicon primers with Illumina adaptors: 

Forward: 

5′TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNG- 

GCWGCAG′3 

Reverse: 

5′GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACH- 

VGGGTATCTAATCC′3.  

PCR was performed in a 25-μl reaction mixture containing primers, template DNA, 

and Hot Master Mix, followed by amplification cycles and confirmation of PCR 

products by electrophoresis. The amplicons were purified and multiplexed using a 
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dual-index approach, and the concentration was determined before sequencing on 

the Illumina MiSeq platform. Samples were multiplexed using a dual-index approach 

with the Nextera XT Index kit, determining amplicon concentration with the Qubit HS 

dsDNA assay kit, pooling to achieve an equimolar library concentration, and 

performing paired-end sequencing on the Illumina MiSeq platform. 

The microbiome cohort in this study consisted of 246 patients whose matched tumor 

and healthy colon tissues were sequenced for the 16S rRNA gene. This cohort is 

referred to in the study as the AC-ICAM246 cohort. 



18 
 
 

 
 
 
  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Roelands et al. 2023) 

Figure 2.5.II.A AC-ICAM study design. a, Visual representation of exclusion criteria and number of excluded samples from the 

456 available samples in the LUMC biobank, followed by overview of tissue processing and genomic profiling of fresh-frozen tumor 

and matched normal colon tissue samples. Samples of a total of 348 colon cancer patients were included in AC-ICAM. Number of 

profiled samples and technical specifications are indicated for each platform, including RNA Sequencing (RNA-Seq), Whole-Exome 

Sequencing (WES), TCR sequencing (immunoSEQ TCRβ assay) and 16 S rRNA gene sequencing to profile the microbiome. AC-

ICAM246 is a subset of AC -ICAM with tumor–normal matched rRNA 16 S microbiome data, while AC-ICAM42 only has tumor 

samples with 16 S rRNA gene sequencing. Venn diagram reflects overlap in number of patients between the different platforms 

applied. b, Summary of patient characteristics of colon cancer cohort (n = 348). Number in pie chart indicates number of patients in 

each category. 
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4.2 Microbiome data processing and computational analysis: 

4.2.I Data retrieving and pre-processing:  

the microbiota data with number (SRP426032) were retrieved from the NCBI 

Sequence Read Archive (SRA) database: project accession number 

(PRJNA941834; 16S) using "efetch 14.6" and "prefetch 2.11.3" command from the 

SRA-toolkit version 3.0.6.  

This dataset contained 16S rRNA gene amplicon sequencing data of 60 samples 

from 30 patients, each comprising one tumor and one normal sample.  

The study cohort for this project were chosen randomly from the cBioportal for 

interactive data exploration (Sidra-LUMC AC-ICAM dataset; 

https://www.cbioportal.org/)”.  

The raw sequenced data were converted to fastq format (or “demultiplexed”) using 

“fasterq_dump” software (parameter: split-3). The overall Sequencing quality was 

evaluated using “FastQC  v0.12.1" reports. 

FastQC gives general quality metrics about sequenced reads. providing information 

about the quality score distribution across reads, per base sequence content 

(%A/T/G/C), adapter contamination and overrepresented sequences. The output 

from FastQC, after analyzing a FASTQ file of sequence reads, is an HTML file that 

may be viewed in browser. The interpretation of these plots can vary depending on 

the nature and context of your sequencing data. Comprehensive quality assessment 

report generated using “MultiQC version 0.4”. to summarize all fastqc report for all 

samples. 

All reads from this type of library are expected to be nearly identical, expected 

results are: 

• Extremely biased per base sequence content. 

• Extremely narrow distribution of GC content. 

• Very high sequence duplication levels. 

• Abundance of over-represented sequences. 

• in cases where the PCR target is shorter than the read length, the sequence 

will read through into adapters.  

“Cutadapt version 1.18” was employed to remove adapters, and the quality 

assessment was repeated using FastQC and MultiQC and further summarized using 

‘fastqcr’ R-package, to ensure the effectiveness of the adapter removal process. 

The data consisted of paired-end FASTQ reads with a median sequencing depth of 

139,428,563 reads per sample." 

https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA941834
https://www.cbioportal.org/)
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Figure 4.2.I.A Adapter content plot exported from MultiQC report showing the process of adapter removal from 

the reads. 

 

4.2.II ASV-based pipeline.   

