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Abstract  

This thesis discusses Alzheimer’s disease, its impact and pathogenesis, and delves into DNA 

methylation of Alzheimer’s disease: the most prominent epigenetic mechanism in the disease. 

Several analytic methods are present for the detection of DNA methylation on cytosine-

guanine dinucleotides, but none can fully grasp all loci, they also have limitations due to 

computational ability along with their high cost. Artificial intelligence, therefore, can be of 

better benefit in this case by using the results of analytic methods such as epigenome-wide 

association studies, and whole-genome bisulfite sequencing, and extracting the data from 

them to help train and test models for the prediction of new previously undetected loci in the 

genome, for instance. First, however, it must be noted that artificial intelligence in epigenetics 

is very recently new and only a handful of studies have been employed for the identification 

of loci undergoing epigenetic tags in Alzheimer’s disease. Also, no deep learning models have 

been reported so far that are targeted towards the identification of methylated CpGs in an 

AD context. Our reference study EWASplus, for example, utilizes data from large resources 

on a super-computer-scale and uses it to predict new methylated loci of CpGs related to the 

disease. 

Our goal was to take inspiration from this reference study in the aim of trying a new model 

– deep learning – in the hopes of coming closer to finding new therapeutic approaches. In 

this thesis, we used whole-genome bisulfite sequencing data and EWAS data to train two 

models: RandomForestRegressor, a machine learning model, and KerasRegressor, 

a deep learning model. Both were applied in this thesis to predict previously undetected 

methylated CpGs on chromosome 19, which contains the most important risk gene in 

Alzheimer’s disease: APOE. 
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The models resulted in the prediction of four CpGs on chromosome 19 that present with 

higher correlation than the rest in terms of methylation and Alzheimer’s disease. 

However, many technical and computational limitations were present in the application of 

the models, leading to low performance. This attempt at applying a deep learning model in 

this epigenetic context still remains promising, due to its higher efficacy in comparison with 

machine learning in general. 

Therefore, it is immensely important that studies such as the one presented in this thesis have 

broader horizons in terms of resources to fully reach the potential of the models and datasets, 

leading to higher precision, and closer steps towards Alzheimer’s disease therapy. 

Summary 

Background 

Alzheimer’s disease is the number one leading dementia-causing disease worldwide, with 

an estimated 60-70% percentage of dementia patients having Alzheimer’s disease. It is classified 

as an elderly disease, since aging is a common risk factor, although rare cases do occur that classify 

as early-onset Alzheimer’s disease. It is characterized by gradual memory loss, with short-term 

memory being affected at first, and it reaches a period of decline in cognitive performance and 

normal daily functions which leads the patient to constant need of care from others. The 

Alzheimer’s brain is affected by the constant accumulation of amyloid beta, the 

hyperphosphorylation of tau protein, and neurofibrillary tangles. The causes are many and still 

obscure. Genetics play a role, with the gene APOE (located on chromosome 19) being the most 

prominent, and so do epigenetics, such as DNA methylation. As of now, this disease still has no 

cure – only some treatments are available that slow down the symptoms but no therapy has been 
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found to halt disease progression, leading more and more research to help solve this complex 

disease. 

Aim of study 

The aim of this study is to apply a machine learning model and a deep learning model in 

the context of the epigenetics of Alzheimer’s disease, and then attempt to identify novel 

unexplored areas of DNA (CpG loci) affected by DNA methylation that show positive correlation 

with the presence of Alzheimer’s disease. The identification of these CpG loci will be of benefit 

for future clinical trials to target their methylation for finding better treatment of AD. 

Methods  

This study used artificial intelligence (machine learning and deep learning) for the 

identification of new CpG loci by training a model to distinguish AD-related CpG loci from 

epigenome-wide association studies (EWAS), selecting the top features that are of importance 

from the data, and then predicting other (novel) loci not present in this study (EWAS) on a 

chromosome-wide scale (chromosome 19) from genome data. 

Results 

This work applied machine learning and deep learning for selecting the most important 

features and for predicting new CpG loci of chromosome 19. Four loci were predicted on sites 

474445, 18768688, 1580576, 939810, but low performance was found with models due to lack of 

regional resources and limitations along with the need for supercomputers for proper performance. 

These resulting loci can provide insight into the DNA methylation mechanisms present in 

Alzheimer’s disease, and with the help of super computers, the models performed here can reach 

higher and more accurate results leading to accurate therapeutic approaches towards Alzheimer’s 

disease. 
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Conclusion 

In conclusion, the main aim was to utilize deep learning in clinical epigenetics and discuss 

therapeutic approaches. Both a machine learning model and a deep learning model were used in 

this thesis to identify methylated CpG loci on chromosome 19 in Alzheimer’s disease. Due to 

computational limitations, short time, and low internet speed, only a portion of the data use in this 

thesis’s reference study were used, which resulted in low scores and inaccurate predictions. Even 

though the data may be inaccurate, this still offers potential for these models to be used with larger 

data and better resources in the aim of extracting beneficial information regarding DNA 

methylation of CpG sites of the genome, paving the way for higher accuracy in terms of DNA-

methylation-targeted therapy  

Therefore, with higher computational power, better funding, and time, serious steps can be 

taken towards epigenetics-targeted drugs to help reverse the reversable sides of epigenetics in early 

stages of the disease before it is too late. 

 

Keywords: Alzheimer’s Disease, Epigenomics, CpG, Deep Learning, APOE, DNA methylation, 

Chromosome 19
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Introduction  

In 1906, the famous psychiatrist and neuroanatomist, Alois Alzheimer, reported his 

findings in the 37th Meeting of South-West German Psychiatrists in Tubingen by describing a 

female patient that was admitted to a psychiatric hospital for paranoia, confusion, and memory 

disturbance, and he kept following her condition until her death 5 years later. The breakthrough of 

his report (Uber einen eigenartigen, schweren Erkrankungsprozeβ der Hirnrinde) [1] was the 

findings he described in the brain, characterized by neurofibrillary tangles and distinctive plaques 

in the histology of the brain.  

Thanks to Alois Alzheimer, and more extensive research in the past 60 years, we now know 

that Alzheimer’s disease is a neurodegenerative disease (a disease caused by the degeneration and 

corruption of the nerves) that causes memory loss and atrophy of the hippocampus and medial 

temporal lobe. It is mostly associated with elderly patients since aging is the most common risk 

factor (classified as late onset Alzheimer’s disease, ‘LOAD’) [2], even though early-onset AD can 

also be present in rare cases (5%) in which patients are younger than 65 years of age [3]. 

According to the World Health Organization, it is estimated that 60-70% of people living 

with dementia (55 million worldwide) have Alzheimer’s disease [4], which is the most common 

form of dementia; and, according to Li, Feng, et al., from 1990 to 2019, the incidence and 

prevalence of Alzheimer's disease and other dementias increased by 147.95 and 160.84% [5]. 

As of today, the main causes, risk factors, and the actual pathological mechanisms behind 

the disease are still immensely obscure, due to many limitations, including technology, the subtlety 

of the first stages that may be obscure or simply ignored, along with the fact that the primary 

methods that allow precise understanding and analysis of the disease are through post mortem 

diagnosis of neurofibrillary tangles and abnormal plaque deposits on the brain, which hinder any 
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accurate studies during the patient’s life. Common risk factors that are believed to play a role in 

the occurrence of AD are many and are yet to be further analyzed, but as of now, one can 

summarize them in the following figure:  

 

It is possible in most cases to diagnose a patient through brain scanning such as magnetic 

resonance imaging (MRI) and positron emission tomography (PET) and genetic testing [7], and 

Figure 1 The most common risk factors playing major roles in Alzheimer’s disease, including many environmental 

factors and epigenetics [6]. 



Deep learning in clinical epigenetics:  shedding new light on pathological processes of Alzheimer's 

disease in the perspective of therapeutic approaches 
17 

 

   
 

recent evidence suggests that there may be biomarkers that can help identify the presence of the 

disease. 

The most common characteristics that are believed to play a key role in the disease are 

amyloid beta and tau proteins, each of which has a different role in neurodegeneration. Amyloid 

beta (Aβ) is a product of the proteolysis (the breakdown of proteins) of a transmembrane protein, 

amyloid precursor protein (APP) [8]. When Aβ is not disposed of, it forms extracellular senile 

plaque accumulation which is believed to cause neuronal toxicity through the induction of 

mitochondrial dysfunction and oxidative stress in AD neurons. Therefore, through the gradual 

accumulation of aging cell residue with no way of disposal. As for tau protein, it is a microtubule-

associated protein, which forms insoluble filaments that cause accumulation of neurofibrillary 

Figure 2 Comparison between normal neurons, and Alzheimer’s neurons surrounded by amyloid plaques 

and cluttered inside by neurofibrillary tangles [10]. 
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tangles in AD. It normally regulates the structure stability of microtubules, so when issues arise in 

the accumulation, tau forms neurofibrillary tangles, and the microtubules, and by cause, the 

neurons themselves, begin to collapse [9].  

