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Abstract 

Background: Diabetes Mellitus (DM) is a chronic metabolic disorder that results in 

abnormal blood glucose regulation. People with diabetes are prone to develop devastating 

long-term complications including cardiovascular disease, neuropathy, retinopathy, renal 

failure and even mortality. Keeping blood glucose in near normal levels and normalizing 

patients’ HbA1c leads to a lower frequency of macrovascular and microvascular 

complication. Due to this, blood glucose monitoring plays a vital key in diabetes care. 

Especially, Continuous Glucose Monitoring (CGM) which monitors interstitial blood 

glucose in real time. However, the huge amount of data obtained from CGM sensors 

requires finding ways to analyze the data more efficiently. Thus, using artificial 

intelligence and deep learning models to better interpret these results. Further using deep 

learning models like RNNs based on Long Short-Term Memory (LSTM) networks that 

has been designed for time sequence prediction problems has enabled researchers to 

propose specialized models to predict future values of blood glucose based on patient’s 

existing data. 

Aim: The main purpose of this study is to use artificial intelligence to better analyze 

patients’ CGM data. In addition to using a deep learning model based on LSTM neural 

network to predict future trends in patients’ data and help prevent either hyperglycemia or 

hypoglycemia episodes from occurring in order to improve the patient’s treatment plan 

and their life quality. 

Materials and Methods: This study utilized the Shanghai_T1DM and Shanghai_T2DM 

datasets. The data was collected from Diabetes Data Registry and Individualized 

Lifestyle Intervention (DiaDRIL) was initiated in Shanghai East Hospital and Shanghai 

Fourth People’s Hospital affiliated to Tongji University since 2019. The data contains 3 to 

14 days of CGM data corresponding to 12 patients with T1DM and 100 patients with 

T2DM, respectively. Some patients might have multiple periods of CGM recordings. The 

CGM data was analyzed using artificial intelligence to find each dataset’s 

characterizations. Furthermore, we calculated the autocorrelation function (ACF) and the 

time percentage of TAR, TBR and TIR for patients in both datasets. Later, we mapped the 

data onto risk scores and used a RNN based neural network to predict future values of 

blood glucose. 

Results: After applying the model to both Shanghai_T1DM and Shanghai_T2DM we 

evaluated the model performance using the Root Mean Square Error (RMSE) metric. We 

achieved a result of (RMSE: 9.78 mg/dl) for the LSTM model in T1DM patients’ data 

and (RMSE: 4.40 mg/dl) in T2DM patients’ data. Overall, our models demonstrated high 

prediction accuracy, supported by low RMSE values. But the model performed better in 

T2DM with a lower RMSE than that of T1DM. Moreover, we assessed the clinical safety 

of glucose prediction using the Clarke Error Grid (CEG). In T1DM data, most of the 

predictions fell in zones A or B which are either accurate of clinically benign with very 

few predictions were inaccurate or could be clinically harmful. Alternatively, in T2DM 



In silico analysis of Continuous glucose monitoring (CGM) results in diabetes mellitus patients; 
and Automatic Event Detection Using Neural Networks 

13 
 

data most of the predictions were in zone A which is clinically accurate while the rest of 

the predictions were in Zone B which is clinically benign. 

Conclusion: In this study, we show that our LSTM model was able to accurately and 

safely predict glucose values. In addition, translation of our prediction models to 

individuals with both type 1 diabetes showed encouraging results. We observed high 

precision in predictions. As such, the prediction model can be used to improve closed-

loop insulin delivery systems by overcoming sensor delay. In addition, longer prediction 

intervals may be used to safely bridge periods of sensor malfunction. On another note, 

analyzing CGM data in T2DM and accurately predicting patient’s glucose at different 

intervals offers an immense help in improving the drug choices based on the trends in the 

data. Potential future research avenues could involve the inclusion of meals and insulin 

doses delivered to the patient in the model in order to computationally decide the optimal 

dose of insulin needed independent of patient’s input. 

Keywords: Endocrinology; Diabetes Mellitus; CGM; Artificial intelligence; Deep 

Learning; Neural Networks; LSTM 
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Chapter 1: The theoretical framework of 

the thesis 

1. 1. Introduction 

Diabetes mellitus (DM) is a chronic metabolic disorder that results in 

abnormal blood glucose (BG) regulation, mostly either due to the 

dysfunction of pancreatic 𝛽-cells responsible for the production of insulin. 

This hormone regulates the BG concentration by allowing cells and tissues 

to absorb glucose from the bloodstream (Type I) thus requiring lifelong 

exogenous insulin treatment, or the inability of the body to respond to 

endogenous insulin causing insulin resistance and relative insulin deficiency 

(type II) and various subtypes including Maturity-onset diabetes of the 

young (MODY) and Latent autoimmune diabetes of adults (LADA) [1].  

People with diabetes are prone to an increased morbidity and mortality rate 

as compared to the normal population [2]. Diabetes induced hyperglycemia 

could lead to increasingly devastating complications long term, including 

cardiovascular disease, neuropathy, retinopathy, kidney failure and even 

mortality [3,4]. The prevalence of diabetes has been increasing rapidly over 

the past few decades. In 2019, about 463 million adults (9.3%) worldwide 

were living with diabetes, while it is estimated to be 578 (10.2%) and 700 

(10.9%) million by 2030 and 2045, respectively [5]. In 2019, diabetes was 

the direct cause of 1.5 million deaths and 48% of all deaths due to diabetes 

occurred before the age of 70 years. Another 460 000 kidney disease deaths 

were caused by diabetes [6], and raised blood glucose causes around 20% of 

cardiovascular deaths [7].  

It is shown that the available antidiabetic treatments combined with a near-

to-normal glucose levels approach, indicating the efforts of reducing high 

glucose levels and normalizing glycated hemoglobin (HbA1c) levels in the 

absence of any contraindications, may lead to a lower frequency of DM 

related microvascular and macrovascular events and all-time mortality in 

T1DM and T2DM [3,4]. On the other hand, intensified treatment targeting 

towards an intensive glucose control is associated with a higher risk of 

therapy-induced hypoglycemia and severe hypoglycemic events, which pose 

a potential risk for worsening or developing major macrovascular and 
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microvascular complications, serious neurological consequences, as well as 

cardiovascular and all-cause mortality [8,9,10,11]. Additionally, 

hypoglycemia is a severe adverse outcome that may negatively impact a 

patient’s health and psychological status, leading to poor compliance and 

treatment adherence [10,11]. 

Hypoglycemic events are also associated with a high direct and indirect cost 

for patients, healthcare systems, and society [11,12]. Thus, the accurate 

prediction of blood glucose variations and, in particular, hypoglycemic 

events is of paramount importance to avoid potential detrimental 

complications and adjust the therapeutic strategy in a more optimized and 

personalized treatment strategy for patients with DM. 

Due to this, Blood glucose measurement plays a vital key part in diabetes 

care, which allows patients to adjust their food intake, physical activity and 

medications with the help of physicians in order to maintain normoglycemia.  

Self-monitoring of blood glucose (SMBG) is a measurement that uses blood 

to collect blood glucose information at many time points [13]. Recently, a 

continuous glucose monitoring (CGM) technology is used to continuously 

monitor the BG levels in more or less real time [14,15]. Furthermore, 

emerged evidence has also emphasized the importance of avoiding 

fluctuations in glycemia in DM [16]. Of note, the Advanced Technologies & 

Treatments for Diabetes (ATTD) consensus recommendations highlight the 

role of glycemic variability and the time in ranges (including the time in 

target range, hyperglycemia, and hypoglycemia) as key metrics for 

Continuous Glucose Monitoring (CGM) [17]. The use of CGM technology 

makes it possible to obtain a huge amount of continuous BG data which 

requires more advanced techniques for analysis and discovering better ways 

to integrate these results into adjusting patients’ treatment plan.  

Recently, machine learning techniques—due to their adaptive nature in a 

world with dynamic environments and knowledge—have been successful at 

solving complex tasks that are difficult to model with other classical 

approaches. With their efficacy in in solving classification and regression 

problems, and the ever-growing availability of already collected personal 

data makes the prediction of diabetic blood glucose through data-driven 

approaches possible [18,19,20]. Machine learning-based data-driven 

approaches use the individual’s recorded data. Blood glucose dynamics in 



In silico analysis of Continuous glucose monitoring (CGM) results in diabetes mellitus patients; 
and Automatic Event Detection Using Neural Networks 

17 
 

patients with DM are affected by factors such as pancreatic function, insulin 

levels, carbohydrate intake, history of poor glycemic and the level and extent 

of physical activity. Models using combinations of input parameters 

accounting for these factors have been previously considered [21,22]. On 

account of its predictive effectiveness, deep learning has quickly become 

quite effective in blood glucose prediction. Among different deep-learning 

approaches, RNNs based on the long short-term memory (LSTM), have 

been designed for sequence prediction problems and are the most commonly 

used models [21,23-29].  

In this study we propose a DL model to help predict future CGM values in 

individual patients’ data in order to help avoid either hyperglycemia or 

hypoglycemia episodes. 

1.2. Research Problem: 

Patients’ glucose levels vary during the day, therefore CGM is used to 

monitor these levels and give a better understanding of the condition of the 

patients and how to better improve their treatment plan. The main obstacle 

with CGM is that it provides an enormous amount of data which makes it 

harder to interpret manually. 

1.3. Aim of study: 

The main purpose of this study is to use artificial intelligence to better 

analyze patients’ CGM data. In addition to using a deep learning model 

based on LSTM neural network to predict future trends in patients’ data and 

help prevent either hyperglycemia or hypoglycemia episodes from occurring 

in order to improve the patient’s treatment plan and their life quality. 

1.4. Study hypothesis 

Glucose forecasting by using CGM – a time sequence data- in order to 

predict future trends and prove autocorrelation of CGM data. 

1.5. Limitations 
• CGM sensors are rather expensive thus limiting the amount of data 

available for analysis and rather inaccessible for public use. 
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• the dataset of each patient is often too small to train a patient-specific 

deep-learning model. 

•  the dataset is usually highly imbalanced given that hypo- and 

hyperglycemic episodes are usually much less common than 

normoglycemia. 
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Chapter 2: Reference Studies 

2.1. First Study: 

“Chinese diabetes datasets for data-driven machine 

learning” [30] 

A study conducted by Qinpei Zhao et. al. at Tongji University, Shanghai, 

China. (2023). The primary objective of this study was to provide more 

extensive dataset on both patients of type 1 and type 2 diabetes mellitus that 

can contribute to the development of data-driven algorithms/models and 

diabetes monitoring/managing technologies. Considering the data already 

available in literature which is mostly patients of type 1 DM. this data 

includes ShanghaiT1DM and ShanghaiT2DM Datasets and made them 

publicly available for research purposes. This paper describes the datasets, 

which was acquired on Type 1 (n = 12) and Type 2 (n = 100) diabetic 

patients in Shanghai, China. The acquisition has been made in real-life 

conditions, the patients were recruited from in Shanghai East Hospital 

(September 2019 to March 2021) and Shanghai Fourth Peopleś Hospital 

(June 2021 to November 2021), respectively. The datasets contain the 

clinical characteristics, duration of diabetes, laboratory measurements, 

complications and medications of the patients. Moreover, the continuous 

glucose monitoring readings with 3 to 14 days as a period together with the 

daily dietary information are also provided. The authors analyzed the 

properties of the available data as well as comparing it with previously 

publicly available CGM datasets like OhioT1DM, D1NAMO etc... 

furthermore, the authors analyzed the use of an autocorrelation function 

(ACF) and partial autocorrelation function (PACF) in conjunction in order to 

select the appropriate time-series models, e.g., ARIMA to help prevent 

hypoglycemia and hyperglycemia events. This study provided the first 

publicly available datasets to include rich information for people with 

T1DM and T2DM in China. With hope that the datasets could contribute to 

the research in data-driven machine learning. 

2.2. Second Study: 

“Prediction of Blood Risk Score in Diabetes Using Deep 

Neural Networks” [31] 
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This study was conducted by J. Quetzalcóatl Toledo-Marín et al. at 

University of British Colombia, BC Children’s Hospital Research 

Institute in Vancouver, Canada. The aim of this study was to improve the 

prediction of blood glucose thus improving the quality of life of people 

living with type 1 diabetes by enabling them to better manage their care. 

Given the anticipated benefits of such a prediction, the authors rather 

than attempting to predict glucose concentration, they used a deep 

learning framework for prediction in which prediction is performed using 

a scale for hypo- and hyper-glycemia risk. Using the blood glucose risk 

score formula proposed by Kovatchev et al., models with different 

architectures were trained, including, a recurrent neural network (RNN), 

a gated recurrent unit (GRU), a long short-term memory (LSTM) 

network, and an encoder-like convolutional neural network (CNN). The 

authors trained the models using The OpenAPS Data Commons data set, 

comprising 139 individuals, each with tens of thousands of continuous 

glucose monitor (CGM) data points. To evaluate these predictions, 

performance results are compared with the last measurement (LM) 

prediction. The results obtained are competitive when compared to other 

deep learning methods. A root mean squared error (RMSE) of 16 mg/dL, 

24 mg/dL, and 37 mg/dL were obtained for CNN prediction horizons of 

15, 30, and 60 min, respectively. However, no significant improvements 

were found for the deep learning models compared to LM prediction. 

Performance was found to be highly dependent on architecture and the 

prediction horizon. This paper proposed new deep learning prediction 

framework by using a hypo- and hyperglycemia risk-score scale rather 

than attempting to predict glucose concentrations, leading to more robust 

training. 