In this project, we used DADA2 R-package (Denoising Amplicon Data with Adaptive 

Removal of Chimeras and Dereplication) v3.16 (Callahan et al., 2016) on R v3.6.3 

Sequences were processed according to following the general tutorial available on 

the GitHub of the software (https://benjjneb.github.io/dada2/tutorial.html, November 

2020), the tutorial instructions for the DADA2 workflow for paired end Illumina Miseq 

data and the Bioconductor Workflow for Microbiome Data Analysis: from raw reads 

to community analyses (https://doi.org/10.12688/f1000research.8986.2) (Callahan 

BJ, Sankaran K, Fukuyama JA et al)  

the starting point to DADA2 pipeline is sequences that meet the following criteria:  

• Samples have been demultiplexed, i.e. split into individual per-sample fastq 

files.  

https://doi.org/10.12688/f1000research.8986.2
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Figure 4.2.II.A a heatmap depicting the frequency of each quality score at each base position is presented in grayscale. The X 

axis represents the read length. The y axis represents the PHRED quality score. The green line represents the average quality 

score at each position. while the orange lines indicate the quartiles of the quality score distribution. The red line shows the scaled 

proportion of reads that extend to at least that position and the quartiles of the quality score distribution by the orange lines. The 

forward reads maintain high quality throughout, while the quality of the reverse reads drops significantly at about position 200, 

which is common in Illumina sequencing.  

 

• Non-biological nucleotides have been removed, e.g. primers, adapters, 

linkers, etc. 

• If paired-end sequencing data, the forward and reverse fastq files contain 

reads in matched order. 

The data input to DADA2 as paired-end trimmed for adapters fastq files and the end 

product of this package is an amplicon sequence variant (ASV) table.  

After the package successfully loaded and performed some string manipulation to 

get matched lists of the forward and reverse fastq files, we start with visualizing the 

quality profile of the forward and reverse reads.    

plotQualityProfile(fnFs[1:2]) for forward reads and plotQualityProfile(fnRs[1:2]) for 

reverse reads 
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Filter and trim.  

Specifically, paired 300-bp reads were trimmed of the initial five low-quality bases. 

The Forward and reverse reads with more than 2 estimated errors, filtered and 

truncated at the 3’ end, where read quality dropped below a quality score of 2 

(TrunQ = 2). Based on the quality plots we choose to truncate the forward reads at 

position (260) and the reverse reads at position (200), This stringent filtering step 

ensured the quality and integrity of the data for subsequent ASV inference, yielding a 

high-quality dataset for downstream microbiota analyses.  
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ASV Inference and error rate estimation 

on the filtered fastq sequence data files, a dereplication process was performed, 

dereplication combines all identical sequencing reads into “unique sequences” with a 

corresponding “abundance”: the number of reads with that unique sequence to 

eliminate redundant information and reduces the memory requirements for 

downstream analysis.  

Subsequently, separate error rate estimations were conducted for forward and 

reverse reads, using 264,837,560 total bases in 1018,606 reads from 6 samples and 

203,721,200 total bases in 1018,606 reads from 6 samples, respectively.  

These error rate estimations employed a novel unsupervised learning approach that 

involved alternating sample inference with parameter estimation until both were 

mutually consistent.  As in many machine-learning problems, the algorithm must 

begin with an initial guess, for which the maximum possible error rates in this data 

are used;   

264837560 total bases in 1018606 reads from 6 samples will be used for 

learning the error rates. 

203721200 total bases in 1018606 reads from 6 samples will be used for 

learning the error rates. 
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 Everything appears to be in good order, and we proceed with certainty. 

After learning error rates, we applied the code sample inference algorithm to the 

filtered and trimmed sequence data (Callahan et al. 2016). When inspected the 

dada_class object which describes DADA2 denoising results for the first sample: 

dada-class: object describing DADA2 denoising results 

344 sequence variants were inferred from 13626 input unique sequences. 

Key parameters: OMEGA_A = 1e-40, OMEGA_C = 1e-40, BAND_SIZE = 16 

dada-class: object describing DADA2 denoising results 

230 sequence variants were inferred from 14199 input unique sequences. 

Key parameters: OMEGA_A = 1e-40, OMEGA_C = 1e-40, BAND_SIZE = 16 

  

Construct sequence table and Chimera Removal.  

ASVs were predicted and merged to obtain full denoised sequences. using a minimal 

overlap of 60 bases, which was necessary to maintain sufficient overlap between the 

forward and reverse reads, considering the biological length variation expected for 

the primer set used.  