The reason why Aβ or tau malfunction or accumulate, is yet to be known, but recently, 

large evidence has had an inclination towards epigenetics and its ability to change the condition of 

a patient away from or closer to AD. Epigenetics is the effect the environment has on the genetic 

code without directly affecting the DNA or changing it, but in the meantime can also be heritable 

[11]. It can be either DNA methylation, histone modification, and noncoding RNA (siRNA, 

miRNA, snRNA). The most commonly studied epigenetic tag is DNA methylation [12], which 

will be the main epigenetic tag of this study. Through DNA methylation, a methyl group is 

transferred from adenosylmethionine to DNA [13], thus, an elevation occurs in plasma 

homocysteine which increases the risk for developing dementia and AD [14]. 

Even though it is believed that epigenetics might be the key to understanding the 

pathophysiology of AD, it has much to be studied in order to fully grasp all the mechanisms 

involved. Recently, new technologies and bioinformatics approaches have emerged to cover this 

subject, such as Epigenome-Wide Association Studies (EWASs) which provide detailed insight 

into the methylation sites of the brain of AD patients. However, this technology only provides 

information about a mere 2% of all CpG sites in the genome affected by DNA methylation [15]. 

More robust and affordable solutions became possible with the introduction of machine learning 

into the field, which has helped in detecting many epigenetic marks in the disease through 

computational methods using supervised learning or unsupervised learning. The main attraction of 

machine learning is its ability to process large amounts of clinical and biological data to extract 
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meaningful patterns and results. It has its downside, however, due to the limited data size that can 

be used, its need for structured data, and traditional algorithms. 

Many scientists are now inclined towards deep learning, which is a subset of machine 

learning that uses complex learning methods which mimic the learning processes of the human 

brain, therefore enabling more detailed and precise outputs can also avoid some limitations of the 

process. 

It is possible, then, that a more thorough understanding of the mechanism of the epigenetics 

of AD can be achieved, since deep learning can be a more comprehensive option to fully extract 

meaningful data from AD to process all DNA methylation tags of AD and how the mechanism of 

the disease occurs in order to achieve a thorough understanding of diseases which will aid in the 

discovery and design of novel and effective therapies.  

This leads to the final gap of AD, which is the therapeutic approach. Unfortunately, no cure 

has been discovered yet, and the available treatments are those that may change the progression of 

the disease by slowing the decline of memory and thought, like anti-amyloid antibody intravenous 

infusion therapy (Aducanumab, Lecanemab) [16] or simply treat the symptoms like behavior 

changes, cognitive symptoms, and psychological symptoms (Donepezil, Memantine, Pantethine, 

Suvorexant) [17]. It is still necessary to find all the pathological processes and mechanisms of how 

AD truly emerges and progresses. Which is why deep learning along with machine learning was 

suggested here since it has never been applied before in this context to attempt a new method of 

CpG identification. 
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Alzheimer’s Disease and its Known Pathological Processes: 

Alzheimer’s disease is a very complicated neurodegenerative disease, in which a small 

percentage of cases is caused by genetic mutations or are familial [18], and in most cases, the 

disease is multifactorial and is subject to many risk factors, both environmental and genetic [19]. 

Scientists have discovered many genes that are responsible for the disease, and many hypotheses 

have been suggested for the explanation of the mechanisms in which AD emerges. 

These hypotheses include the cholinergic hypothesis, amyloid hypothesis, tau propagation 

hypothesis, mitochondrial cascade hypothesis, calcium homeostasis hypothesis, neurovascular 

hypothesis, inflammatory hypothesis, metal ion hypothesis, and lymphatic system hypothesis [20].  

Even though these hypotheses have been suggested (some even partially proven) for the 

explanation of how AD occurs precisely, they have yet to prove results when used for the treatment 

of the disease in clinical trials [21].  

 

Figure 3 Percentage of the clinical trials tested for each hypothesis up to 2019 [22]. 
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The two most common hypotheses regarding Alzheimer’s disease are the amyloid 

hypothesis and the tau hypothesis. The amyloid hypothesis, which was first postulated by J Hardy 

and D Allsop in 1991 [23] stated that the central mechanism by which AD occurs is thought to be 

an amyloid precursor protein (APP) gene mutation, and it was explained that the finding of the 

APP gene mutation in familial AD makes it clear that the deficiencies occurring in AD from 

neurotransmitters, to enzymes and receptor, are caused by “amyloid disposition or abnormal APP 

processing”[23]. 

APP is a single-pass transmembrane protein – a protein that passes through the bilipid layer 

of the cell membrane and spans it only once – which plays a role in the health and growth of 

neuronal cells [24]. When it is properly metabolized and cleaved and then subjected to hydrolysis 

in healthy conditions, it is through the α pathway, in which APP is hydrolyzed by α-secretase and 

then by γ-secretase (Figure 4). This process results in soluble Aβ [25]. The second process 

(hypothesized cause of AD) is the β pathway, in which the hydrolysis occurs through β-secretase 

then -secretase to produce insoluble Amyloid beta (Aβ) [26] which is the root of AD 

neurodegeneration. In normal cases, a small amount of APP is hydrolyzed though the β pathway, 

but the Aβ protein resulting is eliminated by the immune system. Amyloid beta can be defined as 

Figure 4 A comparison of α and  pathways in which APP is disposed of, and  β pathway which leads to Aβ accumulation [28]. 
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a protein-formed fibril characterized by cross-β organization, and amyloids can be divided into 

either functional (like in bacteria) [27] or disease-associated (like in AD). 

When mutations occur and the disease is present, the β pathway becomes dominant over α 

and  which causes the excessive extracellular accumulation of Aβ protein that is insoluble and 

which the immune system cannot eliminate. 

 

 

 

Figure 5 Describing both the amyloid (upper) and tau hypothesis (lower) along with the two pathways found 

regarding APP [22]. 
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As to the mechanism in which Aβ protein is toxic to the neurons, it can be explained by the high 

concentrations that cause neurotoxicity to mature neurons due to the dendritic and axonal atrophy 

that is caused, and then followed by inflammation and then neuronal death [29]. 

 

Figure 7 Amyloid-beta precursor protein. It can 

be fragmented into smaller pieces with the help 

of secretases. The larger portion (top) is 

released outside of the cell, normally, aiding in 

the control of neuronal growth, while the 

smaller (lower) piece remains inside the cell. 

[31] 

Figure 6 Amyloid-beta fibril from a patient with 

Alzheimer's disease, showing how the APP broken 

chain aggregates into long fibrils that stop the 

function of cells. Studied by x-ray diffraction, they 

have a ‘cross-beta pattern’ characterized by the 

accumulation of small peptides to form beta strands 

by stacking upon one another. The beta strands then 

use hydrogen bonds to form huge beta sheets with 

structures similar to spider silk in strength. [30] 
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Both the presence of neurotoxic Aβ (outside the cell) and tau (inside the cell) in the brain 

trigger immune responses from the microglia – the immune cells responsible for the protection of 

the central nervous system against infection and inflammation [32]- which attempt to dispose of 

dead cell debris, but when the microglia can’t keep up with the increasing amounts of accumulation 

and dead cells, chronic inflammation begins. All of the processes mentioned earlier would 

therefore lead to: cell death, loss of neuronal communication, atrophy due to cell death, and chronic 

inflammation, which all lead to death in later stages [33]. 

 

However, both amyloid and tau proteins have functional roles in the healthy normal brain. 

Amyloid for instance, has been found to be of use in protection against a wide range of cytotoxic 

factors such as UV and oxidative damage [36].  

As for the tau hypothesis, in 1986, Kosik et al. found that the neurofibrillary tangles in the AD 

brain were made up of phosphorylated tau proteins [37]. Tau is a microtubule-associated protein 

in neurons. In the healthy brain, tau stabilizes the microtubules of the neuron. However, when it is 

Figure 9 A simple healthy neuron, containing a cell 

body, axon, and dendrites [34] 

Figure 8 The main inflammation cause of AD, in which the 

microglia start attacking neuronal cells due to 

neurodegeneration, thereby increasing the problem at hand [35]. 
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phosphorylated, it dissociates from the microtubules and aggregates, forming paired helical 

filaments (PHF) which later transform into neurofibrillary tangles. 