2.3. Third Study: 

“Prediction-Coherent LSTM-based Recurrent Neural Network for 

Safer Glucose Predictions in Diabetic People” [32] 

This study was conducted by Maxime De Bois et al. and published as part of 

International Conference on Neural Information Processing (ICONIP 2019: 

Neural Information Processing) on 2019. The authors proposed in the 

context of time-series forecasting, a LSTM-based recurrent neural network 

architecture and loss function that enhance the stability of the predictions. 
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The data used comes from two distinct datasets: the Ohio T1DM dataset and 

the IDIAB dataset accounting for 6 type 1 and 5 type 2 diabetic patients 

respectively. First, the authors of this study confirm the superiority -in the 

context of glucose prediction- of the LSTM model by comparing it to other 

state-of-the-art models (Extreme Learning Machine, Gaussian Process 

regressor, Support Vector Regressor). Then, they show the importance of 

making stable predictions by smoothing the predictions made by the models, 

resulting in an overall improvement of the clinical acceptability of the 

models at the cost in a slight loss in prediction accuracy. Finally, they show 

that the proposed approach, outperforms all baseline results. More precisely, 

it trades a loss of 4.3% in the prediction accuracy for an improvement of the 

clinical acceptability of 27.1%. When compared to the moving average post-

processing method, the study shows that the trade-off is more efficient with 

this approach. This study offered a comprehensive comparison between 

different artificial intelligence models and provides a basis for further 

research in developing these models and implementing them in medical 

practice in order to better improve patients’ treatment plan in the future. 

2.4. Fourth Study: 

“Therapy-driven Deep Glucose Forecasting” [33] 

This study was conducted by Eleonora Maria Aiello et al. and was published 

in “Engineering Applications of Artificial Intelligence” journal in January 

2020. The data used in this study was an in-silico dataset that has been 

generated using the UVA/Padova simulator (n=100), which is equipped with 

a cohort of virtual patients and accepted by Food and Drug Administration 

(FDA) as a substitute to animal trials. In this paper the authors propose Deep 

Glucose Forecasting, a deep learning approach for forecasting glucose 

levels, based on a novel, two-headed Long-Short Term Memory 

implementation. It takes in input the previous values obtained through 

continue glucose monitoring, the carbohydrate intake, the suggested insulin 

therapy and forecasts the interstitial glucose level of the patient. The deep 

learning model used is based on stacked Long Short-Term Memory (LSTM) 

cells which are able to learn how to filter part of their hidden state during the 

inference process in order to model long-term temporal dependencies. The 

training process uses a Mean Squared Error loss function (MSE) with a 

default Adam optimizer. The model is trained using the in-silico dataset then 
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tested on another in-vivo dataset (a 1-month dataset containing all the data 

collected during the clinical trial for a single patient). thus, the model 

obtained considering this additional information is able to generalize to new 

unseen data and improve the overall glucose control. The predictions of the 

model are evaluated in terms of Coefficient of Determination (COD), the 

index of fitting called FIT, and Root Mean Square Error (RMSE). The Deep 

Glucose Forecasting model scores (COD:69.85%, FIT: 48.44%) which after 

fine tuning improve to (COD:84.05%, FIT:60.14). and error rate (RMSE: 

27.29) that drops to (RMSE: 21.09) after fine tuning. The proposed model in 

this paper is able to generalize to new unseen data, outperforms classical 

population models and reaches performance comparable to classical 

personalized models when fine-tuning is exploited on real patients. such 

deep learning models help with predicting future glucose levels and alter 

insulin therapy in order to define the optimal treatment. 

2.5. Fifth Study: 

“Deep transfer learning and data augmentation improve glucose 

levels prediction in type 2 diabetes patients” [34] 

A study conducted by Yixiang Deng et al. and was published in “Digital 

medicine” in 2021. The aim of this research is to develop deep-learning 

methods to predict patient-specific blood glucose during various time 

horizons in the immediate future using patient-specific every 30-min long 

glucose measurement by the continuous glucose monitoring (CGM) to 

predict future glucose levels in 5 min to 1 h. the dataset used in this paper is 

public dataset OhioT1DM. the two main problems that this paper aims to 

solve is imbalanced data (as normoglycemic levels are more common than 

hyperglycemic or hypoglycemic) and the fact that each patient data is too 

small to train any model. This study utilizes the use of CNN, RNN (LSTM 

in particular) in addition to mixup (beyond empirical risk Minimization) and 

time-series generative adversarial networks (TimeGAN) and later suggested 

their best model (CNN +Transfer2) outperforms all other models in terms of 

mean absolute error (MAE). Therefore, to solve the problem of imbalanced 

data in CGM dataset this study uses data augmentation by fixing the loss 

function in the model to be the relative mean absolute error (REL. MAE) 

and comparing the performance of the model when four different data pre-

processing techniques are implemented for data augmentation on the training 
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data of the minority class and a prediction horizon at 20 min. For this data 

augmentation method, the authors repeated the minority samples (the input-

output pairs where the output BG is less than 80 mg/dL) in the training 

dataset for k folds. And by using TimeGAN they generated synthetic 

minority samples that where further used in this model. The other issue 

raised by this paper is the difficulty of obtaining a sufficient large dataset for 

each patient, thus, the authors applied “Transfer learning” by pre-training the 

networks on other patients’ data by excluding the data from the target 

patient, and then further fine-tuning the network on one part of the target 

patient’s data. Finally, they test the network on the rest of the data from the 

target patient. The applied model achieved an Accuracy of 95.98%, 

sensitivity of 59.19% and specificity of 98.15%. the study proposed a new 

combined approach of transfer learning and data augmentation for 

imbalanced data can be proved a very powerful new framework for short 

term predictions for type 2 diabetes. 

2.6. Sixth Study: 

“Data-driven modeling and prediction of blood glucose dynamics: 

Machine learning applications in type 1 diabetes” [35] 

This paper was published in “Artificial Intelligence in Medicine” in 2019 by 

Ashenafi Zebene Woldaregay et al. the main purpose of this review was to 

develop a compact guide regarding modeling options and strategies 

of machine learning and a hybrid system focusing on the prediction of BG 

dynamics in type 1 diabetes. The review covers machine learning 

approaches pertinent to the controller of an artificial pancreas (closed-loop 

systems), modeling of personalized profiles, personalized decision support 

systems, and BG alarm event applications. This paper provides a comparison 

between literature available on the use of machine learning in type 1 

diabetes based on various categories including (Age and Number of 

Subjects, Type of Input, Data Format or Type/Data Source/Data Size, Input 

Preprocessing, Class of Machine Learning, Training/Learning Algorithm, 

Validation techniques, Prediction Horizon (PH) and Performance 

Metrics/Evaluation Criteria). Various machine learning techniques have been 

tested to predict BG, such as, recurrent neural networks, feed-forward neural 

networks, support vector machines, self-organizing maps, Gaussian 
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processes, genetic algorithms and programming, and deep neural networks. 

These techniques use various groups of input parameters and training 

algorithms. The main limitation of the current approaches is the lack of a 

well-defined approach to estimate carbohydrate intake, which is mainly done 

manually by the individual users and is prone to an error that can severely 

affect the predictive performance. Moreover, there is the lack of a universal 

approach to estimate and quantify the approximate effect of physical 

activities, stress, and infection incidence on the BG level. Almost all the 

studies have quite different approaches, and this poses a challenge in terms 

of regarding one approach as universal. None of the researchers have 

assessed model predictive performance during stress and infection 

incidences in a free-living condition, which should be taken into account in 

future studies. Furthermore, little has been done regarding model portability 

that can capture the inter- and intra-variations among patients. It seems that 

the effect of time lags between the CGM reading and the actual BG levels is 

also not well covered. However, in general, we foresee that these 

developments might foster the next generation of BG prediction, which 

should result in a great contribution in the effort to develop the long-awaited 

so-called artificial pancreas (a closed-loop system). 
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Chapter 3: Theoretical background on 

Diabetes Mellitus 

3.1. Diabetes Mellitus: 

Diabetes mellitus (DM) is a chronic metabolic disorder that results  in 

abnormal blood glucose (BG) regulation, mostly either due to the  failure of 

the body to secrete insulin (Type I) or the inability of the body  to respond to 

insulin action (type II). Insulin, is the hormone responsible for the storage of 

prandial glucose as glycogen in the liver thereby lowering blood glucose 

levels. Hyperglycemia leads overtime to developing major macrovascular 

and microvascular complications, serious neurological consequences, as well 

as cardiovascular and renal complications. People with diabetes are prone to 

an increased morbidity and mortality rate as compared to the normal 

population [2]. The prevalence of diabetes has been increasing rapidly over 

the past few decades. In 2019, about 463 million adults (9.3%) worldwide 

were living with diabetes, while it is estimated to be 578 (10.2%) and 700 

(10.9%) million by 2030 and 2045, respectively [5]. In 2019, diabetes was 

the direct cause of 1.5 million deaths and 48% of all deaths due to diabetes 

occurred before the age of 70 years. Another 460,000 kidney disease deaths 

were caused by diabetes [6], and raised blood glucose causes around 20% of 

cardiovascular deaths [7]. 

 

1Figure 3.1. prevalence of Diabetes Mellitus around the world in 2019 with comparison to expected numbers in 2030 
and 2045. 
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3.2. Physiology of insulin 

The human insulin gene resides on the short arm of chromosome 11. A 

unique set of transcription factors found in the β cell nucleus activates the 

transcription of the preproinsulin mRNA from the insulin gene (Figure 3.2.). 

A precursor molecule, preproinsulin, a peptide of MW 11,500, is translated 

from the preproinsulin messenger RNA in the rough endoplasmic reticulum 

of pancreatic β cells (see Figure 3.3.). Microsomal enzymes cleave 

preproinsulin to proinsulin almost immediately after synthesis. Proinsulin is 

transported to the Golgi apparatus, where packaging into clathrin-coated 

secretory granules takes place. Maturation of the secretory granule is 

associated with loss of the clathrin coating and conversion of proinsulin into 

insulin and a smaller connecting peptide, or C peptide, by proteolytic 

cleavage at two sites along the peptide chain. Mature secretory granules 

contain insulin and C peptide in equimolar amounts and only small 

quantities of proinsulin, a small portion of which consists of partially 

cleaved intermediates [36,37]. 

 

2Figure 3.2. Structural com ponents of the pancreatic β cell involved in glucose-induced biosynthesis and release of 
insulin. 
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3Figure 3.3. Structure of human pro-insulin C peptides and insulin molecules connected at two sites by dipeptide links. 

3.3. Diabetes Mellitus Diagnosis 

Diabetes maybe diagnosed based on Plasma glucose criteria, either the 

fasting plasma glucose (FPG) value or the 2-h plasma glucose(2-hPG) value 

during a 75-g oral glucose tolerance test (OGTT) or A1C criteria. The 

following criteria is used to diagnose DM according to the 2024 Diabetes 

Care issue proposed by the American Diabetes Association [1]: 

Criteria for the diagnosis of DM 

A1C ≥ 6.5% (48mmol/mol). The test should be performed in a laboratory 

using a method that is NGSP certified and standardized to the DCCT 

assay. * 

Or 

FPG ≥ 126 mg/dL (7.0mmol/L). Fasting is defined as no caloric intake for 

at least 8h.* 

Or 

2-h PG ≥ 200 mg/dL (11.1mmol/L) during OGTT. The test should be 

performed as described by WHO, using a glucose load containing the 

equivalent of 75 g anhydrous glucose dissolved in water. * 

Or 

In a patient with classic symptoms of hyperglycemia or hyperglycemic 

crisis, a random plasma glucose ≥ 200 mg/dL (11.1mmol/L). 
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DCCT, Diabetes Control and Complications Trial; FPG, fasting plasma 

glucose; OGTT, oral glucose tolerance test; NGSP, National 

Glycohemoglobin Standardization Program; WHO, World Health 

Organization; 2-hPG, 2-h plasma glucose. * In the absence of unequivocal 

hyperglycemia, diagnosis requires two abnormal test results from the same 

sample or in two separate test samples. 
1Table 3.1. Criteria for the diagnosis of DM according to the American Diabetes Association’s Diabetes Care Journal 

2024. 

3.4. Diabetes Mellitus Classification 

Diabetes is classified into five main groups based on known pathological 

and etiologic mechanisms-type 1, type 2, monogenic, secondary, and 

gestational diabetes (Table 3.2). 

 

2Table 3.2 Etiologic classification of DM. 

3.4.1 Type 1 Diabetes Mellitus 

Type 1 diabetes is immune-mediated in more than 95% of cases (type 1a) 

and idiopathic in less than 5% (type 1b). It is a catabolic disorder in which 

circulating insulin is virtually absent, and the pancreatic β cells fail to 

respond to all known insulinogenic stimuli. In the absence of insulin, the 

three main target tissues of insulin (liver, muscle, and fat) not only fail to 

appropriately take up absorbed nutrients but continue to deliver glucose, 
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amino acids, and fatty acids into the bloodstream from their respective 

storage depots. Furthermore, alterations in fat metabolism lead to the 

production and accumulation of ketones. This inappropriate persistence of 

the fasted state postprandially can be reversed by the administration of 

insulin. 

Latent autoimmune diabetes of adulthood (LADA) Type 1 diabetes can 

presents at any age, although peaks in incidence occur before school age and 

around puberty. Older adults often present with a more indolent onset that 

sometimes leads to misdiagnosis. These initially unrecognized patients may 

retain enough β cell function at the outset to avoid ketosis, but develop 

increasing dependence on insulin therapy over time as their β cell mass 

diminishes [37]. 