Figure 4.2.II.B illustration of The error rates for each possible transition (A to C, A to G, …). The points represent the observed error 
rates for each consensus quality score. The black line depicts the estimated error rates after the machine-learning algorithm converges. 
The red line indicates the error rates projected under the standard definition of the Q-score. Here, the estimated error rates (black line) 
closely match the observed rates (points), and the error rates decline with increasing quality as anticipated. 
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By default, merged sequences are only output if the forward and reverse reads 

overlap by at least 12 bases and are identical to each other in the overlap region and 

is performed by aligning the denoised forward reads with the reversed-complement 

of the corresponding denoised reverse reads and then constructing the merged 

“contig” sequences. To inspect the merging process:  

  abundance forward reverse nmatch nmismatch nindel prefer accept 

1       56523       1       1     33         0      0      1   TRUE 

2       16905       2       3     58         0      0      1   TRUE 

3       15120       3       2     58         0      0      1   TRUE 

4       14234       4       4     38         0      0      2   TRUE 

5       11582       5       7     58         0      0      2   TRUE 

6       10898       6       6     38         0      0      2   TRUE 

7       10535       7       8     58         0      0      2   TRUE 

 

the next step in the DADA2 pipeline is to remove chimeric sequences.  

Chimeras are sequences that are composed of two or more distinct microbial 

genomes. They can arise from a variety of sources, including PCR artifacts, 

contamination, and horizontal gene transfer. The presence of chimeras can distort 

the composition of an amplicon sequence variant (ASV) table, leading to inaccurate 

estimates of microbial diversity and abundance. Chimeras were removed using the 

consensus method with the removeBimeraDenovo() function. 

 In this dataset we identified and removed a significant number of chimeric 

sequences (146,943 out of 155,368 input sequences), representing approximately 

93% of the original chimeras. This is a relatively high level of chimera removal, but it 

is not uncommon for datasets that have been sequenced from environmental 

samples. The number of ASVs remaining after chimera removal was also relatively 

low (8,425), representing a reduction of approximately 44% of the original ASVs. 

This reduction is again not unusual, as chimera removal can often result in a 

significant reduction in the number of sequences identified.  

Before moving forward in the downstream analysis we’ll look at the number of read 

that made it through each step in the pipeline, and assess sample-level variations in 

sequencing depth or read count distribution. No samples were excluded from the 

analysis.  

input filtered denoisedF denoisedR merged nonchim 

P0023-AN 110296    81562     80868     81136  78482   73047 

P0023-PT 203295   127916    125417    126819 119467   97731 

P0030-AN 257782   172904    167126    169906 146405   92989 

P0030-PT 263334   183971    176739    180186 159679   98249 

P0045-AN 140118   100493     99209     99864  94860   86374 

P0045-PT 491350   351760    348157    349986 333858  285694  
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Taxonomy assignation. 

Following constructing sequence table, ASVs were classified using the RDP naïve 

Bayesian classifier method (Wang et al. 2007) implemented in the DADA2 using the 

assignTaxonomy() function and the SILVA 16S rRNA gene data base (“Release 

138.1,” n.d.),  For the RDP training set. 

This database enabled classification of ASVs across six taxonomic levels: Kingdom, 

Phylum, Class, Order, Family, and Genus. Remarkably, all ASVs were successfully  

classified to the genus level, providing a comprehensive overview of the microbial 

composition within the samples. the dada2 package also implements a method to 

make species level assignments based on exact matching between ASVs and 

sequenced reference strains (Edgar 2018). To achieve species-level resolution, 

we employed the addSpecies() function, utilizing the SILVA species assignment 

database (McLaren and Callahan 2021) (Release 138.1) as a reference. 

Only in instances, where a query sequence exhibits a perfect match (100% identity) 

with a reference sequence is a species-level assignment confidently made. This 

rigorous approach ensures the elimination of ambiguous matches, mitigating the risk 

of miss identification. Emerging scientific evidence strongly supports the notion that 

exact matching with amplicon sequence variants (ASVs) represents the most 

reliable and appropriate method for species-level assignment within high-throughput 

16S amplicon datasets. 

This additional step enabled more precise identification of the microbial species 

present in the samples. using DADA2’s default parameter.  