The tau hypothesis states that tau hyperphosphorylation precedes amyloid beta accumulation and 

that tau aggregation is the main cause of AD 

Epigenetics: Definition and Mechanisms 

The term epigenetics (epi “over” + genetics) means “What is above genetics.” It was coined 

by Waddington [39], and developed through many definitions to reach the definition it has today, 

which is the explanation of the interaction between the environment and genes. 

Epigenetics can be described as the mechanism that turns the genes on or off (which leads 

to either producing a certain protein, or refraining from its production) without directly affecting 

the building blocks of the DNA. Changes in gene expression are passed on from one cell to its 

descendants [40]. Epigenetic modifications can be either DNA methylation, histone modification, 

or noncoding RNA (miRNA, siRNA, piRNA, lncRNA) [12]. 

The most studied epigenetic mechanism is DNA methylation, which is the addition of a methyl 

group to DNA, causing the turning “off” of genes, whereas the absence of methyl on the DNA can 

cause the turning “on” of the gene, and therefore enabling transcription [13]. It is controlled by the 

Figure 10 How microtubules transform in AD under phosphorylation into neurofibrillary tangles, 

characteristic of the disease [38]. 
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DNA methyltransferases, DNMTs which are a group of enzymes. Even though DNA consists of a 

sequence of four bases adenine cytosine guanine and thymine, DNA methylation only concerns 

cytosine: The DNMTs usually modify cytosine in the DNA when it is present near guanine 

(referred to as cytosine-guanine dinucleotides or clusters), by the transfer of a methyl group from 

the universal methyl donor, S-adenosyl-L-methionine (SAM), to the 5-position of cytosine 

residues in DNA [42].   

 These cytosine-guanine dinucleotides or clusters (CpGs for short) are named CpG islands, and 

when these islands are located on the promoter region of a gene, the gene undergoes methylation, 

which results in the repression of the expression of that gene [43], and it is suggested that 70-80% 

of these CpG are methylated in somatic cells. 

Figure 11 How cytosine is methylated into 5' methyl-cytosine [41] 
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As for histone modifications, they occur by the adding of a chemical group on the histones 

themselves which can be described as the proteins that support the chromosomes by the tight 

wrapping of DNA on the histone complexes, and they also regulate the transcription of DNA 

(which is the copying of DNA to make more DNA). Their modifications can be characterized into 

histone acetylation, methylation, phosphorylation, ubiquitinylation, sumoylation, ADP 

ribosylation, deimination, proline isomerization, citrullination, formylation, succinylation, 

butyrylation, propionylation and crotonylation, and they occur at the posttranslational level. Of the 

above, for example, histone acetylation causes the chromatin to be exposed, thereby activating the 

gene (gene is “on”), whereas histone methylation would cause the chromatin to be closed, and 

consequently, the gene would be inactivated or “off” [45]. 

The last mechanism is noncoding RNA, which is all RNA transcripts that are not translated 

into protein. Some are functional such as rRNA and tRNA, and some have only recently been 

Figure 12 the structure of histones of the chromosome and their relationship with 

DNA, along with a brief visual description of transcription regulation [44]. 
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discovered to have an actual function as the role of “epigenetic factors” through the regulation of 

gene expression, which can be at the transcriptional, posttranscriptional, and translational levels 

[46]. It has been suggested recently that ncRNAs participate in DNA methylation and histone 

modifications along with gene silencing [47]. 

As of now, the “epigenetics” term continues to evolve and is now the reversible change in the 

effect the environment can have on genes, whether it be a positive or negative change. 

Regarding the technologies responsible for the measurement and quantification of each 

epigenetic tag [49], DNA methylation can be studied using any of the following: PCR-based 

bisulfite sequencing, MSP, pyrosequencing, WGBS, HumanMethylation450, RRBS, MRE-Seq, 

MeDIP, ELISA-based assay, single-cell bisulfite sequencing, SMRT sequencing, nanopore 

sequencing, OxBS-seq. 

Figure 13 Different noncoding RNA [48] 



Deep learning in clinical epigenetics:  shedding new light on pathological processes of Alzheimer's 

disease in the perspective of therapeutic approaches 
29 

 

   
 

Histone modifications can be measured with either, ChIP-PCR, ChIP-chip, ChIP-seq, or 

ELISA-based assay. 

Whereas ncRNAs are detected using qRT-PCR, RNA-Seq, and HITS-CLIP.  

Table 1 Most important genes in Alzheimer's disease [50]. 

Gene Symbol Gene name Chromosome 

APP Amyloid precursor 

protein 

21q21 

APOE Apolipoprotein E 19q13.32 

PSEN1 Presenilin 1 14q24.2 

PSEN2 Presenilin 2 1q42.13 

 

Genes and the epigenetic mechanisms of Alzheimer’s disease 

Even though the true mechanism of how AD occurs is still unclear, and genetic factors 

have been proven to be of cause in 70% of cases, the majority of genes believed to play a 

role in AD pathogenesis do not individually cause the disease through either an 

inflammatory pathway, cholesterol metabolic pathway, or others. These genes include 

amyloid precursor protein (APP) on chromosome 21, Presenilin 1 (PSEN1) on 

chromosome 14, and presenilin 2 (PSEN2) on chromosome 1 [50]. Change in these genes 
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can result in abnormal protein production associated with AD. chromosome 14, and 

presenilin 2 (PSEN2) on chromosome 1 [50].  

But another gene is also known to influence the risk of AD: the APOE (apolipoprotein E) 

gene [51], located on chromosome 19q13.32, remains the most prevalent and the strongest 

genetic risk factor, causing more than half of all AD cases.  

 

 

Figure 14 APOE can be found in three different allele variants, and only one is of danger of 

causing AD [52]. 
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APOE has three predominant alleles in humans: ε2 (APOE2), ε3 (APOE3), and ε4 

(APOE4) which is the main genetic risk factor that increases risk up to 15-fold in homozygotes, 

whereas APOE2 reduces risk and APOE3 is believed to be neutral. APOE’s main function is the 

mediation of lipid transportation into the brain and periphery, but in pathological cases, the ε4 

allele of APOE, ApoE4, causes seeding of Aβ plaques in the brain causing more amyloid 

accumulation. It also shows neuroinflammation and tau phosphorylation in the presence or absence 

of Aβ plaques, by inducing tau phosphorylation and cell death.  

The aggregation mechanism is suspected to be caused by the formation of tau/apoE 

complexes. This provides evidence of the role of understanding the role of apoE in tauopathy in 

identifying new approaches of therapy. 

 Therefore, this, and more studies like monozygotic twin studies (which play a major role 

in difficult diseases, to understand why one identical twin could present with a disease while the 

other remains with no disease), suggest that more factors are responsible that do not involve genetic 

Figure 15 All the effects of the APOE ε4 allele has on the aspects of AD [53]. 
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factors. Furthermore, dietary and environmental factors of poor condition seem to be present in 

almost one-third of AD patients in studies [54] [55], such conditions involve low educational 

status, diabetes mellitus, depression, hypertension, . . . etc. which are all considered major 

contributing risk factors for AD and other neurodegenerative diseases as well. The main process 

by which this occurs is still not completely clear, but most studies suggest that early exposure 

(prenatal and in childhood) to metals, electromagnetic fields, and poor diet can have an impact on 

development and diseases later in life by perturbing how methylated CpGs interact with binding 

proteins [54].  This, therefore, leads to epigenetics, since epigenetics is the method by which 

environmental stimuli affect gene expression [56]. 

In AD, and other age-related diseases such as Parkinson’s disease, senescent cells (aging cells) of 

the brain are accumulated, blocking tissue regeneration and causing inflammatory responses. 

Senescence, or cell aging, is a state of cells that is both non-proliferative and pro-inflammatory 

and is an active state in the human body. But, in age-related disorders, senescent cells start 

competing with normal cells, causing epigenetic changes that corrupt the epigenetic mechanism 

[57]. Therefore, DNA hypermethylation, histone deacetylation, and a repressed chromatin state all 

become characteristic of the disease, thereby changing gene expression by gene silencing [58]. 

Epigenetics play a major role in the pathophysiology of AD, for example, transcriptional activator 

sites AP2, SP1, and GCF have been proven to be of key roles in the epigenetics of tau 

hyperphosphorylation which causes the collapse of neurons and accumulation of neurofibrillary 

tangles, which is a hallmark of AD pathogenesis.   