3.4.2 Type 2 Diabetes Mellitus 

Type 2 diabetes mellitus results from relative insulin deficiency, in contrast 

to the absolute insulin deficiency of patients with type 1 diabetes. Type 2 

diabetes is a heterogeneous disorder and probably represents a large number 

of different primary genetic and environmental insults leading to relative 

insulin deficiency. Clinically, patients with type 2 diabetes can range from 

those with severe insulin resistance and minimal insulin secretory defects to 

those with a primary defect in insulin secretion. 

Type 2 diabetes accounts for 80% to 90% of cases of diabetes. These 

patients commonly present as adults with some degree of obesity. At onset, 

most patients with type 2 diabetes do not require insulin to survive, but over 

time their insulin secretory capacity tends to deteriorate, and many 

eventually need insulin treatment to achieve optimal glucose control [36, 

37]. 

3.4.3. Monogenic Diabetes 

Maturity-onset diabetes of the young (MODY), This subgroup of 

monogenic disorders is characterized by the onset of diabetes in late 

childhood or before the age of 25 years as a result of a partial defect in 

glucose-induced insulin release. A strong family history of early-onset 

diabetes occurring in one parent and in one-half of the parent's offspring 

suggests autosomal dominant transmission. In contrast to most patients with 

type 2 diabetes, these patients are generally nonobese and lack associated 
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insulin resistance. Instead, they exhibit predominantly a defect in glucose-

stimulated insulin secretion. However, they are not ketosis-prone and may 

initially achieve good glycemic control without insulin therapy [37]. 

3.5. Diabetes Mellitus treatment 

3.5.1. Diet 

A well-balanced, nutritious diet remains a fundamental element of therapy 

for diabetes. It is recommended that the macronutrient proportions 

(carbohydrate, protein, and fat) be individualized based on the patient's 

eating patterns, preferences and goals. Limiting the carbohydrate intake and 

substituting some of the calories with monounsaturated fats, such as olive 

oil, can lower triglycerides and increase HDL cholesterol. A Mediterranean-

style eating pattern has been shown to improve glycemic control and lower 

combined endpoints for cardiovascular events and stroke. Caloric restriction 

and weight loss is an important goal for the obese patient with type 2 

diabetes. 

Patients with type 1 diabetes or type 2 diabetes on insulin should be taught 

carbohydrate counting, so they can administer their insulin bolus for each 

meal based on its carbohydrate content [36,37]. 

3.5.2. Agents for the treatment of hyperglycemia 

These drugs are used for the treatment of T2DM and they fall into several 

different categories as follows [36,37,38]; 

1) Drugs that act on the sulfonylurea receptor complex: 

• Sulfonylureas: The sulfonylureas contain a sulfonic acid-urea 

nucleus that bind the ATP-sensitive potassium channels (KATr) 

on the surface of pancreatic β cells, resulting in closure of the 

channel and depolarization of the β cell. Thus, permitting 

calcium entrance the cell and actively promote insulin release. 

(First-generation sulfonylureas (tolbutamide, tolazamide, 

acetohexamide, and chlorpropamide, Second-generation 

sulfonylureas (glyburide, glipizide, gliclazide, and glimepiride)) 

• Meglitinide Analogs: Repaglinide Acts by binding to the 

sulfonylurea receptor and closing the ATP-sensitive potassium 

channel. Mitiglinide is a benzylsuccinic acid derivative that 
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binds to the sulfonylurea receptor causing a brief pulse of 

insulin. 

2) Drugs that act on insulin target tissue: 

• Metformin:(1,1-dimethylbiguanide hydrochloride) is used, 

either alone or in conjunction with other oral agents or insulin. 

Metformin acts primarily through AMPK, which it activates by 

uncoupling mitochondrial oxidative phosphorylation and 

increasing cellular AMP levels. Metformin's therapeutic effects 

primarily derive from its effects on the liver, where it reduces 

hepatic gluconeogenesis and lipogenesis. Metformin is the first-

line therapy for patients with type 2 diabetes. It is ineffective in 

patients with type 1 diabetes. A side benefit of metformin 

therapy is its tendency to improve both fasting and postprandial 

hyperglycemia and hypertriglyceridemia in obese patients with 

diabetes without the weight gain associated with insulin or 

sulfonylurea therapy. 

• Thiazolidinediones:(Peroxisome-Proliferator-Activated 

Receptor Agonists), are insulin sensitizers exerting their 

antidiabetic effects through the activation of PPARɣ. Observed 

effects include increased GLUT expression (GLUT 1 and 

GLUT 4); decreased free fatty acid levels; decreased hepatic 

glucose output; and increased differentiation of preadipocytes 

into adipocytes. In addition to glucose-lowering, the 

thiazolidinediones have effects on lipids and other 

cardiovascular risk factors. (available drugs are: Rosiglitazone 

and Pioglitazone).  

3) Drugs that affect glucose absorption: 

• Alpha-Glucosidase Inhibitors: These drugs are competitive 

inhibitors of intestinal brush border α glucosidases. These drugs 

delay the absorption of carbohydrates and reduce postprandial 

glycemic excursion. (Available drugs: Acarbose, Miglitol and 

Voglibose). 

4) Incretins: 

• GLP-1 Receptor Agonists: The gut makes several incretins, gut 

hormones that amplify postprandial insulin secretion, including 

glucagon-like peptide-1. When GLP-1 is infused in patients 

with type 2 diabetes, it stimulates insulin secretion and lowers 
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glucose levels. (Semaglutide, Exenatide, Liraglutide, 

Albiglutide, Dulaglutide, and Lixisenatide are available for 

clinical use.) 

• DPP4 Inhibitors: An alternative to the use of GLP-1 receptor 

agonists involves inhibition of the enzyme DPP-4 with 

prolongation of the action of endogenously released GLP-1 and 

GIP. (Sitagliptin, Saxagliptin, Linagliptin, Alogliptin and 

Vildagliptin are available for the treatment of type 2 diabetes). 

5) Sodium Glucose Cotransporter 2 Inhibitors: 

• SGLT2 inhibitors: Glucose is freely filtered by the renal 

glomeruli and is reabsorbed in the proximal tubules by the 

action of sodium-glucose cotransporters (SGLT). SGLT2 

accounts for about 90% of glucose reabsorption and its 

inhibition causes glycosuria in people with diabetes, lowering 

plasma glucose levels. For people with type 2 diabetes and 

established ASCVD, HF, or CKD, an SGLT2 inhibitor has 

shown benefit in lowering primary composite outcome of death 

from cardiovascular causes, nonfatal myocardial infarction, or 

non-fatal stroke in addition to improving heart failure. 

Furthermore, SGLT2 inhibitors have shown primary evidence 

in slowing chronic kidney disease progression. (Available 

SGLT2 inhibitors: Canagliflozin, Dapagliflozin, Ertugliflozin 

and Empagliflozin). 

3.5.3. Insulin 

Insulin is indicated for individuals with type 1 diabetes as well as for those 

with type 2 diabetes whose hyperglycemia does not respond to diet therapy 

and other diabetes drugs. Insulin is available in different forms differing in 

duration of action and time to peak in action. 

Human insulin is dispensed as either regular (R) or Neutral Protamine 

Hagedorn (NPH) formulations. Six analogs of human insulin- three rapidly 

acting (insulin lispro, insulin aspart, and insulin glulisine) and three long-

acting (insulin glargine, insulin detemir, and insulin degludec) are available 

for clinical use [36,37,38]. 
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3Table 3.3. Insulin types and action profiles. 

1) Short Acting Insulin Preparation: 

• Regular insulin: is a short-acting, soluble crystalline zinc 

insulin whose hypoglycemic effect appears within 30 minutes 

after subcutaneous injection, peaks at about 2 hours, and lasts 

for about 5-7 hours. It’s the only insulin that can be used 

intravenously and is particularly useful in the treatment of 

Diabetic ketoacidosis and during the perioperative management 

of diabetics. 

• Rapidly acting insulin analogs: are modified human insulin 

they’re characterized by their Rapid absorption, faster action 

and shorter duration. When injected subcutaneously, they have 

an onset of action at 15 minutes and they peak at 1 hour and last 

approximately for 2-4 hours. (Available short acting insulin 

analogs are: Lispro, Aspart, Glulisine). 

2) Long-Acting Insulin Preparations: 

• Neutral Protamine Hagedorn (NPH): is an intermediate-acting 

insulin in which the onset of action is delayed by combining 

two parts of soluble crystalline zinc insulin with one part 

protamine zinc insulin. Its onset of action is delayed by 2-4 

hours, and its peak response is generally reached in about 8-10 

hours and its duration of action is often less than 24 hours (with 

a range of 10-20 hours). 
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• Insulin Glargine: is an insulin analog in which the asparagine 

at position 21 of the A chain of the human insulin molecule is 

replaced by glycine and two arginines are added to the carboxyl 

terminal of the B chain. It lasts for about 24 hours without any 

pronounced peaks and is given once a day to provide basal 

coverage. When this insulin was given as a single injection at 

bedtime to type 1 diabetes patients, fasting hyperglycemia was 

better controlled when compared with bedtime NPH insulin. 

• Insulin detemir: is an insulin analog in which the threonine at 

position 30 of the B chain has been removed and a 14-C fatty 

acid chain (tetradecanoic acid) is attached to the lysine at 

position 29 by acylation. The duration of action for insulin 

detemir is about 17 hours with minimal peaks. 

• Insulin degludec: In this insulin analog, the threonine at 

position B30 has been removed and the lysine at position B29 is 

conjugated to hexadecanoic acid via a gamma-Lglutamyl 

spacer. 

3) Insulin Mixtures: 

Patients with type 2 diabetes can sometimes achieve reasonable 

glucose control with just prebreakfast and pre-supper injections of 

mixtures of short acting and NPH insulins. Stable premixed insulins 

(70% NPH and 30% regular) are available as a convenience to 

patients who have difficulty mixing insulin because of visual 

problems or insufficient manual dexterity.  

With increasing use of rapid-acting insulin analogs as a pre-prandial 

insulin, it has become evident that combination with an intermediate-

acting or long-acting insulin is essential to maintain postabsorptive 

glycemic control. Premixed combinations of NPL (neutral protamine 

lispro) and insulin lispro are now available for clinical use (Humalog 

Mix 75/25 and Humalog Mix 50/50). These mixtures have a more 

rapid onset of glucose-lowering activity compared with 70% 

NPH/30% regular human. Similarly, a 70% insulin aspart 

protamine/30% insulin aspart (NovoLogMix 70/30) is now available. 

The main advantages of these new mixtures are that (1) they can be 

given within 15 minutes of starting a meal and (2) they are superior in 

controlling the postprandial glucose rise after a carbohydrate-rich 

meal. 



In silico analysis of Continuous glucose monitoring (CGM) results in diabetes mellitus patients; 
and Automatic Event Detection Using Neural Networks 

35 
 

The longer-acting insulin analogs, insulin glargine or insulin detemir, 

cannot be acutely mixed with either regular insulin or the rapid-acting 

insulin analogs. Insulin degludec, however, can be mixed and is 

available as 70% insulin degludec/30% insulin aspart and is injected 

once or twice a day. 

 

4Figure 3.4. different types of insulin compaterive action. 

Methods of insulin administration:  

a typical starting dose is 0.3 to 0.5 units/kg per day. Higher doses will be 

needed for individuals who are obese, children in puberty, or following 

presentation with DKA. This total daily dose (TDD) of insulin is typically 

given in a divided program of multiple daily injections (MDI). 50% of the 

TDD delivered as a once-daily dose of basal insulin while the other 50% 

given as boluses. There are several methods to administer insulin [38]: 

1) Insulin Pump Therapy (hybrid closed-loop, low-glucose suspend): it 

offers a basal delivery of URAA or RAA; generally, 40–60% of TDD. 

And for mealtime and correction: URAA or RAA by bolus based on 

ICR and/or ISF and target glucose, with pre-meal insulin ~15 min 

before eating. The advantages of this pump are that it can adjust basal 

rates for varying insulin sensitivity by time of day, for exercise and for 

sick days. With additional flexibility in meal timing and content. 

While on the downside it’s the most expensive regimen, the patient 

must continuously wear one or more devices. And more importantly 
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the risk of rapid development of ketosis or DKA with interruption of 

insulin delivery. There are also potential reactions to adhesives and 

site infections. And as it is the most technically complex approach 

(harder for people with lower numeracy or literacy skills). 

2) MDI: LAA + flexible doses of URAA or RAA at meals:  

in this regimen the patient takes LAA once daily; generally, 50% of 

TDD. And for mealtime and correction: URAA or RAA based on ICR 

and/or ISF and target glucose. This regimen offers Flexibility in meal 

timing and content. Also, Insulin analogs cause less hypoglycemia 

than human insulins. As for this method’s disadvantages: there is at 

least four daily injections. Furthermore, LAAs may not cover strong 

dawn phenomenon (rise in glucose in early morning hours) as well as 

pump therapy. 

3) Four injections daily with fixed doses of NPH and RAA: 

(Pre-breakfast: RAA ~20% of TDD. Pre-lunch: RAA ~10% of TDD. 

Pre-dinner: RAA ~10% of TDD. Bedtime: N ~50% of TDD.) 

This method may be feasible if patient is unable to carbohydrate 

count. All meals have RAA coverage. But shorter duration RAA may 

lead to basal deficit during day thus the patient may need twice-daily 

N. there is also greater risk of nocturnal hypoglycemia with N. plus it 

requires relatively consistent mealtimes and carbohydrate intake. 

4) Four injections daily with fixed doses of NPH and R: 

(Pre-breakfast: R ~20% of TDD. Pre-lunch: R ~10% of TDD. Pre-

dinner: R ~10% of TDD. Bedtime: N ~50% of TDD.) 