Head of ASV taxonomy table:  

Kingdom    Phylum           Class                 Order              Family               Genus                  Species       

[1,] "Bacteria" "Proteobacteria" "Gammaproteobacteria" "Enterobacterales" "Enterobacteriaceae" "Escherichia-

Shigella" NA            

[2,] "Bacteria" "Bacteroidota"   "Bacteroidia"         "Bacteroidales"    "Bacteroidaceae"     "Bacteroides"          "fragilis"    

[3,] "Bacteria" "Proteobacteria" "Alphaproteobacteria" "Rickettsiales"    "Mitochondria"       NA                     NA            

[4,] "Bacteria" "Proteobacteria" "Alphaproteobacteria" "Rickettsiales"    "Mitochondria"       NA                     NA            

[5,] "Bacteria" "Firmicutes"     "Clostridia"          "Oscillospirales"  "Ruminococcaceae"    "Faecalibacterium"     

"prausnitzii" 

[6,] "Bacteria" "Proteobacteria" "Alphaproteobacteria" "Rickettsiales"    "Mitochondria"       NA                     NA    

 

Combine data into a phyloseq object. 

Phyloseq (McMurdie and Holmes 2013) is an R package used to import, store, 

analyse and graphically  display complex phylogenetic sequencing data that has 

already been clustered into amplicon sequencing variants and assigned to a 

taxonomy reference.  

This package leverages many of the tools available in R for ecology and 

phylogenetic analysis (vegan, ade4, ape, picante), while also using advanced/flexible 

graphic systems (ggplot2) to easily produce publication-quality graphics of complex 

phylogenetic data.  

The “phloseq” package uses a specialized system of S4 data classes to store all 

related phylogenetic sequencing data as a single, self-consistent, self-describing 
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experiment-level object making it easy to use R for efficient interactive and 

reproducible analysis of amplicon count data jointly with important sample covariate.  

The full suite of data for this study; the sample-by-sequence feature table, the 

samples metadata, the taxonomy table are combined into a single object for storing 

and further analysing the microbiome data.   

phyloseq-class experiment-level object 

otu_table()   OTU Table:         [ 8227 taxa and 60 samples ] 

sample_data() Sample Data:       [ 60 samples by 2 sample variables ] 

tax_table()   Taxonomy Table:    [ 8227 taxa by 7 taxonomic ranks ] 

phy_tree()    Phylogenetic Tree: [ 8227 tips and 8225 internal nodes ] 

refseq()      DNAStringSet:      [ 8227 reference sequences ] 

 

Phyloseq filtering. 

To further refine the taxonomic classification of the microbiome data, the 

subset_taxa() function from the phyloseq package was employed. This function was 

used to filter the taxonomic classification to include only bacteria, excluding other 

domains at the Kingdom taxonomic level. Additionally, sequences from chloroplasts 

and mitochondria were removed from the analysis by filtering at the Order and 

Family taxonomic levels, respectively. This step helped to eliminate potentially 

contaminating sequences from the analysis, ensuring that the results were more 

representative of the true microbial community present in the samples. 

Contamination assessment.  

After refining the taxonomic classification, a list of unique genera was extracted 

using the get_taxa_unique() function. This list was then compared to a list of known 

contaminant genera, denoted as “likely_contaminant”, to identify potentially 

problematic sequences that may require further investigation or removal. 

The “genera_in_contaminant_list” variable was created to flag genera that were 

present in both the refined dataset and the contaminant list, highlighting potential 

contaminants that could bias the results of downstream analyses. we used a list of 

microbial taxa that are typically found in negative blank reagents,as described by 

(Salter et al). This list has previously been curated and annotated by (Poore et al).  

Following the refinement of taxonomic classification, the tax_table() function from the  

phyloseq package was used to assess the completeness of taxonomic annotation 

and identify ASVs that lacked phylum-level annotation, the presence of ASVs without 

phylum-level annotation suggests that the taxonomic classification may not be 

comprehensive, potentially impacting the accuracy of downstream analyses;  

Number of ASVs without phylum-level annotation: 0  
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4.2.III Statistical Analysis   

First, we assessed sample-level variations in sequencing depth (read count 

distribution).  

 

Figure 4.2.III.A X-axis (Total Sequences): This represents the total number of sequences observed in the study. It ranges from 
0 to 300,000, Y-axis (Frequency): This represents the frequency of the total sequences observed. It ranges from 0 to over 30, 
There are three bars in the graph, each representing the frequency of sequences at different total sequences. The first bar 
shows a small frequency of sequences at around 50,000 total sequences. The second bar, which is significantly taller, indicates 
that the highest frequency of over 30 occurs at around 100,000 total sequences. This suggests that most sequences in the 
study were observed at this depth The third bar shows another small frequency of sequences occurring at approximately 
between 150,000 and 200,000 total sequences. 