As for the epigenetics of APOE, it has recently been discovered that DNA methylation is 

differentiated in APOE CG islands in AD [58] [59]. 
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Figure 16 The Epigenetic alterations influencing Alzheimer’s Disease from various 

sides. Aβ: Amyloid Beta; Ach: Acetylcholine; NT: Neurotransmitter; AD: Alzheimer's 

disease [58]. 
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Impact of AD 

According to the Cleveland Clinic, an estimated 24 million people worldwide suffer from 

AD [60], and the Alzheimer’s Association declares that “An estimated 6.5 million Americans age 

65 and older are living with Alzheimer's dementia today” [33].  It starts with short-term memory 

loss and progresses to a stage of declined coordination, mood swings, and unpredicted behavior 

which all require constant need for care from others. 

 

Measuring Alzheimer’s Disease 

To measure the severity and progression of the disease, many measurements are used that 

describe and categorize the symptoms either histologically, from imaging, or from direct 

observation by the clinician. The main traits used for measuring AD are: 

1. Beta-amyloid load which quantifies the global Aβ burden from PET imaging in 

vivo.  

Symptoms of 
AD

(decline in:)

Reasoning

Language

Coordination

Behavior

Mood

Memory

Figure 17 Symptoms of AD involve a gradual decline in some, most, or all of the above [60]. 

https://my.clevelandclinic.org/health/diseases/9164-alzheimers-disease
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2. Neurofibrillary tangle density (NFTs) which are measured in the cortex using 

immunohistochemistry with the use of phosphorylated-tau-specific antibodies [61].  

3. The Consortium to Establish a Registry for Alzheimer's Disease (CERAD) is 

semiquantitative because it relies on the clinician’s assessment along with the 

amount and distribution of silver-stain-identified neuritic and diffuse plaque [62]. 

4. Global AD pathology burden which quantitavely summarizes the AD pathology 

measured from silver staining from three pathologies of AD: neuritic plaques, 

diffuse plaques, and neurofibrillary tangles, taken from 5 regions from the brain 

[63].  

5. Cognitive trajectory/decline based on performance of patients in various 

examinations. 

6. Braak staging: a semiquantitative measure to estimate the severity of neurofibrillary 

tangle pathology. Silver staining is used for the visualization of cortex areas frontal, 

temporal, parietal, entorhinal cortex, and the hippocampus [64]. The diagnosis 

depends on the opinion of the neuropathologist along with an algorithm that 

quantifies the amount of silver staining of neurofibrillary pathologies. It consists of 
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six stages from one to six, and it is coded as binary (controls: stages 1, 2, 3), 

(affected: 4, 5, 6) 

Therapy: 

Unfortunately, to date, no treatment exists to erase Alzheimer’s disease or cure it. Some 

medication can be administered for slowing down symptom progression.  

So far, only five drugs have been approved by the FDA which are tacrine, donepezil, 

rivastigmine, galantamine, and memantine, with little success. They are only targeted towards 

disorders of the memory without an actual cure or delay of the disease [65]. 

Impaired memory and concentration loss is said to be associated with a loss of cholinergic 

neurons. Therefore, most approaches nowadays target the promotion of cholinergic synapses to 

lessen neuron toxicity or stop plaque formation. 

Epigenetics play a more important role in finding new therapy than genetics do, since the 

main goal of epigenetic therapies is the reversal of the epigenetic mechanism itself, which therefore 

Figure 18 Changes in neurofibrillary distribution among different Braak stages, the 

density of the shading indicates the increasing severity of NF changes [61]. 
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leads to the need for better insight and understanding of AD. For example, vitamin B deficiency 

leads to hypomethylation of the (GSK3β) gene at the promoter region, which leads to the 

expression of its protein kinase (glycogen synthase kinase 3β), causing hyperphosphorylation of 

tau, leading to cell death [66]. 

The same hypomethylation mechanism causes gene expression to genes responsible for 

cell death and neuroinflammation such as (BIN1), (CR1), (CD33), (TNF-α). Since epigenetic 

mechanisms may appear in early asymptomatic stages of the disease, and since many can be 

reversible, it is believed that epigenetics could be the key to finding new treatment by using 

epidrugs (epigenetic-based drugs), that target DNA methylation or other mechanisms of 

epigenetics [65]. 

Epidrugs could be activators or inhibitors of DNMTs (DNA methyltransferases), histone 

deacetylase inhibitors, sirtuin activators, modulators of histone acetylation and histone 

methylation, as well as RNA interference analogs [65]. 

DNA methylation activators, for example, attempt to restore DNA methylation conditions, 

which could put the metabolic pathways back on track. Diets rich in Vitamin B complex can be of 

benefit to target this method of treatment by increasing the SAM/SAH ratio, reducing 

inflammation, and toxicity caused by Aβ aggregation. Several clinical trials are currently working 

on Vitamin B6 and folate in the hopes of reducing cognitive impairment by reducing homocysteine 

levels [65]. 

As for DNA methylation inhibitors, they are small molecules or natural products that 

attempt to stop the hypermethylation of pathogenic genes, because even hypermethylation can 

cause neurodegeneration. Clinical trials are underway for the epigallocatechin-3-gallate (EGCG) 

which is the main polyphenol of the green tea (Camilla sinensis). It is a DNMT inhibitor which is 
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currently under trial to test its efficacy in preventing Aβ aggregation to toxic polymers by binding 

directly to the unfolded peptide. Other products include curcumin derivatives, bioflavonoids, 

catechins, and psammaplins [65]. 

It is worth noting that in the pharmacoepigenomics field, recent evidence suggests that 

epigenetic changes can determine the pathogenesis of medical conditions along with drug response 

and resistance. This depends on gene variants responsible for drug response, along with the 

epigenetic modifications of the genes which can change their expression. 

For example, an epigenetic modification in genes that play a role in drug response in AD 

is hypomethylated upregulated mRNA of genes ABCA1, ABCB1, ABCA7, and SLC24A4 [65]. 

Amyloid clinical trials, however, which include active or passive immunotherapy or anti-

amyloid antibodies have shown no efficacy in the past 20 years. Since active immunotherapy has 

shown clinical complications, passive immunotherapy has shown repeated failures [67], and anti-

amyloid antibodies aducanumab and BAN2401 still need much research [16], the tau line has been 

of more interest. Therefore, Braak staging, which is a measure of the pathology of neurofibrillary 

tangles which are made of tau protein, is the new direction for new therapy attempts – laboratories 

can design tau-based therapies, which are currently in progress [68]. It should be noted that several 

antibodies to the tau protein are currently in the clinical trial phase, and even some vaccines as 

well.  

As is known nowadays, a strong correlation is shown between neurofibrillary tangle 

accumulation and cognitive function deterioration (disease worsens as the Braak stage progresses). 

Therefore, strong evidence suggests that the etiological role of tau protein cannot be ignored and 

must be further looked into. And, even though tauopathy is still not completely understood due to 
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the absence of extensive research, clinical trials, and even epigenetic studies, it is an essential key 

to unlock and solve the mysteries of AD. 

This thesis utilizes a deep learning model that may help in identifying new methylated CpG 

sites in the genome, which offer better understanding of AD pathogenesis, and especially how the 

disease evolves throughout the Braak stages and how tau and NFTs distribute. 

Analysis of the Epigenetics of AD 

AD still remains partly in the dark regarding what exactly occurs in epigenetics of the brain 

and the body, which suggests the growing need for proper analysis methods that offer a more 

comprehensive analysis of the disease 

Classical/Present methods of analysis of AD epigenetics 

The current approach of analysis of DNA methylation in AD is with technologies such as 

PCR-based bisulfite sequencing, MSP, pyrosequencing, RRBS, MRE-Seq, MeDIP, ELISA-based 

assay, single-cell bisulfite sequencing, SMRT sequencing, nanopore sequencing, OxBS-seq, 

HumanMethylation450, and WGBS [49]. All of which has strengths and weaknesses, but the main 

focus will be on HumanMethylation450 and WGBS since they are the technologies referenced in 

this study. 