This method is also more feasible if patient is unable to carbohydrate 

count. R can be dosed based on ICR and correction. And all meals 

have R coverage. But on the downside, there is a greater risk of 

nocturnal hypoglycemia with N. as well as greater risk of delayed 

post-meal hypoglycemia with R. it requires relatively consistent 

mealtimes and carbohydrate intake. R must be injected at least 30 min 

before meal for better effect. 

5) Three injections daily: N+R or N+RAA: 

(Pre-breakfast: ~40% N + ~15% R or RAA. Pre-dinner: ~15% R or 

RAA. Bedtime: 30% N.) 

This method may be appropriate for those who cannot take injections 

in middle of day. Also, Morning N covers lunch to some extent. It has 

the advantage of RAAs over R. the disadvantages of this method are a 
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greater risk of nocturnal hypoglycemia with N than LAAs, greater risk 

of delayed post-meal hypoglycemia with R than RAAs, it requires 

relatively consistent mealtimes and carbohydrate intake and coverage 

of post-lunch glucose often suboptimal. Plus, R must be injected at 

least 30 min before meal for better effect. 

6) Twice-daily “split-mixed”: N+R or N+RAA: 

(Pre-breakfast: ~40% N + ~15% R or RAA. Pre-dinner: ~30% N + 

~15% R or RAA.) 

This regimen offers the least number of injections for people with 

strong preference for this. Furthermore, it eliminates need for doses 

during the day. But on the other hand, there is a heightened risk of 

hypoglycemia in afternoon or middle of night from N. it needs a fixed 

mealtimes and meal content. The coverage of post-lunch glucose often 

suboptimal. Thereby it’s difficult to reach targets for blood glucose 

without hypoglycemia. 

Injected insulin regimens Flexibility Lower risk of 

hypoglycemia 

Higher costs 

MDI with LAA + RAA or 

URAA 
+++ +++ +++ 

MDI with NPH + RAA or 

URAA 
++ ++ ++ 

MDI with NPH + short-

acting (regular) insulin 
++ + + 

Two daily injections with 

NPH + short-acting 

(regular)insulin or premixed 

+ + + 

Continuous insulin infusion 

regimens (Insulin pump) 
+++++ +++++ +++++ 

4Table 3.4. Insulin therapy regimen comparison. 

3.6. Diabetes Mellitus Complications: 

3.6.1. Acute DM complications: 

3.6.1.1. Hypoglycemia:  

Hypoglycemic reactions are the most common complications that occur in 

patients with diabetes who are treated with insulin. It can also occur in any 

patient taking oral agents that stimulate pancreatic β cells (e.g., 

sulfonylureas, meglitinide, δ-phenylalanine analogs), particularly if the 

patient is elderly and has renal or liver disease. The signs and symptoms of 
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hypoglycemia may be divided into those resulting from stimulation of the 

autonomic nervous system and those arising from neuroglycopenia 

(insufficient glucose for normal central nervous system function). When the 

blood glucose falls to around 54 mg/dL (3 mmol/L), the patient starts to 

experience both sympathetic (tachycardia, palpitations, sweating, 

tremulousness) and parasympathetic (nausea, hunger) nervous system 

symptoms. If these autonomic symptoms are ignored and the glucose levels 

fall further (to around 50 mg/dL [2.8 mmol/L]), then neuroglycopenic 

symptoms appear, including irritability, confusion, blurred vision, tiredness, 

headache, and difficulty speaking. A further decline in glucose (below 30 

mg/dL [1.7 mmol/L]) can then lead to loss of consciousness or even a 

seizure [36,37,39]. 

3.6.1.2. Diabetes Ketoacidosis 

This acute complication of diabetes mellitus may be the first manifestation 

of previously undiagnosed type 1 diabetes or may result from increased 

insulin requirements in type 1 diabetes patients during the course of 

infection, trauma, myocardial infarction, or surgery. Poor compliance, either 

for psychological reasons or because of inadequate patient education, is 

probably the most common cause of recurrent diabetic ketoacidosis.  

Patients with type 2 diabetes may also develop ketoacidosis under severe 

stress such as sepsis, trauma, or major surgery. 

Pathogenesis: Acute insulin deficiency results in rapid mobilization of 

energy from stores in muscle and fat depots, leading to an increased flux of 

amino acids to the liver for conversion to glucose and of fatty acids for 

conversion to ketones (acetoacetate, β-hydroxybutyrate, and acetone). In 

response to both the acute insulin deficiency and the metabolic stress of 

ketosis, the levels of insulin-antagonistic hormones (corticosteroids, 

catecholamines, glucagon, and GH) are consistently elevated. Furthermore, 

in the absence of insulin, peripheral utilization of glucose and ketones is 

reduced. The combination of increased production and decreased utilization 

leads to an accumulation of these substances in blood, with plasma glucose 

levels reaching 500 mg/dL (27. 8 mmol/L) or more and plasma ketones 

reaching levels of 8-15 mmol/L or more. The hyperglycemia causes osmotic 

diuresis leading to depletion of intravascular volume. As this progresses, 

impaired renal blood flow reduces the kidney's ability to excrete glucose, 
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and hyperosmolality worsens. Severe hyperosmolality (>330 mOsm/kg) 

correlates closely with central nervous system depression and coma. The 

accumulation of ketones may cause vomiting, which exacerbates the 

intravascular volume depletion. In addition, prolonged acidosis can 

compromise cardiac output and reduce vascular tone. The result may be 

severe cardiovascular collapse with generation of lactic acid, which then 

adds to the already existent metabolic acidosis [36,37,40]. 

3.6.1.3. Hyperglycemic Hyperosmolar State: 

This form of hyperglycemic coma is characterized by severe hyperglycemia, 

hyperosmolality, and dehydration in the absence of significant ketosis. 

Lethargy and confusion develop as serum osmolality exceeds 300 mOsm/kg, 

and coma can occur if osmolality exceeds 330 mOsm/kg. Underlying renal 

insufficiency or congestive heart failure is common. A precipitating event 

such as pneumonia, cerebrovascular accident, myocardial infarction, burns, 

or recent operation can often be identified [36,37]. 

3.6.1.4. Lactic Acidosis 

It occurs in severely ill diabetic patients present with profound acidosis and 

but relatively low or undetectable levels of keto acids in plasma, with the 

presence of excessive plasma lactate (> 5 mmol/L). Lactic acid is the end 

product of the anaerobic metabolism of glucose. The chief pathway for 

removal of lactic acid is by hepatic (and to some degree renal) uptake for 

conversion first to pyruvate and eventually back to glucose, a process that 

requires oxygen. Lactic acidosis occurs when excess lactic acid accumulates 

in the blood. This can be the result of overproduction (tissue hypoxia). Type 

A lactic acidosis is associated with tissue hypoxia from hypovolemia or 

endotoxic shock and need not be associated with hyperglycemia. Type B 

lactic acidosis is defined as that which occurs in the absence of clinical 

evidence for tissue hypoxia and is associated with diabetes per se or with 

biguanide therapy (Metformin) [36,37]. 

3.6.2. Chronic DM complications: 

3.6.2.1. Microvascular Complications: 

Disease of the smallest blood vessels, the capillary and the precapillary 

arterioles. Microvascular disease involving the retina leads to diabetic 

retinopathy [42], and disease involving the kidney causes diabetic 
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nephropathy which overtime could evolve to renal failure. Small vessel 

disease may also involve the heart, and cardiomegaly with heart failure has 

been described in diabetic patients with patent coronary arteries 

[36,37,41,44]. 

 

5Figure 3.5. Non proliferative diabetic retinopathy with intraretinal hemorrhages and micro aneurysms along 
inferotemporal arcade; and hard exudates temporal to macula. 

 

6Figure 3.6. Proliferative diabetic retinopathy with neovascularization of the disc, venous beading, hemorrhages, and 
cotton wool spots nasal to the optic nerve. Early frame of fluorescein angiogram shows extensive macular capillary 

non perfusion and early leakage from neovascularization along the superotemporal arcade. 

3.6.2.2. Macrovascular Complications: 

Large vessel disease in diabetes is essentially an accelerated form of 

atherosclerosis. It accounts for the increased incidence of myocardial 

infarction, stroke, and peripheral gangrene in diabetic patients [36,37,43].  

3.6.2.3. Neurologic complications (Diabetic Neuropathy): 

Peripheral and autonomic neuropathies are the two most common 

complications of both types of diabetes. Up to 50% of patients with type 2 

diabetes are affected [36,37,41]. 



In silico analysis of Continuous glucose monitoring (CGM) results in diabetes mellitus patients; 
and Automatic Event Detection Using Neural Networks 

41 
 

• Peripheral Neuropathy:  

A. Distal symmetric polyneuropathy: This is the most common 

form of diabetic peripheral neuropathy in which loss of function 

appears in a stocking-glove pattern and is due to an axonal 

neuropathic process. Longer nerves are especially vulnerable 

hence the impact on the foot. Both motor and sensory nerve 

conduction is delayed in the peripheral nerves [42]. 

 

7Figure 3.7 Neuropathic ulceration over first metatarsal head. 

B. Isolated peripheral neuropathy: Involvement of the 

distribution of only one nerve (mononeuropathy) or of several 

nerves (mononeuropathy multiplex) is characterized by sudden 

onset with subsequent recovery of all or most of the function. 

Cranial and femoral nerves are commonly involved, and motor 

abnormalities predominate. 

• Autonomic Neuropathy 

Neuropathy of the autonomic nervous system is common in patients 

with diabetes of long duration. It can affect many diverse visceral 

functions including blood pressure and pulse, gastrointestinal activity, 

bladder function, and erectile function. 

3.7. Glycemic Targets: 

• An A1C goal: for many non- pregnant adults of <7% (53 mmol/mol) 

without significant hypoglycemia is appropriate. 

• If using CGM to assess glycemia, an appropriate goal for many non-

pregnant adults is time in range (TIR) of >70% with time below range 
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(TBR) <4% and time <54 mg/dL <1%. For those with frailty or at 

high risk of hypoglycemia, a target of >50% time in range with <1% 

time below range is recommended. 

• Less stringent A1C goals (such as <8%[64mmol/mol]) may be 

appropriate for patients with limited life expectancy or where the 

harms of treatment are greater than the benefits. 

• Occurrence and risk for hypoglycemia should be reviewed at every 

encounter and investigated as indicated [39]. 

 

8Figure 3.8. Patient and disease factors used to determine optimal glycemic targets. Characteristics and predicaments 
toward the left justify more stringent efforts to lower A1C; those toward the right suggest less stringent efforts. 

A1C:7%=53mmol/mol. 

Glycemic recommendations for non-pregnant adults with diabetes 

A1c <7.0% (53mmol/mol) 

Pre-prandial capillary plasma 

glucose 

80-130 mg/dl 

Peak postprandial capillary 

plasma glucose 

<180 mg/dl 

5Table 3.5. Summary of Glycemic recommendations for non-pregnant adults with diabetes. 
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3.8. Diabetes Technology: 

3.8.1. Blood glucose self-monitoring: 

Capillary blood glucose measurements 

performed by patients themselves, are 

extremely useful. Optimal use of BGM 

devices requires proper review and 

interpretation of data by both the person 

with diabetes and the healthcare 

professional to ensure that data are used in 

an effective and timely manner. In people 

with type 1 diabetes, there is a correlation 

between greater BGM frequency and lower 

A1C. People with diabetes should be taught 

how to use BGM data to adjust food intake, 

physical activity, or pharmacologic therapy 

to achieve specific goals [45]. 

3.8.2. Continuous glucose monitoring devices: 

Real-time CGM is increasingly utilized for routine diabetes care in adults, 

children, and adolescents with T1DM. CGM is a portable device that allows 

for measuring and visualizing glucose concentrations in the interstitial fluid 

in real time for 3 to 14 days. The glucose values are available for review by 

the patient at time of measurement. CGM devices are composed of three 

main units: a sensor, a transmitter, and a receiver. The sensing electrode is 

placed in the subcutaneous space and measures glucose in the interstitial 

fluid, which is correlated to blood glucose via a calibration procedure. The 

sensing electrode is inserted by the user or a caregiver for most devices or 

implanted by a clinical team for the new long-term sensor. Each sensor can 

last between 3 and 14 days for the minimally invasive CGMs, and from 90 

to 180 days for the implantable one. Information from the sensing electrode 

is transmitted to a dedicated receiver or to a smart device like a phone or an 

insulin pump. The dedicated receiver, an app on a smart phone or an insulin 

pump, receives the glucose readings, which then can be used to visualize 

glucose trajectories and provide hypoglycemia and hyperglycemia alerts and 

alarms to the user and followers. 

9Figure 3.9. Blood glucose monitoring device 
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Benefits of CGM devices have accrued with improved performance of the 

devices over time. Consistent CGM use of 6 or more days per week has been 

associated with improvements in glycemic control, reflected in lower HbA1c 

levels, more patients achieving HbA1c targets, and reduction in time in the 

hypoglycemic range of less than 70 mg/dL (<3.9 mmol/L) or less than 54 

mg/dL (3 mmol/L) [45]. 

 The CGM devices 

offer several 

metrics for 

healthcare 

providers in order 

to better evaluate 

the patient 

glycemic control 

and further 

improve treatment 

plan [45].  

 

 10Figure 3.10. CGM sensor and reading app. 

 

6Table 3.6. Standardized CGM metrics for clinical care. 
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11Figure 3.11. Key points included in standard ambulatory glucose profile (AGP) report. 



In silico analysis of Continuous glucose monitoring (CGM) results in diabetes mellitus patients; 
and Automatic Event Detection Using Neural Networks 

46 
 

Substances and Factors Affecting Continuous Glucose Monitoring 

Accuracy:  Sensor interference due to several medications/substances is a 

known potential source of CGM measurement errors.  