Sequencing depth is the number of sequences that we obtained from each sample, 

and it can affect the quality and accuracy of the analysis. We wanted to make sure 

that our samples had enough sequencing depth to capture the microbial diversity 

and abundance. To do this, we plotted the distribution of the total number of 

sequences per sample, as shown in Figure 4.2.III.A, most of the samples had around 

100,000 sequences, which is considered sufficient for 16S rRNA gene sequencing. 

Some samples had lower or higher sequencing depth, but they were not very 

different from the majority. This means that our samples had relatively consistent 

and adequate sequencing depth. 

To further explore the characteristics of the microbial communities, we conducted 

analyses of ASV prevalence and abundance across different taxonomic levels.  

The dplyr package was employed to calculate prevalence, defined as the number of 

samples in which a given ASV was present, and total abundance, representing the 

sum of its abundances across all samples. This information was integrated with 

taxonomic metadata using cbind(). Phylum-level summaries were generated using 

plyr::ddply(). 

Alpha diversity within samples was assessed by observed richness index on ASVs 

(sum of unique AVSs per sample), Shannon’s index was also calculated on the raw 

ASV counts table for the dataset of both tumor and healthy samples, Simpson which 

is more dependent on highly abundant ASVs and less sensitive to rare ASVs, The 
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Chao2 (Chao 1987) an abundance-based richness estimator that is sensitive to rare 

ASVs was also included as complimentary measures, Incendies were read using R 

package “Vegan (v.2.5-6)   

Multiple ordination techniques were employed to comprehensively assess 

relationships between samples and potential clustering, normalized abundance data 

was used for all analyses to minimize compositional biases, the 

phyloseq_to_deseq2() function converted a phyloseq object containing the 

microbiome count data into DESeqDataSet object.  

DESeq2 was employed to estimate size factors for each sample to account for 

sequencing depth differences, using the calculated geometric means for each ASV 

using a custom function (gm_mean) and supplied as prior information.  

Geometric mean is often preferred for microbiome data as it’s less sensitive to 

outliers and more robust to zero-inflation compared to other methods like total sum 

scaling. this step addresses compositional bias, ensuring comparisons are based on 

relative proportions rather than absolute counts.  

Beta diversity was evaluated using weighted, unweighted UniFrac distances and 

Bray-Curtis dissimilarity which focuses on compositional differences in abundance, 

disregarding phylogenetic information.  

Non-metric multidimensional scaling (NMDS) ordinations were generated for each 

distance metric to visualize community dissimilarities in two-dimensional space. 

Additionally, PCA was performed to provide a complementary perspective on sample 

relationships and variance structure. 

Differential abundance analysis using DESeq() function from DESeq package was 

performed to identify ASVs that significantly differ in abundance analysis, the 

significance threshold was set at a p value of 0.01 and the log fold change <1. The 

obtained results were further visualized using ggplot2. The results were visualized to 

identify taxa exhibiting significant changes in abundance. 

5.  Results 

There was a total of 8425 ASVs in the unrarefied dataset of 8425 samples, based on 
39870–285694 valid sequence reads per sample.  

The average and median read counts were 85456.7 and 73906.5, respectively. 

The most abundant phylum in the dataset is Firmicutes with a prevalence of 0.76, 

which means that Firmicutes was detected in an average of 76% of the samples, 

followed by Bacteroidetes the average prevalence of Bacteroidetes is 0.69. 

Proteobacteria, the average prevalence of Proteobacteria is 0.32, which means that 

Proteobacteria was detected in an average of 32% of the samples and 

Actinobacteria was detected in an average of 2% of the samples. These phyla are 
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typically the most dominant in the gut microbiome of. Examining the prevalence of 

genera revealed a diverse landscape. While some, like Bacteroides and 

Faecalibacterium, exhibit moderate prevalence across samples, others like 

Lachnoclostridium and Blautia stand out with consistently high presence. This 

suggests the presence of key players alongside potentially specialized taxa within 

the microbial community.  