Profiling of DNA methylation: Infinium® HumanMethylation450 BeadChip 



Deep learning in clinical epigenetics:  shedding new light on pathological processes of Alzheimer's 

disease in the perspective of therapeutic approaches 
40 

 

   
 

To obtain DNA methylation (DNAm) data, in epigenetic studies studying DNAm, on a 

genome-wide scale, it is usually preferred to use the Illumina Infinium® HumanMethylation450 

BeadChip array, which covers approximately 480000 CpG sites and all at the single-CpG-site-

level. Its method works on the basis of detecting methylated cytosine in CpG islands based on 

“highly multiplexed genotyping of bisulfite-converted genomic DNA” [69]. It requires no PCR, is 

relatively affordable and less laborious, and takes up to 12 samples and an amount as small as 500 

nanograms of genomic DNA. It contains two probe types: Infinium I (n=135501) and Infinium II 

(350076). In Infinium I, every CpG site becomes the target of two 50bp probes (one for methylated 

density M, the other for unmethylated density U). In Infinium II, however, only one probe is 

utilized for the distinction of M and U through dye colors (green and red).  When treated with 

bisulfite, the methylated cytosine base remains unchanged, while the unmethylated cytosine 

converts to uracil. The assay therefore identifies these two different bases that become chemically 

differentiated loci by utilizing two site-specific probes. (M bead type for the methylated locus, and 

U for the unmethylated locus). The probes incorporate a labeled ddNTP stained with a fluorescent 

reagent, and the level of methylation of a single locus is determined by calculating the ratio of 

fluorescent signals between the methylated and unmethylated sites. 
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The methylation value of a single CpG site is referred to as the β-value and is calculated as 

[70]: 

β=M/(M+U+α*) 

M = methylated signal intensity (M>0)  

U = unmethylated signal intensity (U<0)  

*α = 100 generally, as recommended by Illumina. Alpha is usually added to M and U for 

the need of stabilization of the beta value when M and U are small. 

Under perfect conditions, when beta is zero, it means that all copies of the certain CpG 

sites are unmethylated, whereas a value of one means that every copy was methylated. 

Another unit used for analysis is M-value [71], which is the logit-transformed β-value: 

M=log2(β/(1−β))  

or 

M = log2((M + α)/(U + α))* 

*This is an alternative index that is not bounded by 0 or 1 [72]. 

 

In general, β-value is more preferred than M-value do its having more biological meaning 

and is more intuitive which helps reach more informative results. Even though it shows some 

heteroscedaticity when caught in the range outside of the middle methylation range (0.2-0.8) [73], 

it still remains better than M-value for gleaning biological insight. 
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The outcome offers a range of more than 480 thousand CpG sites and also covers 99% of 

RefSeq genes along with regions of low CpG island density that might be missed entirely using 

other methods. The target of coverage is promoter region gene sites, 5’UTR, first exon, gene body, 

and 3’UTR, and this enables coverage of 98% of the islands, island regions, island shores and 

island shelves [74]. 

  

Figure 19 Regions covered by HumanMethylation450 BeadChip [74]. 
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Whole Genome Bisulfite Sequencing (WGBS) 

In comparison with the technology of HumanMethylation450, WGBS is a protocol that 

detects the methylation of DNA at the fifth position in cytosine (5mC) [75] in genomic DNA, which 

in whole amounts to 28,084,558 CpG sites in the human reference genome [76], as opposed to the 

former which gives an output of approximately 480,000 sites. Genomic DNA is first treated with 

sodium bisulfite, sequenced, and finally it gives out single-base results of methylated cytosines of 

the genome. When treated with bisulfite, the unmethylated cytosine is deaminated to uracil, and 

when sequenced, is converted to thymidine.  

As for methylated cytosine, it resists deamination so it is read as cytosine without change 

[77]. 

Epigenome-Wide Association Studies (EWAS) 

Are studies that concentrate on the relationship between a phenotype (i.e. disease presence) 

and the underlying epigenetic variants. They are more and more accessible every day due to the 

decreasing cost which enables wider usage along with the emergence of new bioinformatics 

pipelines that help study the epigenetic mechanisms much more efficiently on a genome-wide 

scale. It can study any epigenetic mechanism. DNA methylation, for example, is studied through 

bisulfite conversion (mentioned earlier). 

Extraction 
of genomic 
DNA (cells 
or tissue)

Bisulfite 
conversion 

(sodium 
bisulfite)

Library 
preparation

Sequencing

(output is 
either T or 

C)

Data 
analysis 

(comparing 
sequencing 

reads to 
reference 
genome)

Figure 20 The process in which WGBS works, from the extraction of DNA, to bisulfite treatment and 5’ and 3’ tagging, to the 

introduction of Illumina adapters using PCR amplification [78]. 
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EWASs are mostly conducted using unrelated case-control and longitudinal designs, but 

there are also family studies and disease-discordant monozygotic twins. 

Longitudinal studies can discriminate the relationship between epigenetic changes and 

phenotype in the gradual stages of the disease (right now, they only measure two time points), they 

are beneficial due to recruitement before disease and their avoidance of confounding and bias. A 

combination of longitudinal studies and monozygotic twin studies could be of double importance 

due to the benefit of no genetic difference or influence 

Case-control studies, however, can dive into the understanding of dichotomous traits and 

methylation – they are considered more practical and affordable in comparison with longitudinal 

studies, due to the availability of actual cohorts that one can compare with, but since they are 

retrospective, environmental control and genetic confounders are potential disadvantages [79] 

[80]. 

Family studies, for instance are beneficial for the analysis of potential epigenetic 

inheritance, but family cohorts are not as plenty as other available cohorts [79].  

Monozygotic twin studies are very beneficial for epigenetic studies, but the same issue with 

family studies arises, which is the scarcity of such cases, along with the need for longitudinal 

recruitement to better understand causes of disease [79]. 

 

Identification of CpGs 

CpGs do not have a database accurately naming every cytosine guanine dinucleotide the 

way SNPs or genes do, so Illumina developed a new method for the consistent designation of CpG 

loci based on actual or contextual CpG locus sequence [81], by using the flanking sequences to 

give a unique CpG locus cluster ID. It only relies on sequence information. It also concerns DNA 



Deep learning in clinical epigenetics:  shedding new light on pathological processes of Alzheimer's 

disease in the perspective of therapeutic approaches 
45 

 

   
 

strands, because of the symmetry of CpGs on forward and reverse DNA strands, and it is important 

that we refer to the cytosine -without ambiguity - whether it is on the forward strand, reverse strand, 

or on both. Therefore, a naming is applied for the top and bottom strands as well (TOP/BOT). For 

example: 

Table 2 Example of CpG naming and coordinates 

Cluster CG# Chromosome Coordinate Genome build Sequence TOP/BOT 

cg00009407 14 88,360,674 36 
...GGCG[CG]CTGC..

. 
BOT 

cg00003994 7 15,692,387 36 ...TCTT[CG]TTGG... TOP 

cg00005847 2 176,737,319 36 ...ATGG[CG]CTTT... BOT 

 

We use the sequences which flank the CpG to generate CpG cluster IDs (cg# column). A 

122-base sequence is used which is made up of 60 bases that flank either side of the CpG locus 

(Sequence column). One CpG cluster may have several other members that can map onto different 

loci in the genome (only if they have identical sequences). 
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For CpG identification, we need three basic pieces of information to know every individual 

member of a cluster (above). 

As for the strand (TOP/BOT), a sequence walking method is used, and the CpG 

dinucleotide is considered as position ‘n’. The base before it would be ‘n-1’ and before is ‘n+1’, 

then ‘n+2’ and so on until an unambiguous pairing is found (unambiguous pair: two bases that are 

in equal distance from the CpG in which only one of the two is an A or T like A/G or A/C or T/C 

or T/G).  

If the A or T of the unambiguous pair is from the 5’ side of the CpG then it is TOP, if on the 3’ 

side then it is a BOT. The CpG sequence below is on the TOP strand because the ‘n-2’, ‘n+2’ pair 

is the first unambiguous pair C/T, and since A or T are responsible for determining TOP or BOT, 

we have T which is on the 3’ side, we determine that the strand is BOT. 

5’ . . .  A  G  G  C  G  [ 𝐶  𝑝  𝐺 ]⏞      
𝑛

  C  T  G  C  T  . . . 3’ 

 

 

Chromosome number

•Chromosome numbers range from 1 to 23, in this study 
only 1 to 22, to evaluate without the gender 
chromosome.

Genomic coordinate

•One for G, one for C, the lesser of C or G is used as the 
CpG locus coordinate.

Genome build

•GRCh38 or hg19, for example, in which both are 
human genomes, but GRCh Build 38 is more accurate 
and provides alternative alt_sequences and it is the 
primary build referenced in studies. 

n+1 n-3 n+3 n-1 

n-2 n+2 
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Modern / Advanced methods of epigenetic analysis of AD 

We are now in the era of artificial intelligence, including its most beneficial subsets in the 

field of biology/bioinformatics – machine learning and deep learning (AI/ML/DL). 