 

7Table 3.7. CGM interfering substances. 

3.8.3. Insulin Pumps and Automated Insulin Delivery Systems: 

Continuous Subcutaneous Insulin Infusion--CSII is a minimally invasive 

form of insulin delivery that enables intensive insulin therapy. One of the 

advantages of the use of CSII, is its ability to continuously deliver insulin 

and allow the users to respond more rapidly to any changes in their 

physiologic insulin requirements. Second, most modern CSII pumps enable 

the user to program and modify key parameters that effect insulin delivery, 

such as (1) the basal rate profile, in which several basal rates with multiple 

insulin segments can be entered to address changes in insulin requirements 

between workdays and weekends, active days or sick days, and more; (2) the 

storing of multiple sensitivity factors, as well as carbohydrate to insulin 

ratio; (3) alerts and alarms; (4) bolus calculators and insulin-on-board 

estimators, to prevent over-stacking of insulin. 

CSII therapy has been associated with improved glycemic control, decreased 

hypoglycemia, and better quality of life. Still, there are several 

disadvantages of this delivery route. Using CSII means that the user is 

attached to an external device, which may be inconvenient in daily life. 

Additionally, it is recommended to change the infusion set every 3 days to 

reduce problems with site irritation and irregularity in insulin delivery 

caused by blocked catheters, insulin leakage, or cannula dislodgement. A 

failure of the infusion site can lead to hyperglycemia, and potentially DKA 

[36,37,45].  
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3.8.4. AID: “The Artificial Pancreas” 

The combination of continuous glucose technology with insulin pumps has 

enabled the development of AID systems (closed loop or artificial pancreas 

devices). A controller, an algorithm, adjusts insulin delivery based on CGM 

data to a glucose target or range that is preset and can be changed based on 

user lifestyle or need. These feedback control algorithms achieve safe and 

effective glucose regulation for people with T1DM, maximize time spent 

within the euglycemic safe range of 70 to 180 mg/dL, minimize 

hypoglycemic events, and prevent postprandial hyperglycemia with little 

user intervention.  

A closed-loop glucose control or AID system is composed of several basic 

elements, as depicted in Figure 3.13. The source of information is the sensor 

module that is based on a CGM. The delivery module is based on an insulin 

pump. The core module, the control algorithm, processes the sensor 

measurements with or without additional input provided by the user, such as 

meal or exercise information, to achieve the desired glucose set-point target 

or range. The control signal is sent to the user’s pump to manipulate insulin 

delivery and other drugs, such as glucagon, in a variable rate or micro-dose. 

Current artificial pancreas systems are based on subcutaneous sensing and 

delivery [36,37,45].  

 

12Figure 3.12. Feedback control loop for automated glucose management. CGM, continuous glucose monitoring. 
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Chapter 4: Theoretical background on 

deep learning 

4.1. Fundamentals of Deep learning: 

 Deep learning is a machine learning method which has seen a rise the last 

years due to its ability to perform predictions on huge amounts of complex 

data using varied type and sizes of models [46]. One of the most common 

characteristics of these models is their large number of hidden neurons. 

These neurons may vary in how they receive and send out data, but the 

fundamental basic neuron is the artificial neuron. Artificial neurons are the 

basic structure of all deep learning networks and was created in a way to 

mimic the human neural neuron. The artificial neuron works in such a way 

that it receives input data that is weighted and added together with a bias, 

and finally a non-linear activation function is used which results in the 

output of the neuron [46]. These neurons can then be added together in a 

layer called a hidden layer, in a way that each neuron takes in all parts of the 

input data to that layer. By adjusting weights and biases, the network can 

train and learn from the data it is fed. Afterwards, a testing phase where the 

network is fed with unseen data is required. 

 

13Figure 4.1. The different kinds of deep neural networks, with the artificial neural network to the left and the three 
most common types of supervised learning networks in the middle (MLP, CNN and RNN). © 2020 IEEE. 

4.2. Learning methods in deep learning 

4.2.1. Supervised learning 

Supervised learning is all about operating to a known expectation and in this 

case, what needs to be analyzed from the data being defined. Algorithms 

classified under this category focus on establishing a relationship between 
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the input and output attributes, and use this relationship speculatively to 

generate an output for new input data points [48]. 

4.2.2. Unsupervised learning 

In some of the learning problems, we do not have any specific target in mind 

to solve. The goal in this case is to decipher the structure in the data against 

the build mapping between input and output attributes of data and, in fact, 

the output attributes are not defined [48]. 

4.2.3. Semi-supervised learning 

This learning technique is the combination of supervised and unsupervised 

learning. Semi-supervised learning is about using both labeled and unlabeled 

data to learn models better. Semi-supervised learning gets its motivation 

from the human way of learning [48]. 

4.2.4. Reinforcement learning 

Reinforcement learning is learning that focuses on maximizing the rewards 

from the result. It involves interacting with the surrounding environment. 

The most important thing is that in reinforcement learning the model is 

additionally responsible for making decisions for which a periodic reward is 

received. The results in this case, unlike supervised learning, are not 

immediate and may require a sequence of steps to be executed before the 

final result is seen. Ideally, the algorithm will generate a sequence of 

decisions that helps achieve the highest reward or utility [48]. The goal in 

this learning technique is to measure the trade-offs effectively by exploring 

and exploiting the data [70]. 

8Table 4.1. List of 
popular deep 
learning models, 
available learning 
algorithms 
(unsupervised, 
supervised) and 
software 
implementations 
in R or python. 
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4.3. Training on Deep Learning networks 

When the network has been created the training can start. The way neural 

networks train is by adjusting the weights and biases by a pre-determined 

step size, referred to as learning rate, by the use of a cost or loss function. 

By training the data goes through the network until it arrives to the final 

layer, where the loss function will compare the label to the network output, 

and which this result will be propagated back through the network, back 

propagating, and change each neuron’s weights and biases with regards to 

the learning rate in how much they will be changed. The network will 

attempt to reduce the loss and increase the performance as much as it can, 

with the help of an optimizer. Each layer has activation functions, which can 

be in the form of sigmoid, tanh, ReLU or Leaky-ReLU. Also, the most 

common optimizer being Stochastic Gradient Descent (SGD), RMSprop and 

Adaptive Momentum Estimation (Adam) [47]. The data is usually divided 

into training, validation and test sets, with validation being tested on during 

training to adjust the network. The test data is tested on when all training is 

done to investigate how well the network performs on unseen data. 

4.4. Deep Learning Networks 

One of the most popular neural networks is the convolutional neural network 

(CNN). It has achieved state of-the-art performance in many areas and 

continues to perform well [46,55]. The basic structure and what makes CNN 

so widely used is the mathematical operation, convolution [47,56]. Another 

common neural network is the recurrent neural network (RNN) which has 

seen more use in time series data and sequences. RNN allows latent 

information to pass over to the next unit in the network [57]. The general 

structure of the RNN can be seen in (Figure 4.2).  While the RNN might 

perform well on short time series data, for longer time series data the 

network may experience the gradient either exploding or vanishing during 

back propagation. This behavior is a result of how the network is chained 

together and the use of gradient-based optimizer, such as SGD, resulting in 

the gradient rapidly increasing or decreasing [57,58]. To try to mitigate this, 

the LSTM network was proposed [59]. It is now one of the most popular 

RNN variations being used [60,61,62]. It introduces three parts to assist in 
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computation for the memory cell ct, namely the so called forget gate ft, input 

gate it and output gate ot  

 

14Figure 4.2 Structural differences between ANN, RNN an LSTM. 

4.4.1 Recurrent Neural Networks and The Long Short-Term 

Memory Network (LSTM) 

A recurrent neural network is a type of artificial neural network that is best 

suited to recognizing patterns in sequences of data, such as text, video, 

speech, language, genomes, and time-series data. the most effective 

sequence models used in practical applications are called gated RNNs. Like 

the LSTM. 

The Concept of LSTM: Long short-term memory is a modified RNN 

architecture that tackles the problem of vanishing and exploding gradients 

and addresses the problem of training over long sequences and retaining 

memory. All RNNs have feedback loops in the recurrent layer. The feedback 

loops help keep information in “memory” over time. Since the gradient of 

the loss function decays exponentially with time (a phenomenon known as 

the vanishing gradient problem), it is difficult to train typical RNNs. That is 

why an RNN is modified in a way that it includes a memory cell that can 

maintain information in memory for long periods of time. In LSTM, a set of 

gates is used to control when information enters memory, which solves the 

vanishing or exploding gradient problem [51]. 

The idea of introducing self-loops to produce paths where the gradient can 

flow for long durations is a core contribution of the initial long short-term 

memory (LSTM) model (Hochreiter and Schmidhuber, 1997). A crucial 

addition has been to make the weight on this self-loop conditioned on the 
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context, rather than fixed (Gers et al., 2000). By making the weight of this 

self-loop gated, the time scale of integration can be changed dynamically 

[49]. 

The LSTM block diagram is illustrated in figure 4.3. The corresponding 

forward propagation equations are given below. Instead of a unit that simply 

applies an element wise nonlinearity to the affine transformation of inputs 

and recurrent units, LSTM recurrent networks have “LSTM cells” that have 

an internal recurrence (a self-loop), in addition to the outer recurrence of the 

RNN. Each cell has the same inputs and outputs as an ordinary recurrent 

network, but has more parameters and a system of gating units that controls 

the flow of information. The most important component is the state unit si
(t) 

that has a linear self-loop similar to the leaky units described in the previous 

section. However, here, the self-loop weight (or the associated time 

constant) is controlled by a forget gate unit fi
(t) (for time step t and cell i), 

that sets this weight to a value between 0 and 1 via a sigmoid unit: 

, 

where x(t) is the current input vector and h(t) is the current hidden layer 

vector, containing the outputs of all the LSTM cells, and bf, Uf, Wf are 

respectively biases, input weights and recurrent weights for the forget gates. 

The LSTM cell internal state is thus updated as follows, but with a 

conditional self-loop weight fi
(t): 

, 

where b, U and W respectively denote the biases, input weights and 

recurrent weights into the LSTM cell. The external input gate unit gi
(t) is 

computed similarly to the forget gate (with a sigmoid unit to obtain a gating 

value between 0 and 1), but with its own parameters: 

, 

The output hi
(t) of the LSTM cell can also be shut off, via the output gate qi

(t), 

which also uses a sigmoid unit for gating: 

, 

, 
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which has parameters bo, Uo, Wo for its biases, input weights and recurrent 

weights, respectively. Among the variants, one can choose to use the cell 

state si
(t) as an extra input (with its weight) into the three gates of the i-th 

unit, as shown in figure 4.3. This would require three additional parameters 

[49]. 

 

15Figure 4.3. Block diagram of the LSTM recurrent network “cell.” Cells are connected recurrently to each other, 
replacing the usual hidden units of ordinary recurrent networks. An input feature is computed with a regular artificial 

neuron unit. Its value can be accumulated into the state if the sigmoidal input gate allows it. The state unit has a linear 
self-loop whose weight is controlled by the forget gate. The output of the cell can be shut off by the output gate. All 
the gating units have a sigmoid nonlinearity, while the input unit can have any squashing nonlinearity. The state unit 

can also be used as an extra input to the gating units. The black square indicates a delay of a single time step. 

4.5. Deep learning on time series data 

Several different deep learning networks has been investigated on different 

types of time series data. Lynn et al. investigated the use of bi-directional 

LSTM and GRU networks on heartbeat detection of ECG data [63]. The 

results showed improvements of higher accuracy compared to using regular 

LSTM or GRU. Bi-directional LSTM and GRU networks were also 

investigated in ciphertext classification. Ahmadzadeh et al. tested using these 

networks and compared to a 1D CNN network and regular LSTM and GRU 

networks [60]. Both bi-directional networks performed better, with an 

increase of accuracy of around 1-2% depending on cypher. 
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Others have investigated networks combining RNN and CNN to extract both 

feature extraction from CNN and the time-dependency feature from RNN. 

Garcia et al compared proposed LSTM, CNN and LSTM-CNN networks 

where instead of working on 1D-CNN on power quality disturbances data, 

Garcia et al used a short time Fourier transform to get an image of each 

sequence consisting of spectral components and amplitudes to use as a 

seven-variable input [55]. The proposed CNN and LSTM-CNN networks 

performed very similar with small improved results while using the 

combined LSTM/CNN network, while the LSTM network performed much 

worse. Karim et al. investigated another such combined network, comparing 

with adding an attention layer achieving state-of-the-art results on several 

UCR benchmark datasets [65].  Another configuration of this network was 

tested by switching the LSTM to a GRU layer which showed improved 

training speed and even better results [64]. 