 

 

Figure 4.2.III.B difference in abundance on the Genus level 

Figure 4.2.III.A Prevalence plot on the Phylum level 
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Alpha diversity, when comparing the microbiota composition in tumor tissue versus 

matched normal healthy tissue within the same patients, the results suggest that 

there is no significant difference in the microbial diversity (as measured by the 

Shannon index) between the tumor and normal tissues. This could mean that the 

presence of the tumor does not significantly alter the overall diversity of the 

microbiota in the tissue samples analysed. 

The combined analysis of the Shannon and observed richness measures suggests 

that there is a real difference in the alpha diversity of tumor and normal tissues. 

However, this difference is more pronounced when using the observed richness 

measure, which is more sensitive to rare taxa.  
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Beta diversity analysis, the weighted UniFrac NMDS analysis has a stress of 0.1906, 

which is relatively low. This suggests that the ordination captures the underlying 

structure of the data well. The samples are clustered into two distinct groups, with 

tumor samples being more concentrated in one group, and normal samples being 

more concentrated in the other group.  

Bray-Curtis NMDS: The Bray-Curtis NMDS analysis has a stress of 0.2053, which is 

slightly higher than the weighted UniFrac NMDS analysis. However, it is still low 

enough to suggest that the ordination captures the underlying structure of the data 

well. The samples are also clustered into two distinct groups in this analysis.  

Unweighted UniFrac NMDS: The unweighted UniFrac NMDS analysis has a stress 

of 0.1749, which is the lowest of the three analyses. This suggests that it is the most 

accurate at capturing the underlying structure of the data. After filtering and applying 

significance criteria (adjusted p-value < 0.01 and log2 fold change > 1), differential 

abundance analysis revealed a single ASV (ASV149) exhibiting significant 

differential abundance between normal and cancer tissues (adjusted p-value = 

0.999886). This ASV, taxonomically classified as a member of the genus 

Ruminococcus within the phylum Firmicutes, demonstrated a remarkable 5.95-fold 

higher abundance in cancer tissues compared to normal tissues, corresponding to a 

384-fold increase in absolute abundance. 

Figure 4.2.III.C Alpha Diversity within samples plot 
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6.  Disscussion   

6.1 Microbiome Composition and Diversity  

Our exploration of the microbiome composition in colorectal cancer (CRC) between 

matched tumor and healthy colon tissues unveiled a dominance of Firmicutes, 

Bacteroidetes, Proteobacteria, and Actinobacteria. At the phylum level This finding 

aligns with their known prevalence in the gut microbiome of healthy individuals. 

Interestingly, we observed a moderate prevalence of genera such as Bacteroides 

and Faecalibacterium, while Lachnoclostridium and Blautia demonstrated a 

consistently high presence. This suggests a complex microbial community where key 

players coexist with potentially specialized taxa. In assessing alpha diversity, we 

initially found no significant differences between the microbiota in tumor and 

matched normal healthy tissues when using metrics like the Shannon index. While 

the Shannon index is a widely used measure of alpha diversity, it has some 

limitations in terms of its sensitivity to subtle differences between communities. This 

is because the Shannon index is based on the assumption that all rare taxa 

contribute equally to the overall diversity, which may not always be the case. 

Figure 4.2.III.D Bray-Curtis NMDS plot  

Figure 4.2.III.E PCA Analysis plot 
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Additionally, the lack of significant difference could be due to a variety of factors, 

including small sample size, high variability within sample groups, or the possibility 

that the Shannon index is not sensitive enough to detect the differences present. 

However, a more nuanced examination using observed richness revealed subtle but 

significant differences. This underscores the importance of employing multiple 

diversity metrics for a comprehensive understanding. The observed richness, being 

more sensitive to rare taxa, highlighted distinctions not apparent with the Shannon 

index However, it's important to note that while the overall diversity may not differ, 

the composition of the microbiota (which species are present and their relative 

abundances) could still vary significantly.  

6.2  Beta Diversity and Community Structure 

In this study, beta diversity analysis was conducted between the tumor and healthy 

tissue for the same patient, employing weighted UniFrac, Bray-Curtis, and 

unweighted UniFrac NMDS, uncovered distinct clustering of tumor and normal 

tissues. The weighted UniFrac NMDS, with its low stress value, captured the 

underlying structure well, revealing two distinct groups with tumor tissues more 

concentrated in one group and normal tissues in another. The Bray-Curtis analysis 

exhibited slightly higher stress but still effectively captured the separation, while the 

unweighted UniFrac analysis proved the most accurate, emphasizing the importance 

of considering different metrics for a comprehensive assessment of community 

structure.  