Simply put, artificial intelligence is a computational field that enables the machine/model 

to extract information from large amounts of data which is not humanly possible. Its simpler 

form is machine learning, that relies on the basis of training a model on information and then 

testing its validity, followed by the prediction it makes on new unexplored data. 

 

Figure 21 Steps of machine learning [82]. 

Data gathering

Data preparation

Model selection

Training

Hyperparameter 
tuning

Evaluation

Prediction
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1. Data gathering: Important and time-consuming, the data chosen for a model is essential 

to its performance. The data used in this study for example, was obtained/gathered from 

EWAS data and ENCODE WGBS data for proper training, testing, and prediction. 

2. Data preparation: Includes choosing the proper file format, columns, lines, and 

preprocessing (units, nominal or numerical, . . . etc). txt files, bed files, csv files, all can 

be of benefit in such studies. Here, we used bed files and csv files that are descriptive of 

the fields needed for the model. 

3. Model selection: The choice of the model/algorithm used in learning is also essential, 

since some algorithms are supervised (labels are used as input in the process), or 

unsupervised, and others are semi-supervised. The algorithm used for some data may not 

be of benefit for another type, depending on what is hoped to be achieved from the 

learning process. Some algorithms include SVM, linear regression, random forest, . . .  

etc. The model used in our reference study, for example, applied random forest, xgboost, 

logistic regression with L2-regularization and SVC with linear kernel, they can be used 

as an ensemble, by calculating the performance of the solo algorithms or a combination 

of them. 

4. Training: In case no tuning is needed, the model can start to learn the weights from the 

data at hand [83]. This is the “learning” step in the process of machine learning, and the 

outcome of the predicition heavily relies on this step [84]. 

5. Hyperparameter tuning: For best behavior/results of model, this process can help 

modify and tweak the hyperparameters of the model like modifying the learning rate of 

the model [85]. For example, when using multiple models (to choose an ensemble 
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model), one must select the optimal hyperparameters for each base learner (model) and 

the best combination as well [86].  

6. Evaluation: Several evaluation metrics can be used to assess the performance of the 

model, including, accuracy, precision and confusion matrices [87]. 

7. Prediction: Ready for performance on real unknown data.  

Recent papers using AI for AD and/or epigenetics 

Since epigenetics of AD have only recently taken interest, only a handful of studies address 

them from an AI perspective. For example, many studies have utilized AI and its subfields for the 

diagnosis of AD or predicting its stages, using either clinical cognitive information, or brain 

imaging techniques as data for their models. The table below sorts some of the prominent 

applications: 

Table 3 Artificial intelligence studies on Alzheimer's disease 

Method Study title Use Reference 

DL Multimodal deep 

learning models for 

early detection of 

Alzheimer’s disease 

stage 

Use of DL (3D CNNs) for the analysis of MRI, 

SNPs, and clinical test data for the 

classification of patients into AD, mild 

cognitive impairment, or controls 

[88] 

DL Deep Learning 

Approach for Early 

Detection of 

Alzheimer’s Disease 

Utilizing an end-to-end framework capable of 

early diagnosis of AD and classification of AD 

stages from images using CNNs. 

[89] 



Deep learning in clinical epigenetics:  shedding new light on pathological processes of Alzheimer's 

disease in the perspective of therapeutic approaches 
51 

 

   
 

 

 

DL Development and 

validation of an 

interpretable deep 

learning framework for 

Alzheimer’s disease 

classification 

Identification of unique AD signatures from 

multimodal inputs of MRI, age, gender, and 

Mini-Mental State Examination score using a 

fully convolutional network. 

[90] 

ML Early-Stage Alzheimer's 

Disease Prediction 

Using Machine 

Learning Models 

Employment of Decision Tree, Random 

Forest, Support Vector Machine, Gradient 

Boosting, and Voting Classifiers, for the 

identification of bets parameters for AD 

prediction, all using imaging data. 

[91] 

ML A Novel Approach 

Utilizing Machine 

Learning for the Early 

Diagnosis of 

Alzheimer's Disease 

Design of a ML model comprising of 

GaussianNB, Decision Tree, Random Forest, 

XGBoost, Voting Classifier, and 

GradientBoost using imaging data for early 

diagnosis of AD 

[92] 
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Reference study 

A machine learning approach to brain epigenetic analysis reveals kinases associated with 

Alzheimer’s disease [62] 

This study conducted by Huang et al. developed a machine learning model depending on 

brain epigenetic data from Alzheimer’s disease patients in the aim of identifying novel CpG loci 

across the whole genome, and was able to identify hundreds of new CpGs that cannot be detected 

using classical methods like HumanMethylation450 used in EWASs (ergo, the name: EWASplus). 

It used supercomputers, extensive funding, and enormous data and resources, along with using 

AWS, Jupyter, R language, and Python.  EWASplus is a supervised machine learning binary 

classifier, that is trained from data derived from array EWASs and several features were used from 

WGBS, RNAseq, ATACseq, and more, all include genomic and epigenomic profiling data. 

Several traits of AD were used to further supply information, which are beta-amyloid load, Braak 

staging, cognitive decline, global pathology, neurofibrillary tangles, and CERAD score. The model 

was then used for predicting new loci after its training, using an ensemble learning method that 

included regularized logistic regression (RLR), support vector machine (SVM), random forest 

(RF), gradient boosting decision trees (GBDT). It identified several new loci, and its performance 

was further checked and evaluated by conducting targeted bisulfite sequencing that validated the 

in-silico predictions reached. Its results reached that “predicted CpGs are 2.2 times more like to 

be associated with AD (p < 1.00 x 10-9) than negative control CpGs” 
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Chapter 3: Machine Learning/Deep Learning 

Algorithms Used in Study 
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The models used in this study 

For this thesis, Google Colab was employed to run the Python code of this study. 

 Random Forest Regressor: a machine learning model used by utilizing several 

decision trees to identify the best decision and give an output of the best overall performance. It 

also ranks the importance of features used in the process [93]. 

Keras Regressor is a deep learning model, with the ability to predict continuous 

labels, also used in this study for the final prediction stage [94]. 

Libraries used in study 

Table 4 Most prominent libraries used in the study 

Pandas Beneficial for dataframe handling 

Numpy Useful for computation and arrays 

Keras For deep learning 

Random Forest For Random Forest Regressor 

 

Brief explanation of .bed files used in study: 

Bed (browser extensible data) files are usually used in gene annotation for their 

compatibility in representing genetic information. For example, the bed files used in this study 

contains output files from WGBS processing in which the inputs are fastq files (containing raw 

reads from DNA sequencing) and tar files (contain genome index).  

Bed files here represent the methylation state (percentage) at CpG sites. The bed file stores 

the information as coordinates and annotations. This format was first created for the Human 

Genome Project in 2003, and was later adopted by the Encode Project (The Encyclopedia of DNA 

Elements) [95]. 
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Started in 2003, ENCODE’s goal is to comprehensively collect data for all functional parts 

of the human genome mainly by discovery and annotation of gene elements, making use of 

technologies such as assays of DNA methylation, DNA hypersensitivity, and immunoprecipitation 

of proteins interacting with both DNA and RNA. Its most beneficial aspect is its freely-accessible 

database. It first focused on 1% of the whole genome and has now conducted whole-genome 

analyses of human and mouse genomes [95]. 

Obligatory columns of bed files are the chromosome names, start, and end sequences of 

the CpGs concerned, and then optional or additional columns might contain read number, 

percentage of methylation-showing reads, color value (RGB) and more  

1 

chromosome start_position end_position name score strand thick_start thick_end rgb block_count block_sizes 

block_starts 

Figure 22 Column labels of most .bed files [96] 

Figure 23 The official documentation of bed files, indicating the first 3 obligatory columns and 

additional files, along with purpose of each column [97] 
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 WGBS bed files used for this paper describe the methylation state of CpGs, and follow a 

WGBS paired-end pipeline (meaning it takes in paired-end fastqs as inputs). 

Another sometimes simpler option, which is the option used in this study is the use of 

Python libraries like pybedtools and bed-reader. Both work well with numpy and pandas for proper 

reading. 

bed-reader works with numpy and pandas (in pandas, it reads the bed file as a csv) and 

was used as the bed library in this study and can be used like the following example [98]. 

 pip install bed-reader 

import numpy as np 

from bed_reader import open_bed, sample_file 

file_name = sample_file("small.bed") 

bed = open_bed(file_name) 

val = bed.read() 

print(val) 

[[ 1.  0. nan  0.] 