4.6. Blood Glucose Prediction 

Deep learning in the diabetes field has mostly been focused on blood 

glucose prediction and to aid the closed and semi-closed systems to 

announce incoming hyper/hypo events and in a few to detect meals. Most 

networks also use additional variables than only blood glucose, such as basal 

and bolus insulin, to aid the network. One such study was done by Maxime 

De Bois et al [32]. the study used an LSTM based RNN and comparing it to 

other state-of-the-art models (Extreme Learning Machine, Gaussian Process 

regressor, Support Vector Regressor). The study shows that the proposed 

approach, outperforms all baseline results. More precisely, it trades a loss of 

4.3% in the prediction accuracy for an improvement of the clinical 

acceptability of 27.1%. another study conducted by Eleonora Maria Aiello et 

al [33] used Deep Glucose Forecasting which is a method based on two-

headed LSTM implementation. The model used in this method is based on 

stacked LSTM cells which are able to learn how to filter part of their hidden 

state during the inference process in order to model long-term temporal 

dependencies. The study achieved an error rate (RMSE: 27.29) that drops to 

(RMSE: 21.09) after fine tuning. A different study done by Yixiang Deng et 

al [34] that utilized the use of CNN, RNN (LSTM in particular) in addition 

to mixup (beyond empirical risk Minimization) and time-series generative 

adversarial networks (TimeGAN) and later suggested their best model 

(CNN+Transfer2) outperforms all other models in terms of mean absolute 
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error (MAE). The applied model achieved an Accuracy of 95.98%, 

sensitivity of 59.19% and specificity of 98.15%. Another BGM prediction 

model was applied by Toledo-Marín et al [31]. this study used the blood 

glucose risk score formula proposed by Kovatchev et al., models with 

different architectures were trained, including, RNN, GRU, LSTM network, 

and an encoder-like convolutional neural network (CNN). As a result of this 

study a (RMSE) of 16 mg/dL, 24 mg/dL, and 37 mg/dL were obtained for 

CNN prediction horizons of 15, 30, and 60 min, respectively. 

4.7. Imbalanced data sets 

Most biological and health data is often very imbalanced when viewing it on 

the basis of how often rare events occur [66]. A dangerous or unwanted 

event might occur rarely but might be vital to detect over regular events. 

This in turn makes training a neural network on such data more difficult and 

different techniques has been proposed to combat this issue of imbalanced 

data. To begin with, accuracy is not a good metric for evaluating a network 

which is being trained on an imbalanced training due to simply choosing the 

majority class would result in an accuracy of over 99%. Instead, metrics 

such as Receiver operating curve area under the curve (ROC-AUC), the 

harmonic mean between precision and recall (f1-score) and other metrics 

can be used to give a clearer view of how well the network performs on the 

classes [67]. 

The different techniques proposed to try to combat the imbalanced dataset 

problem is the following: with pre-processing techniques aiming to assist the 

network during the training phase, and algorithms such as threshold moving 

and ensembling for when evaluating on the test data [66]. Pre-processing 

techniques often refer to sampling, where sampling refers to three different 

ways to sample the data: oversampling, undersampling and hybrid sampling. 

Oversampling is done by replicating samples of the minority class until a 

balanced dataset is achieved [68]. Undersampling instead tries to balance the 

dataset by either randomly or informatively remove samples from the 

majority class. Lastly, the hybrid sampling aims to combine both over- and 

undersampling, such as SMOTE which creates artificial samples out of the 

minority class [69]. There’s also cost-sensitive learning that uses different 

loss costs per class, penalizing the weights more if the minority class is 

mislabeled [66]. 
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Chapter 5: Methods and Materials 

5.1. Study Variables: 

5.1.1. Study population: 

A registry study on Diabetes Data Registry and Individualized Lifestyle 

Intervention (DiaDRIL) was initiated in Shanghai East Hospital and 

Shanghai Fourth People’s Hospital affiliated to Tongji University since 

2019. 

In this study, the patients were recruited from DiaDRIL in Shanghai East 

Hospital (September 2019 to March 2021) and Shanghai Fourth Peopleś 

Hospital (June 2021 to November 2021), respectively [30].  

The inclusion criteria were as follows: patients with diagnosed diabetes 

according to the 1999 World Health Organization (WHO) criteria; more than 

18 years of age, willing to sign the informed consent form and with CGM 

recording for at least 3 days.  

Patients were excluded if they reported alcohol or drug abuse, were unable 

to comply with the study, or were not suitable to attend this study judged by 

the investigators. Data was anonymous to protect the sensitive information 

of the patients. 

5.1.2. Data records: 

The datasets ShanghaiT1DM and ShanghaiT2DM comprise two folders 

named “Shanghai_T1DM” and “Shanghai_T2DM” and two summary sheets 

named “Shanghai_T1DM_Summary” and “Shanghai_T2DM_Summary” 

The “Shanghai_T1DM” folder and “Shanghai_T2DM” folder contain 3 to 

14 days of CGM data corresponding to 12 patients with T1DM and 100 

patients with T2DM, respectively. Of note, for one patient, there might be 

multiple periods of CGM recordings due to different visits to the hospital, 

which were stored in different excel tables. In fact, collecting data from 

different periods in one patient can reflect the changes of diabetes status 

during the follow-up. The excel table is named by the patient ID, period 

number and the start date of the CGM recording. Thus, for 12 patients with 

T1DM, there are 8 patients with 1 period of the CGM recording and 2 

patients with 3 periods, totally equal to 16 excel tables in the 
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“Shanghai_T1DM” folder. As for 100 patients with T2DM, there are 94 

patients with 1 period of CGM recording, 6 patients with 2 periods, and 1 

patient with 3 periods, amounting to 109 excel tables in the 

“Shanghai_T2DM” folder. Overall, the excel tables include CGM BG values 

every 15 minutes or what equals to 96 values daily, capillary blood glucose 

(CBG) values, blood ketone, self-reported dietary intake, insulin doses and 

non-insulin hypoglycemic agents. The blood ketone was measured when 

diabetic ketoacidosis was suspected with a considerably high glucose level. 

Insulin administration includes continuous subcutaneous insulin infusion 

using insulin pump, multiple daily injections with insulin pen, and insulin 

that were given intravenously in case of an extremely high BG level. 

5.1.3. Clinical attributes in the summary sheets: 

The summary sheets summarize the clinical characteristics, laboratory 

measurements and medications of the patients included in this study. 

• Patient’s gender: Either male or female. 

• Age: Age of the patient during the study. 

• Height: Height of the patient. 

• Weight: Weight of the patient. 

• BMI:  Body mass index of the patient. 

• Smoking history: Clinical quantification of cigarette smoking used 

to measure a person's exposure to tobacco estimated by pack/year. 

• Alcohol drinking history: Whether or not the patient drinks 

alcohol. 

• Type of DM: Either T1DM or T2DM. 

• Duration of DM: Duration of years since DM diagnosis. 

• Acute diabetic complication: Whether or not the patient 

experienced diabetic ketoacidosis. 

• Diabetic Macrovascular Complications: Including; coronary 

heart disease, peripheral arterial disease and cerebrovascular disease. 

• Diabetic Microvascular Complications: Including; 

neuropathy, retinopathy, nephropathy. 

• Comorbidities: The existence of other diseases that could 

complicate DM and increase mortality rate. 
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• Hypoglycemic agents: Whether the patient is on exogenous 

insulin or other oral hypoglycemic agents. 

• Other agents: Mentions other drugs taken by patient which are not 

related to DM treatment. 

• Fasting plasma glucose (mg/dl): Measurement of patient’s 

glucose levels before food ingestion. 

• 2-hour Postprandial Plasma Glucose (mg/dl): Measurement 

of patient’s glucose levels 2 hours after meal. 

• Fasting C-peptide (nmol/L): Measurement of patient’s c peptide 

before consuming food which is a substance that is created when the 

hormone insulin is produced and released into the body. 

• 2-hour Postprandial C-peptide (nmol/L): Measurement of 

patient’s c-peptide 2 hours after meal. 

• Fasting Insulin (pmol/L): Measurement of patient’s insulin 

levels before food ingestion. 

• 2-hour Postprandial insulin (pmol/L): Measurement of 

patient’s insulin levels 2 hours after meal. 

• HbA1c (mmol/mol): Glycated hemoglobin is a form of 

hemoglobin that is chemically linked to a sugar. And it represents 

patients’ glucose control over the previous 3 months period. 

• Glycated Albumin (%): Reflects short-term glycemia over 1-3 

weeks. 

• Total Cholesterol (mmol/L): Measurement of patient’s 

cholesterol levels. 

• Triglyceride (mmol/L): Measurement of patient’s Triglyceride 

levels. 

• High-Density Lipoprotein Cholesterol (mmol/L):  

Measurement of patient’s HDL levels. 

• Low-Density Lipoprotein Cholesterol (mmol/L):  

Measurement of patient’s LDL levels. 

• Creatinine (µmol/L): Reflects patient’s renal function. 
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• Estimated Glomerular Filtration Rate (ml/min/1.73m2):   

eGFR measures patient’s level of kidney function and determines 

stage of kidney disease. 

• Uric Acid (mmol/L): Measures patient’s uric acid levels. 

• Blood Urea Nitrogen (mmol/L): Measures the amount of urea 

nitrogen in the blood and reflects patient’s kidney function. 

• Hypoglycemia (yes/no): Whether the patient suffered 

hypoglycemia episodes. 

5.1.4. CGM parameters:  

Time in range (TIR), one of the critical CGM-derived metrics, 

reflects the glucose variability and evaluates the quality of 

glycemic control. It is associated with microvascular complications 

and macrovascular outcomes of diabetes. TIR is defined as the 

percentage of time spent in the target glucose range of 70–180 

mg/dL. Time below range (TBR) and time above range (TAR) are 

the percentage of time when blood glucose is below 70 mg/dL and 

above 180 mg/dL, respectively. 

5.2. Methodology 

5.2.1. Data analysis 
In this step we utilized “Jupyter Notebook” which is an open-source 

web application that allows you to create and share documents that 

contain live code, equations, visualizations, and narrative text. we 

worked to analyze the data using several python libraries (e.g., 

Pandas, NumPy, Seaborn, Matplotlib, Os). 

To start with, we used the seaborn library to plot different variables 

from the patient’s summary files from the data on both T1DM and 

T2DM patients. followed by using NumPy functions to perform 

statistical analysis on the data variables and later on we used the 

Pandas library to find correlations between the data variables then 

using both seaborn and matplot we visualized the heatmap to 

represent these correlations. 

Then we calculated the time percentage for TAR, TBR and TIR for 

patients in both datasets as the higher values of TAR and TBR 

indicated that the patient’s condition was more serious. Furthermore, 
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to give a clearer view of the TIR, TAR and TBR we calculated the 

mean ± standard deviation of these values for these two datasets. 

Lastly, we plotted the CGM data for 3 patients and calculated the 

Autocorrelation Function, which represents the degree of similarity 

between a given time series and a lagged version of itself over 

successive time intervals. It can help to uncover hidden patterns in 

data. 

 
where xt is the observation at time t, k is lag, E is the expected value 

operator, μ is the mean and σ2 is the variance of the time series. ρk can 

show the correlation between two observations with a lag k in the time 

series. 

 

5.2.2. The Neural Network Model 

We worked with several python libraries on “Jupyter Notebook” 

(e.g., NumPy, Pandas, scipy, matplotlib, Sk-learn, TensorFlow, 

Keras). 

First, The CGM data were mapped into risk score data by using the 

symmetrization formulas proposed by Kovatchev et al. [53,54], 

 

where α = 1.084, β = 5.381, and ɣ = 1.509 are fitted parameters, xt 

is the patient’s glucose value and yt is the BG risk variable. The BG 

risk score function is defined as . 

The previous formula symmetrizes and rescales the glucose data 

such that .  

Most activation functions in neural networks have a non-zero 

gradient in the interval [-1, 1] and, most importantly, zero gradients 

outside these bounds. For these reasons, the data is further 

transformed by dividing by such that , where ξt 

shall be referred to as the blood glucose (BG) risk-standardized 

variable or standardized variable. The fact that the data are now 

bounded between -1 and 1 improves the model robustness. We 

used the MinMaxScaler from the SKlearn library to normalize the 

data, it transforms data such that all values are between 0 and 1. 

Then creating sequences from the data in order to run the model. 
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The work followed a methodology in which the data was divided 

into a training set comprising 70% of the total data, and a test set 

comprising 20% of the total data and a validation set comprising 

the remaining 10% of the total data. 

By using a 70:20 ratio for the data split, a balance is achieved 

between having a sufficiently large training set for building strong 

models and a smaller test set that reflects the diversity and 

represents the overall data. This type of split helps objectively 

assesses model performance and provide an accurate estimation of 

their predictive ability on new data. 

• The LSTM Neural Network Model Configuration: 

The neural network model consists of two layers: an LSTM layer 

and a dense layer. The LSTM layer is a type of recurrent neural 

network (RNN) that is well-suited for processing sequential data. 

The dense layer is a fully connected layer that takes the output of 

the LSTM layer and uses it to make predictions or classifications. 

 

In this specific model, the LSTM layer has 50 units, so that it can 

store 50 values in its memory cell at each time step. The dense 

layer has 1 unit, which means that it can make a single prediction. 

The model has a total of 10,451 trainable parameters. This includes 

the weights and biases of the LSTM layer and the dense layer. 

16Figure 5.1. The LSTM python code. 

The model uses the ReLU activation function. The model is compiled using 

the Adam optimizer and the mean squared error (MSE) loss function. 

The ReLU activation function is a non-linear function that is defined as 

. This means that the output of the LSTM layer will be a 

non-negative value. The linear activation function is a function that is 

defined as . This means that the output of the dense layer will be a 

linear function of the input. 
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The Adam optimizer is a stochastic gradient descent optimizer that is 

designed to be computationally efficient.  

The MSE loss function is a measure of how different the predicted output of 

the model is from the actual output. 

 

17Figure 5.2. LSTM network structure. 

After applying the model, we plotted the RMSE and the loss performance. 

And later choosing a patient to apply the model on and plotting the resulting 

predictions. And lastly using the Clarke error grid to assess the safety 

evaluation of the predictions. 

NumPy NumPy is a widely used python library, it stands for 

“Numerical python” and is the core library for scientific 

computing in Python. provides a multidimensional array 

object, various derived objects (such as masked arrays and 

matrices), and an assortment of routines for fast operations on 

arrays, including mathematical, logical, shape manipulation, 

sorting, selecting, I/O, discrete Fourier transforms, basic 

linear algebra, basic statistical operations, random simulation 

and much more. 