6.3 Differential Abundance Analysis 

a single ASV emerged as significantly differentially abundant between the two tissue 

types. ASV149 which represents the Ruminococcus, a genus within the Phylum 

Firmicutes. This finding implicates Ruminococcus as a potential key player in the 

CRC-associated microbiota which aligns recent research findings, A study by Cai at 

al. found that the abundance of Rumnicoccus was significantly increased in 

colorectal neoplasms, this increase in Rumnicoccus, along with other genera such 

as Blautia, may lead to gut microbiota imbalance which could potentially increase the 

severity of diseases like COVID-19 

Meanwhile, the exact species was not classified, Ruminococcus bromii is a dominant 

member of the human colonic microbiota that plays a 'keystone' role in degrading 

dietary resistant starch.  
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7.  Conclusion  

It is clear that there are numerous taxa in the colorectal cancer microbiota correlated 

with the disease. Here, in this study we investigated the potential role of microbiota 

in CRC by comparing microbial composition between the tumor tissue and matched 

normal tissue in patients’ samples. Our findings align with previous studies 

highlighting the dominance of Firmictes and bacteroides phyla in the gut microbiome.  

Further more we observed distinct community profiles within specific genus 

indicating the role of microbiome as key players and potentially specialized taxa.  

Additionally, while alpha diversity did not reveal significant a differences between 

tumor and normal tissue, within the patient, a combined analysis including observed 

richness suggested a subtle shift in community composition. This suggests that, 

while overall diversity may not be affected, the presence of a tumor may influence 

the abundance of specific rare taxa.  

Differential abundance analysis identified the genus Ruminococcus within the 

Firmicutes phylum as significantly enriched in cancer tissues. This finding is 

intriguing, considering the potential role of Ruminococcus species in promoting 

tumor growth and pro-inflammatory responses. 

While not revealing drastic changes in overall diversity, our findings suggest subtle 

compositional shifts and highlight the potential significance of specific taxa, 

particularly Ruminococcin species. Further research exploring these specific taxa 

and their functional roles is crucial to deepen our understanding of the microbiome's 

contribution to colorectal cancer progression and potentially pave the way for novel 

therapeutic strategies. 

 

8.  Limitations  

Despite its power, such projects on microbiota characterization faces several 

limitations that can influence the workflow and hinder reliable interpretation. Some 

key limitations include:  

Data size, big data challenges and Algorithm complexity. 

Microbiome sequencing generates massive datasets requiring specialized hardware 

and software for efficient storage, processing and analysis. Limited computational 

resources can constrain research, particularly for high resolution techniques like 16S 

rRNA sequencing. Moreover, the analysis algorithms are often complex and involve 

numerous processing steps, each has its own computational demands. For instance, 
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the DADA2 package which was integral in our project typically requires an average 

of 32GB of RAM to execute certain commands and codes.  

Therefore, adjusting pipelines for efficiency, accuracy and automation while 

managing resources limitations can be challenging. For instance, it is important to be 

aware of the limitations of different taxonomic assignment methods. OTU-based 

methods, which cluster sequences into OTUs based on their similarity, can be 

inaccurate if the reference database is of poor quality or if the sequences are highly 

divergent. ASV-based methods, which denoise and identify individual sequences, 

can provide more accurate taxonomic assignment but are computationally more 

demanding. Researchers should carefully consider the trads-offs between these two 

methods when choosing an approach for their study. 

Inconsistency in analysis pipelines and the lack of standardization.   

the analysis of the microbiome is affected by experimental conditions (e.g. 

sequencing errors and genomic repeats, wet library preparations, errors from the 

sequencing machines) and is computationally intensive and cumbersome 

downstream analysis (e.g. quality control, assembly, binning and statistical 

analyses). The lack of consistency between studies results even when analyzing the 

same data, is a significant limiting factor in this field. One of the reasons for this 

inconsistency is the variation in applied bioinformatics analysis pipelines. The field 

currently lacks universal standardization for analysis pipelines, variations in 

algorithms, databases, and processing parameters can lead to discrepancies 

between studies. Thus, the choice of bioinformatics analysis pipeline significantly 

impacts results. Development of robust algorithms, and standardization of analysis 

pipelines will pave the way for more reliable and reproducible studies, ultimately 

leading to a deeper understanding of the microbiome's role in health and disease.  
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