 [ 2.  0. nan  2.] 

 [ 0.  1.  2.  0.]] 

Figure 22 Example of WGBS .bed file page on ENCODE website. 
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Work conducted in this thesis 

This study/project was conducted in the aim of shedding light on epigenetics in Alzheimer’s 

disease, and the role of machine learning and deep learning in discovering new epigenetic marks 

(DNA methylation specifically). An attempt was made for employing a deep learning model to 

predict new locations in the epigenetic field related to Alzheimer’s disease. 

Pipeline: Employing AI/ML/DL for better insight into DNA methylation of AD 

Chromosome-wide prediction

KerasRegressor on genome data of chromosome 19 (N=124,043): train and test 
on EWAS, predict new values for genome

new locations predicted on genome-wide scale in chromosome 19 with 
estimated probability for each CpG

Feature importance

RandomForestRegressor uses a machine learning ensemble method, first on 
training then on test and later prediction of importance and p-value

feature_importance_ function helped gain insight to most important features of 
the 21

External Feature selection

ENCODE WGBS data on genome-wide scale
21 features explaining various scores of methylation present in different cells all 

for chromosome 19

Training of data

EWAS data used for training/testing with the target (Braak p-value) indicating 
the corelation between disease and methylation

All CpGs located on chromosome 19 from EWAS: (N=2,636)

Figure 23Workflow of the processes taken in this study 1) training of model on EWAS data of chromosme 

19 (using both RandomForestRegressor and KerasRegressor) 2) Feature selection from external sources 

(WGBS) from which 21 features describing the methylation status of the Cpgs 3) applying the machine 

learning model on our data for feature importance ranking 4) Prediction of methylation of CpGs using a 

machine learning model and a deep learning model. 
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In this thesis, both a machine learning model and deep learning were trained to find CpGs 

related to Alzheimer’s disease from EWAS data that contains more than 2,636 CpG sites along 

with their Braak stage p-values. 

Data Collection and Exploration 

For collection of data, several data files were needed for the proper training and prediction 

of the model. 

It is worth noting that this step of the study was the most time-consuming due to regional 

difficulties and computational setbacks in terms of internet speed and processing quality. Files 

used in the pipeline of this study are 21 WGBS bed files (feature files) from the ENCODE project, 

containing description of methylation states at CpG sites, along with an EWAS file from an 

Arizona cohort containing β-values indicating methylation values of 450 thousand CpG sites from 

(N=302) participants and it is the main cohort used in the study. Our Arizona EWAS data contains 

411,714 CpGs with their estimates, standard errors, t value, Braak p-value and mean β-values. 

After obtaining the data files (1 EWAS file and 22 WGBS files), a step was taken to make 

use of uniform numbers/indexing of CpG sites, since WGBS files have coordinates of CpGs, while 

EWAS files has CpG labels without coordinates. 

The step generated an EWAS file containing start sites (coordinates) of the CpG site along 

with its Braak p-values, and 21 WGBS scores 

Features in this study (the 21 WGBS features) are:  

 

Table 5 WGBS feature files used in study 

Accessio

n no. 

ENCFF157PO

M 

ENCFF003JV

R 

ENCFF428T

VT 

ENCFF588ET

U 

ENCFF110AZ

O 
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Cell 

source 

sigmoid colon A549 mesenchymal 

stem cell 

muscle of leg right cardiac 

atrium 

 

Accessio

n no. 

ENCFF763R

UE 

ENCFF489CE

V 

ENCFF774G

XJ 

ENCFF699R

BP 

ENCFF366U

WF 

Cell 

source 

pancreas stomach skeletal 

muscle 

myoblast 

body of 

pancreas 

hepatocyte 

 

Accessio

n no. 

ENCFF116DG

M 

ENCFF103D

NU 

ENCFF092F

NE 

ENCFF064GJ

Q 

ENCFF043N

UK 

Cell 

source 

GM23248 adipose tissue H1 HepG2 endodermal 

cell 

 

Accessio

n no. 

ENCFF536RS

X 

ENCFF801OH

X 

ENCFF601NB

W 

ENCFF435E

TE 

ENCFF451WI

Y 

Cell 

source 

heart left 

ventricle 

mesenchymal 

stem cell 

H1 natural killer 

cell 

CD14-positive 

monocyte 

 

Accession no. ENCFF355UVU 

Cell source T-cell 
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Data Cleaning 

The main step taken for data cleaning was the focus on chromosome 19 in particular, since 

it is the chromosome studied in this thesis, and the reason for choosing a single chromosome was 

the inability to apply the computations to the entire genome. Therefore, using Python, all other 

chromosomes in WGBS and EWAS files were omitted, leaving only details of chromosome 19, 

such as coordinates, start and end, and all other 9 columns.  

Next, 21 features (the 21 WGBS.bed files) are assigned to CpG sites. This measure is taken 

on the EWAS file, to give columns of the CpG site, Braak p-value, and score of all 21 features. 

The same process is performed on the genome file to give an outcome of 124,043 sites, 

with their CpG sites and scores. 

Feature importance 

As proven previously in the reference study, this type of data requires a feature 

ranking/importance step to identify the most important features. RandomForestRegressor 

was chosen here. It depends on a number of decision trees and was called using 

sklearn.ensemble: 

from sklearn.ensemble import RandomForestRegressor 

 

Then the feature importances are taken after fitting the model (Model details in next step) 

regressor.feature_importances_ 

 

The feature importances were of low quality due to the relatively small number of features, 

with the highest feature importance being for mesenchymal stem cell score: 0.06255308 

Modeling 
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Since the reference study only used machine learning models (ensemble learning model 

of xgboost, RLR, SVC, . . . etc.), an attempt was made to employ a deep learning model to 

predict CpGs just as the reference study accomplished, but with admittedly less data due to 

connection and computational limitations in most third-world countries. 

This study employed two artificial intelligence models: RandomForestRegressor 

and KerasRegressor. 

The machine learning model, RandomForestRegressor was deployed first after 

importing pandas, numpy, and all necessary for the model from 

sklearn.model_selection, sklearn.preprocessing, sklearn.ensemble 

Next was the splitting of the EWAS dataset into train set and test set. 

dataset = dataframe.values 

X = dataset[:,1:22] 

Y = dataset[:,22] 

seed = 7 

test_size = 0.2 

X_train, X_test, y_train, y_test = train_test_split(X, Y, 

test_size=test_size, random_state=seed) 

 

Next step, fitting of the model to the dataset: 

regressor = RandomForestRegressor(n_estimators=10, 

random_state=0, oob_score=True) 

regressor.fit(X_train, y_train) 

This step will give the following output: 

 

Our regressor score is  

regressor.score(X_test,y_test) 

-0.1114018192069881 
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Next, we start prediction of p-value on test samples from genome data: 

genome_data['predicted_pvalue']=regressor.predict(test_samples) 

 

This gives an output of predicted Braak p-values of 123042 CpG sites. 

Our next model deployed here was the deep learning model KerasRegressor after importing: 

pandas, numpy, and necessary Keras components from scikeras.wrappers, 

sklearn.model_selection, tensorflow.keras.layers, and 

tensorflow.keras.models. 

we start loading the dataset 

 

And splitting the dataset  

dataset = dataframe.values 

X = dataset[:,1:22] 

Y = dataset[:,22] 

seed = 7 

test_size = 0.2 

X_train, X_test, y_train, y_test = train_test_split(X, Y, 

test_size=test_size, random_state=seed) 

 

Next is the definition of the base model, creation, and compilation: 

def baseline_model(): 

  model = Sequential() 

  model.add(Dense(21, input_shape=(21,), 

kernel_initializer='normal', activation='relu')) 
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  model.add(Dense(1, kernel_initializer='normal')) 

  model.compile(loss='mean_squared_error', optimizer='adam') 

  return model 

After evaluation (more detail in next section), the estimator is fit: 

estimator.fit(X_train,y_train) 

 

Output: 

KerasRegressor 

KerasRegressor( 

 model=<function baseline_model at 0x0000020FF45184C0> 

 build_fn=None 

 warm_start=False 

 random_state=None 

 optimizer=rmsprop 

 loss=None 

 metrics=None 

 batch_size=5 

 validation_batch_size=None 

 verbose=0 

 callbacks=None 

 validation_split=0.0 

 shuffle=True 

 run_eagerly=False 

 epochs=100 

) 

 

Next, the model is applied on the genome dataset to predict new values 

genome_data['predicted_values']=estimator.predict(test_samples) 

This gave us p-values predicted by KerasRegressor for all CpG sites on 

chromosome 19 
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Evaluation 

RandomForestRegressor relies on regressor.score and its Root Mean 

Square Error (RMSE) for the evaluation of its performance, along with the p-value threshold of 

its predictions. 