Pandas Pandas is a Python library for data manipulation and analysis. 

It provides a wide range of functions for data manipulation, 

including filtering, grouping, merging, reshaping, Iteration, 

Concatenation, Conversion of data, Visualizations, 

Aggregations and pivoting. It also provides tools for handling 

missing data, time-series data, and input/output operations. 
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SciPy is a Python library for scientific computing that builds on top 

of NumPy. It provides a wide range of algorithms for 

optimization, integration, interpolation, eigenvalue problems, 

algebraic equations, differential equations, statistics, and 

many other classes of problems. It also provides specialized 

data structures, such as sparse matrices and k-dimensional 

trees. 

Sk-learn (Scikit-

learn) 

Sklearn is a Python library for machine learning that provides 

simple and efficient tools for predictive data analysis. It offers 

various algorithms for classification, regression, clustering, 

dimensionality reduction, model selection, and preprocessing 

Seaborn is a Python data visualization library that is built on top of 

Matplotlib and integrates closely with Pandas data structures. 

It provides a high-level interface for creating various types of 

charts, such as histograms, boxplots, violin plots, and more. 

Seaborn is designed to work with complex datasets and can be 

used to create informative and attractive visualizations. 

Matplotlib Matplotlib is a Python library for creating static, animated, 

and interactive visualizations in Python. It provides a wide 

range of plot types, including line plots, scatter plots, bar 

plots, histograms, and more. It is widely used in scientific 

computing, data analysis, and machine learning. 

TensorFlow TensorFlow is a Python-friendly open-source library for 

numerical computation that makes machine learning and 

developing neural networks faster and more efficient. 

TensorFlow allows developers to create dataflow graphs, 

structures that describe how data moves through a graph or a 

series of processing nodes. Each node in the graph represents 

a mathematical operation, and each connection or edge 

between nodes is a multidimensional data array, or tensor.it is 

widely used in machine learning, deep learning, and artificial 

intelligence. 

Keras Keras is a Python library for deep learning that provides a 

user-friendly interface for building and training neural 

networks. Keras is built on top of TensorFlow and allows you 

to define and train neural network models in just a few lines 

of code. It provides a wide range of pre-built layers, activation 

functions, loss functions, and optimizers (e.g., Sequential, 

LSTM, Dense), making it easy to build and train complex 

models. 
9Table 5.1. Introduction to the python libraries used in this thesis. 
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Chapter 6: Results and Discussion 

6.1. Data Analysis and Descriptive Statistics 

6.1.1. Type 1 Diabetes Mellitus data (T1DM): 

➢ Descriptive Statistics: 

• Age: 

The average age of patients with T1DM in the data is 59 with a standard 

deviation of 10.15 as shown in table 6.1. 

 N Min Max Mean Standard 

deviation 

Age 

(years) 

16 37 73 59 10.15 

10Table 6.1. Average age of T1DM patients. 

and the age distribution of patients’ age is shown in the figure 6.1. 

 

18Figure 6.1. Age distribution in T1DM. 

• Fasting Plasma Glucose (mg/dl) 

In the data, the patient’s fasting plasma glucose values range from 80.52 

to 352.80 with a mean of 193.23 and a standard deviation of 86.49 as 

shown in table 6.2. 
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 N Min Max Mean Standard 

deviation 

Fasting 

plasma 

glucose 

(mg/dl) 

16 80.28 352.80 193.23 86.49 

11Table 6.2. statistics of patients’ fasting plasma glucose. 

The next figure (6.2) shows the range of fasting plasma glucose among 

patients. which is an important metric in evaluating each patient’s 

condition and glycemic control thus adjusting their treatment plan as 

necessary if the values are not satisfactory. 

 

19Figure 6.2. patients’ fasting blood glucose. 

• 2hr Postprandial plasma glucose: 

While fasting plasma glucose values are an important way to assess 

glycemic control. Physicians need to have an idea on the patient’s 

glucose values after meals which provide an essential information on 

whether the patient is committed to the diabetes diet and their body’s 

response to glucose load. As shown in table 6.3 and figure 6.3, patients’ 2 

hr postprandial glucose values range from 72.54 to 372.96 with a mean of 

268.76 which gives an understanding that most of the patients in this 

study have poor glycemic control since as physicians we aim for a 

postprandial glucose value less than 180 mg/dl. 
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 N Min Max Mean Standard 

deviation 

2-hr 

postprandial 

plasma 

glucose 

(mg/dl) 

16 72.54 372.96 268.76 82.02 

12Table 6.3 statistics of patients’ 2-hr postprandial plasma glucose. 

 

20Figure 6.3 2-hr postprandial plasma glucose. 

• HbA1c: 

The Glycosylated hemoglobin is an important metric to evaluate the 

diabetic patient. It represents the patient’s glycemic control over the 

previous 3 months period and it offers an immense help in deciding to 

adjust the treatment plan. in the available data the patients’ HbA1c ranges 

from 54.10 to 165.59 as shown in table 6.4 and figure 6.4. in treatment 

goals the preferable value of HbA1c is less than 53 mmol/mol. 

 N Min Max Mean Standard 

deviation 

HbA1c 

(mmol/mol) 

16 54.10 165.59 83.32 32.75 

13Table 6.4. HbA1c descriptive statistics. 
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21Figure 6.4. distribution of HbA1c in T1DM patients. 

• Acute Complications; Diabetic ketoacidosis and 

hypoglycemia 

The most important goal of treatment is to avoid acute complications of 

diabetes. These complications can have catastrophic effects of patient and 

may even lead to death in severe cases. The two main acute 

complications are diabetic ketoacidosis and hypoglycemia. 

Diabetic Ketoacidosis: is an emergency that occurs mainly in T1DM 

patients. and is the result of extremely elevated glucose values. Figure 

6.5. assess the occurrence of DKA in the employed data.  

 

22Figure 6.5. the occurrence of 
Diabetic ketoacidosis in T1DM 

patients. 
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Hypoglycemia: another acute complication of diabetes treatment and it’s 

the results of low glucose values. All diabetic patient on insulin or other 

glucose lowering drugs are susceptible to hypoglycemia episodes. These 

episodes could be an important indicator to reassess the treatment and 

adjust as necessary. As shown in figure 6.6. out of the 16 patients in the 

dataset, 14 had hypoglycemic episodes while only 2 didn’t have 

hypoglycemic episodes in the duration of the study. 

 

23Figure 6.6. the incidence of hypoglycemic episode in T1DM patients. 

• Diabetic Macrovascular Complications: 

over the years, diabetic patients are susceptible to the chronic diabetic 

complications especially the ones with poor glycemic control. As shown 

in figure 6.7, The patients were assessed for macrovascular complications 

of diabetes which include; peripheral arterial disease, coronary heart 

disease and cerebrovascular disease. 

 

24Figure 6.7. The occurrence of 
diabetic macrovascular 
complications in T1DM. 
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• Diabetic Microvascular Complications 

The microvascular complications of diabetes include; Neuropathy, 

Nephropathy and Retinopathy. the following figure 6.8. shows the 

occurrence of these complications in T1DM data. 

 

25Figure 6.8. The occurrence of diabetic microvascular complications in T1DM. 

• Correlations between the study variables: 

A heatmap was generated to illustrate the relationships among the study 

variables. A heatmap is the visual representation of a correlation matrix 

which shows the correlation between each pair of variables in a dataset. 

Figure 6.9. illustrates the heatmap, which provides visual insights into the 

strength and direction of the relationships between the variables. 

As shown in the heatmap, the incidence of diabetic macrovascular 

complications is positively correlated with patient’s age and the duration 

of diabetes disease (with percentages of 72%, 64% respectively). Another 

noteworthy correlation is that of the patient lipid profile and the 

occurrence of macrovascular events; as the correlation with Triglycerides 

and LDL are 79% and 23% respectively. And there is a strong negative 

correlation with HDL levels (-84%). 
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On the other hand, the incidence of diabetic microvascular complications 

is also positively correlated with patient’s age and duration of diabetes 

but to a lesser extent than that of macrovascular complications (51% and 

34% respectively). Furthermore, the relationship with the lipid profile is 

as follows, there is a positive correlation with triglycerides and LDL 

levels of 69% and 43%. And a negative correlation with HDL levels of    

-77%. 

While the correlation between the incidence of both macrovascular and 

microvascular events at the same time is 78%. 

 

26Figure 6.9. Heatmap of studied variables in T1DM data. 
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• The characteristics of the T1DM CGM dataset: 

Hypoglycemia and hyperglycemia events are two potential risk factors 

for complications in diabetes. Hence, the time percentages of 

hypoglycemia (TBR) and hyperglycemia (TAR) events for each patient 

were calculated in Fig. 6.8. The horizontal axis represented each 

recording file of the patients with an order of TBR increasing, while the 

vertical axis represented the percentage of time (TAR, TIR and TBR) 

during the data collection period. The higher values of the TAR and TBR 

indicated that the patient’s condition was more serious. To give a clearer 

view of the TBR, TIR and TAR in the dataset, we calculated the mean ± 

standard deviation of these values. For T1DM data, the mean ± standard 

deviation of the TIR were 54.7 ± 14.5% while the mean ± standard 

deviation of the TAR were 37.8 ± 18.8% and of the TBR were 7.5 ± 7%. 

 

27Figure 6.10. The average percentage of TBR (time below range), TIR (time in range) and TAR (time above range) for 
CGM in T1DM. TAR (37.8 ± 18.8%), TIR (54.7 ± 14.5%), TBR (7.5 ± 7.0%). 

we also calculated the Auto-Correlation Coefficient (Acf) for three randomly 

selected patients in the T1DM dataset (1005_0_20210522, 

1003_0_2021083, 1007_0_20210726). The autocorrelation function (ACF) 

measures the correlation between a time series and lagged versions of itself. 

It is commonly used to analyze the time series data to detect repeating 

patterns. 
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As shown in figure 6.12, The ACF plot for patient 1“1005_0_20210522” 

shows a strong positive correlation between the current value and the value 

30 minutes ago. Also, there is a negative correlation between the current 

value and the value 20 minutes ago. This indicates that the time series tends 

to reverse its trend over short periods of time. And the pattern exhibits a 

gradual decay over time. The correlation coefficients remain above the 

significance threshold for several lags, indicating some degree of persistence 

in the data. This pattern suggests that the time series may be predictable to 

some extent, but the predictability decreases as we look further back in time. 

The ACF plot for patient 2 “1003_0_20210831” shows a strong positive 

correlation between the current value and the value 30 minutes ago. But this 

pattern decays rapidly suggesting that there is little predictable pattern in the 

data. This patient may have highly variable glucose levels, with minimal 

persistence or predictability.  

The ACF plot for patient 3 “1007_0_20210726” doesn’t show any 

significant correlations between the values. These random fluctuations 

around the zero line indicate weak or no autocorrelation in the time series 

data. 

Overall, the ACF plots for these three patients suggest that their blood 

glucose levels are relatively predictable over time. This is likely due to the 

fact that they are all using continuous glucose monitors (CGMs) to track 

their blood glucose levels and are making adjustments to their insulin doses 

accordingly. 
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28Figure 6.11. Randomly selected patients (1) 1005_0_20210522 and (2) 1003_0_20210831 and (3) 1007_0_20210726 
in the ShanghaiT1DM for the distributions of glucose values of CGM readings. 

 

29Figure 6.12. Auto-correlation coefficient of randomly picked three patients from the ShanghaiT1DM. 
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6.1.2. Type 2 Diabetes Mellitus data (T2DM): 

• Age: 

The average age of patients with T2DM in the data is 60.3 with a 

standard deviation of 14 as shown in table 6.5. 

 N Min Max Mean Standard 

deviation 

Age 

(years) 

109 22 97 60.3 14 

14Table 6.5. Average age of T2DM patients. 

and the age distribution of patients’ age is shown in the figure 6.13. 

 
30Figure 6.13. Age distribution in T2DM. 

• Fasting Plasma Glucose (mg/dl) 
In the data, the patient’s fasting plasma glucose values range from 

55.08 to 432 with a mean of 164.87 and a standard deviation of 62.75 

as shown in table 6.6. 
  

 N Min Max Mean Standard 

deviation 
Fasting plasma 

glucose (mg/dl) 
109 55.8 432 164.87 62.75 

15Table 6.6. statistics of patients’ fasting plasma glucose in T2DM. 
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The following figure (6.14) shows the range of fasting plasma glucose 

among patients. which is an important metric in evaluating each patient’s 

condition and glycemic control thus adjusting their treatment plan as 

necessary if the values are not satisfactory.  

 

31Figure 6.14. patients’ fasting blood glucose in T2DM. 

• 2hr Postprandial plasma glucose: 

While fasting plasma glucose values are an important way to assess 

glycemic control. Physicians need to have an idea on the patient’s 

glucose values after meals which provide an essential information on 

whether the patient is committed to the diabetes diet and their body’s 

response to glucose load. As shown in table 6.7 and figure 6.15, patients’ 

2 hr. postprandial glucose values range from 72.54 to 372.96 with a mean 

of 268.76 which gives an understanding that most of the patients in this 

study have poor glycemic control since as physicians we aim for a 

postprandial glucose value less than 180 mg/dl. 

 N Min Max Mean Standard 

deviation 
2hr postprandial 

plasma glucose 

(mg/dl) 

109 97.08 610.38 264.76 96.04 

16Table 6.7. Statistics of T2DM patients’ 2-hr postprandial plasma glucose. 
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32Figure 6.15. T2DM patients’ 2-hr postprandial plasma glucose. 

• HbA1c: 

HbA1c is an important metric to evaluate the diabetic patient. It 

represents the patient’s glycemic control over the previous 3 months 

period and it offers an immense help in deciding to adjust the treatment 

plan. in the available data the patients’ HbA1c ranges from 23.49 to 

144.82 as shown in table 6.8 and figure 6.16. in treatment goals the 

preferable value of HbA1c is less than 53 mmol/mol. 

 N Min Max Mean Standard 

deviation 

HbA1c 

(mmol/mol) 

109 23.49 144.82 74.65 26.57 

17Table 6.8. HbA1c descriptive statistics in T2DM. 
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33Figure 6.16. distribution of HbA1c in T2DM patients. 

• Acute Complications; Diabetic ketoacidosis and 

hypoglycemia  
The most important goal of treatment is to avoid acute complications of 

diabetes. These complications can have catastrophic effects of patient and 

may even lead to death in severe cases. 

The two main acute complications are diabetic ketoacidosis and 

hypoglycemia. 

Diabetic Ketoacidosis: is an emergency that occurs mainly in T1DM 

patients. and is the result of extremely elevated glucose values. And 

while it can occur in T2DM none of the study patient experienced DKA 

in the duration of the study. 

Hypoglycemia: another acute complication of diabetes treatment and it’s 

the results of low glucose values. All diabetic patient on insulin or other 

glucose lowering drugs are susceptible to hypoglycemia episodes. These 

episodes could be an important indicator to reassess the treatment and 

adjust as necessary. As shown in figure 6.17. out of the 109 patients in the 

dataset, only 10 had hypoglycemic episodes while the other 99 didn’t 

experience hypoglycemic episodes in the duration of the study. 
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34Figure 6.17. the incidence of hypoglycemic episode in T2DM patients. 

• Diabetic Macrovascular Complications: 

over the years, diabetic patients are susceptible to the chronic diabetic 

complications especially the ones with poor glycemic control. As shown 

in figure 6.18, The patients were assessed for macrovascular 

complications of diabetes which include; peripheral arterial disease, 

coronary heart disease and cerebrovascular disease. 

 

35Figure 6.18. The occurrence of diabetic macrovascular complications in T2DM (0: none, 1: coronary heart disease, 2: 
peripheral arterial disease, cerebrovascular disease, 4: peripheral arterial disease, cerebrovascular disease, 5: 

peripheral arterial disease, coronary heart disease). 
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• Diabetic Microvascular Complications: 

The microvascular complications of diabetes include; Neuropathy, 

Nephropathy and Retinopathy. the following figure 6.19. shows the 

occurrence of these complications in T2DM data. 

 

36Figure 6.19. The occurrence of diabetic microvascular complications in T2DM. 

➢ Correlations between the study variables: 

A heatmap was generated to illustrate the relationships among the study 

variables. A heatmap is the visual representation of a correlation matrix 

which shows the correlation between each pair of variables in a dataset. 

Figure 6.20. illustrates the heatmap, which provides visual insights into 

the strength and direction of the relationships between the variables. 

While the incidence of diabetic macrovascular complications is 

correlated with patient’s age and the duration of diabetes disease (with 

percentages of 32%, 27% respectively). it is less than the T1DM high 

correlation percentages. 

On the other hand, the incidence of diabetic microvascular complications 

is also correlated with patient’s age and duration of diabetes (9% and 

33% respectively). It’s also to a lower extent than T1DM. 
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While the correlation between the incidence of both macrovascular and 

microvascular events at the same time is 64%. 

 

37Figure 6.20. Heatmap of studied variables in T2DM data. 

➢ The characteristics of the T2DM CGM dataset: 

Hypoglycemia and hyperglycemia events are two potential risk factors 

for complications in diabetes. Hence, the time percentages of 

hypoglycemia (TBR) and hyperglycemia (TAR) events for each patient 

were calculated in Fig. 6.21. The horizontal axis represented each 

recording file of the patients with an order of TBR increasing, while the 

vertical axis represented the percentage of time (TAR, TIR and TBR) 
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during the data collection period. The higher values of the TAR and TBR 

indicated that the patient’s condition was more serious. To give a clearer 

view of the TBR, TIR and TAR in the dataset, we calculated the mean ± 

standard deviation of these values. For T2DM data, the mean ± standard 

deviation of the TIR were 77.7 ± 18.1% while the mean ± standard 

deviation of the TAR were 20± 18.4% and of the TBR were 2.4 ± 7.2%. 

 

38Figure 6.21. The average percentage of TBR (time below range), TIR (time in range) and TAR (time above range) for 
CGM in T2DM. TAR (20.0 ± 18.4%), TIR (77.7 ± 18.1%), TBR (2.4 ± 7.2%). 

we also calculated the Auto-Correlation Coefficient (Acf) for three 

randomly selected patients in the T2DM dataset (2016_0_20201224, 

2017_0_20210102, 2018_0_20210420). The autocorrelation function 

(ACF) measures the correlation between a time series and lagged 

versions of itself. It is commonly used to analyze the time series data to 

detect repeating patterns. 

As shown in figure 6.23, The ACF plot for patient 1“2016_0_20201224” 

shows a strong positive correlation between the current value and the 

value 30 minutes ago, indicating that the time series tends to follow a 

consistent pattern over time. This means that if the value 30 minutes ago 

was high, the current value is also likely to be high, and vice versa. On 

the other hand, the ACF shows a negative correlation with the value 15 
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minutes ago. This indicates that the time series tends to reverse its trend 

over short periods of time. In other words, if the value 15 minutes ago 

was high, the current value is likely to be low, and vice versa. These 

observations suggest that the time series is mean-reverting, meaning that 

it tends to return to its average value over time. 

The ACF plot for patient 2 “2017_0_20210102” shows a strong positive 

correlation between the current value and the value 25 minutes ago. a 

negative correlation with the value 40 minutes ago indicating that the 

data is mean-reverting. 

The ACF plot for patient 3 “2018_0_20210420” shows a strong positive 

correlation between the current value and the value 30 minutes ago. 

Additionally, there is a lower positive correlation between the current 

value and the value 15 minutes ago. This suggests that the time series 

tends to maintain its direction over short periods of time, but the strength 

of this tendency is weaker compared to the 30-minute correlation. Based 

on these observations, we can infer that the time series exhibits a 

persistent pattern, where the current value is influenced by the values 

from the recent past. This pattern suggests that the time series may be 

predictable to some extent, and future values may be forecasted based on 

historical data. 

Overall, the ACF plots for these three patients suggest that their blood 

glucose levels are relatively stable and do not fluctuate much over time. 

This is likely due to the fact that they are all using continuous glucose 

monitors (CGMs) to track their blood glucose levels and are making 

adjustments to their insulin doses accordingly. 
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39Figure 6.22. Randomly selected patients (1) 2016_0_20201224 and (2) 2017_0_20210102 and (3) 2018_0_20210420 
in the ShanghaiT2DM for the distributions of glucose values of CGM readings. 

 

40Figure 6.23. Auto-correlation coefficient of randomly picked three patients from the ShanghaiT2DM. 
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6.2. Neural Network Model (LSTM) 

6.2.1. Type 1 Diabetes Mellitus data (T1DM): 

The Data was divided into a training set comprising 70% of the total data, 

and a test set comprising 20% of the total data and a validation set 

comprising the remaining 10% of the total data. 

we applied the LSTM model shown in figure 5.1. and figure 5.2, on the 

patient “1002_0_20210504” and calculated the RMSE value to assess the 

performance of the selected model. 

Root Mean Square Error: To compute the RMSE [52], we first take the 

square of the difference between the actual and predicted values of every 

record. We then take the average value of these squared errors and 

calculate the root of this value. If the predicted value of the ith record is Pi 

and the actual value is Ai, then the RMSE is: 

 

in the proposed model, we achieved an RMSE of (9.78 mg/dl) in the 

T1DM dataset. the following figure (6.24), illustrates the difference 

between the actual and the values predicted using the LSTM model. 
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41Figure 6.24. Results of LSTM model application on T1DM data. 

 

42Figure 6.25. scatterplot of the actual and predicted values in T1DM data and the calculated correlation between them 
(correlation: 0.52). 

Furthermore, we plotted the results on a Clarke Error Grid to validate the 

model outcome (figure 6.26). A Clarke Grid Analysis was developed in 
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1987 and is used to evaluate the clinical significance of inaccuracies in 

the measurements of blood glucose concentration. 

 

43Figure 6.26. Clarke error grid evaluation of glucose prediction safety in T1DM dataset. 
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6.2.2. Type 2 Diabetes Mellitus data (T2DM): 

The Data was divided into a training set comprising 70% of the total data, 

and a test set comprising 20% of the total data and a validation set 

comprising the remaining 10% of the total data. 

we applied the LSTM model shown in figure 5.1. and figure 5.2, on the 

patient “2001_0_20201102” and calculated the RMSE value to assess the 

performance of the selected model. 

in the proposed model, we achieved an RMSE of (4.40 mg/dl) in the 

T2DM dataset. the following figure (6.27), illustrates the difference 

between the actual and the values predicted using the LSTM model. 

 

44Figure 6.27. Results of LSTM model application on T2DM data. 
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45Figure 6.28. scatterplot of the actual and predicted values in T2DM data and the calculated correlation between them 
(correlation: 0.32). 

Furthermore, we plotted the results on a Clarke Error Grid to validate the 

model outcome (figure 6.29) and assess the clinical significance of our 

results. 

46Figure 6.29. Clarke error 
grid evaluation of glucose 
prediction safety in T2DM 

dataset. 
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6.3. Discussion 

One of the most important goals in diabetes treatment is avoiding 

fluctuations in glycemia in diabetic patients. Experiencing excessive 

hypo/hyperglycemia episodes could lead to devastating complications 

and low life quality for DM patients. Physicians rely on different glucose 

monitoring devices to monitor patients and adjust the treatment plan as 

efficiently as possible. 

The use of CGM devices gives physicians plenty of information on the 

patient’s glycemic control at home. But the enormous amount of data that 

can’t always be interpreted manually could prevent the optimal benefit of 

CGM. Thus, the use of machine learning and deep learning techniques 

could open opportunities to better analyze CGM data and discover 

existence of trends. By understanding the glycemic patterns of each 

patient, we could achieve a more personalized approach to treatment. 

In this study, we used a RNN model comprising of two layers an LSTM 

layer and a dense layer, as well as employing a ReLU activation function 

and RMSE loss function. We applied the proposed model on both T1DM 

and T2DM datasets and assessed the performance of the model with the 

RMSE metric. We achieved a result of (RMSE: 9.78 mg/dl) for the 

LSTM model in T1DM patients’ data and (RMSE: 4.40 mg/dl) in T2DM 

patients’ data. Overall, our models demonstrated high prediction 

accuracy, supported by low RMSE values. But the model performed 

better in T2DM with a lower RMSE than that of T1DM. 

Several studies were conducted in order to utilize the enormous data 

supplied by CGM sensors, for the purpose of improving DM patients' 

glycemic control and quality of life. One such study by Eleonora Maria 

Aiello et al. [33] used Deep Glucose Forecasting that employed two-

headed LSTM network and achieved a RMSE of (27.29 mg/dl) that drops 

to (21.09 mg/dl) after further tuning. Different research by Yixiang Deng 

et al [34] utilizes CNN, RNN (LSTM), a mixup and time series 

generative adversarial networks (TimeGAN) and proposed their best 

performing model (CNN+Transfer2) with an accuracy of 95.98%, 

sensitivity of 59.9% and a specificity of 98.15%. Another very important 

model was used by J. Quetzalcòatl Toledo Marín et al [31]. This model 

employed the same BG risk score formula used in our study that was 
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originally proposed by Kovatchev. This study trained several models 

including; CNN, GRU, RNN and a LSTM network with a resulting 

RMSE of (16 mg/dl, 24 mg/dl, 37 mg/dl) for CNN prediction horizon of 

15, 30, and 60 minutes respectively.  

Most importantly, the ability to apply this model in real life setting is the 

main goal of using deep learning models. thus, we assessed the clinical 

safety of glucose prediction using the Clarke Error Grid (CEG). In T1DM 

data, most of the predictions fell in zones A or B which are either 

accurate of clinically benign with very few predictions were inaccurate or 

could be clinically harmful. Alternatively, in T2DM data most of the 

predictions were in zone A which is clinically accurate while the rest of 

the predictions were in Zone B which is clinically benign.                       

In comparison to the aforementioned studies, our results (RMSE: 9.78 

mg/dl in T1DM dataset and RMSE:4.40 mg/dl in T2DM dataset) are 

noteworthy and support further experimentation in the use of LSTM 

networks in future research and hopefully implementing deep learning 

further in the clinical decision making and improving healthcare on a 

broader scale. 

6.4. Conclusion 

In this study, we show that our LSTM model was able to accurately and 

safely predict glucose values. In addition, translation of our prediction 

models to individuals with both type 1 diabetes showed encouraging 

results. We observed high precision in predictions. As such, the 

prediction model can be used to improve closed-loop insulin delivery 

systems by overcoming sensor delay. In addition, longer prediction 

intervals may be used to safely bridge periods of sensor malfunction. On 

another note, analyzing CGM data in T2DM and accurately predicting 

patient’s glucose at different intervals offers an immense help in 

improving the drug choices based on the trends in the data. 

Future research should validate our findings by replicating the results in a 

larger sample of individuals with both type 1 and type 2 diabetes. 

Another area that could be explored in the future is the inclusion of meals 

and insulin doses delivered to the patient in the model in order to 

computationally decide the optimal dose of insulin needed independent 

of patient’s input. 
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