Its regressor score is -0.1114018192069881 
RMSE is calculated:  

rmse=np.sqrt(np.sum(error*error)/error.size) 

0.3146324186691835 
 

KerasRegressor relies on its MSE, RMSE, and an estimator score for its evaluation:  

estimator = KerasRegressor(model=baseline_model, epochs=100, 

batch_size=5, verbose=0) 

kfold = KFold(n_splits=10) 

results = cross_val_score(estimator, X_test, y_test, cv=kfold, 

scoring='neg_mean_squared_error') 

print("Baseline: %.2f (%.2f) MSE" % (results.mean(), 

results.std())) 

Baseline: -0.12 (0.02) MSE 

•Splitting into 
training/testing (both 
models)

•regressor.fit

• (RFR)

•estimator.fit (KR)

EWAS+WGBS

dataset

•regressor.predict 

(RFR)

•estimator.predict 

(KR)

Genome data 
(with 

coordinates)

Figure 24 Simple explanation of input of each code in both RandomForestRegressor and KerasRegressor 



Deep learning in clinical epigenetics:  shedding new light on pathological processes of Alzheimer's 

disease in the perspective of therapeutic approaches 
65 

 

   
 

rmse=np.sqrt(np.sum(error*error)/error.size) 

rmse 

0.3039870671649546 
 
estimator.score(X_test,y_test) 

-0.03746721240964379 
 

So far, no single metric has been unified and deployed for evaluation of regression analysis, 

since its evaluation is not as simple as that for classification models. Some studies use mean square 

error MSE, or its rooted variant RMSE. In general, a regressor’s score is the R2 coefficient of 

determination. It ranges between 0.0 and 1.0 and can be either negative or positive (best possible 

score is 1.0) [99]. 

As for MSE and RMSE, they are the mean squared error and root of mean squared error: 

MSE identifies regression loss, and the closer to zero, the better the performance. 
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Chapter 4: Obtained Results and 

Analysis/Discussion
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Results 

The result of using the two models was two different predictions on the genome dataset. 

One using RandomForestRegressor: a machine learning model, while the other was 

KerasRegressor: a deep learning model. 

Feature Importance 

The application of RandomForestRegressor first achieved insight into the 21 

features used in the models, and ranked the importances of the features as follows: 

Table 6 Bar chart describing feature importance of all 21 features 

 

The highest ranked feature in terms of importance was the second mesenchymal stem cell 

and its WGBS methylation score (ENCODE accession number ENCFF801OHX) with a feature 
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importance score of 0.06255308, followed by the heart left ventricle score (ENCFF536RSX) with 

a score of 0.05828609 and then right cardiac atrium score (ENCFF110AZO): 0.05531185. 

The next results obtained were those of the RandomForestRegressor performance 

evaluation and predictions: 

The RandomForestRegressor performance was evaluated as regressor.score 

of -0.1114018192069881 

Followed by evaluation using rmse = 0.3146324186691835 

Prediction 

The predictions of the RandomForestRegressor were predictions of the Braak p-

value of all 124,043 sites on chromosome 19 in the aim of predicting methylated loci that were 

previously undetected.  

The lowest p-values predicted (must be less than p-value threshold of 0.04) were of: 

Table 7 Best predicted CpG sites believed to play role in methylation 

CpG site Predicted p-value 

474445 0.005540819 

18768688 0.009248729 

1580576 0.033382792 

939810 0.039087401 

 

The score of the regressor is -0.03746721240964379, and its RMSE is 

0.3039870671649546 
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KerasRegressor also predicted similar results to RandomForestRegressor, 

indicating that the full potential of deep learning cannot be unlocked at this relatively low data 

size. 

Discussion 

Alzheimer’s disease is a very complex and mysterious disease – it is a multifactorial 

disease caused by genetic factors (genes such as APOE, ANK1, . . . etc.) and environmental factors 

that could potentially move the patients towards or away from the disease. These environmental 

factors such as diet and stress affect the genes through epigenetics and the many epigenetic 

mechanisms of DNA methylation, histone modifications, and noncoding RNAs. DNA methylation 

has been studied extensively and it is implied that it may play a major role in the understanding of 

AD.  

Current studies of epigenetics such as epigenome-wide association studies (EWAS) only 

detect a small percentage of methylation in the genome (approximately 450,000 sites from the 

entire genome), and the need for better detection is necessary. This thesis took inspiration from 

the EWASplus study and referred to it as a reference study in the aim of using a small fraction of 

its methods (due to technical and regional limitations) in the attempt of replicating the 

methodology for applying a deep learning model for detection of new methylated CpG sites in the 

genome.  

In this thesis, deep learning was applied to attempt prediction on CpGs on chromosome 19. 

It has recently been suggested that deep learning can be the key for clearer understanding of 

epigenetics and its many mechanisms to further pave the way towards epigenetics-targeted drugs. 

An EWAS dataset was utilized as a training/testing set for the artificial intelligence models 

utilized, and a dataset containing all CpG sites of the genome and their coordinates was used for 
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the prediction stage. Both datasets were downscaled to the range of chromosome 19 only, due to 

computational and connection limitations present in most third-world countries, along with the 

fact that chromosome 19 contains the APOE gene, a major risk gene in Alzheimer’s disease, and 

epigenetic marks usually occur near key genes of the disease. We joined the EWAS dataset with 

21 feature datasets from the ENCODE project of WGBS from different cells indicating scores of 

methylation at CpG sites. 

The models of this thesis were RandomForestRegressor and KerasRegressor. 

Regressors are used here as opposed to classifiers, due to the need for predicting continuous rather 

than binary data. RandomForestRegressor, a machine learning model, was chosen due to its 

flexibility with large datasets and its benefit of utilizing the feature_importance_ function, 

which is very similar to a step taken in the reference study which used a more complex feature 

selection stage due to its high number of features (2256) as opposed to our 21 features (the features 

used in this study were previously used in the reference study and were chosen due to their high 

importance ranking). RandomForestRegressor was later used for prediction of new CpG 

sites on chromosome 19. Then came the KerasRegressor, which is a deep learning model. No 

deep learning was used in the reference study, and our main concept was applying it to smaller 

data and samples to evaluate its efficacy on a smaller scale.  

RandomForestRegressor ranked the importance of features and gave a result that 

the top features were of the mesenchymal stem cell, the heart left ventricle, and the right cardiac 

atrium. Even though the scores (in the results section) were not very high, and could either indicate 

authentic results of a role in the detection, or not, one can hypothesize that stem cells present 

potential in disease and are more prone to environmental factors. As for the heart left ventricle and 

right cardiac atrium, since they are both cells of the heart, this can be backed up by Figure 1 in this 
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document, which lists strokes, cardiovascular disease, and congestive heart failure as risk factors 

of Alzheimer’s disease. 

Performance of RandomForestRegressor was evaluated using 

regressor.score and RMSE. KerasRegressor was evaluated using 

estimator.score and RMSE. Both performances were not high due to the low number of 

features/columns and samples/rows used in the training/testing EWAS dataset. The case at hand 

(the problem of both models) was not a malfunction or problem caused by the actual models, nor 

by the data present in the datasets, but by the quantity, causing what is known as ‘overfitting’. 

Overfitting is when the model does not behave in a desirable manner in which it gives accurate 

predictions for its training data (it learned the training data too well). As mentioned earlier, it is 

computationally impossible in this region and this short time to benefit of publicly available data 

to achieve higher and more complex genomic results and conclusions, which is why only 21 

features were chosen and only samples of chromosome 19 were used. However, 

RandomForestRegressor and KerasRegressor could be used in the future with similar 

data sizes to the reference study with the utilization of super computers, of course, along with using 

higher feature sizes (more than 2000) and using the original window IDs of CpGs of the genome 

(which was also technically impossible in this thesis). Hypothesizing that our predictions could 

reach some insight into DNA methylation of the genome in Alzheimer’s disease, we could reach 

the results that loci 474445, 18768688, and 1580576 show high correlation with methylation in 

Alzheimer’s disease, but are not very close to APOE on chromosome 19.  
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Figure 25 Location of CpG coordinate 474445 on chromosome 19 via UCSC Genome Browser 

 

Figure 26 Location of CpG coordinate 18768688 on chromosome 19 via UCSC Genome 

Browser 
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Figure 27 Location of CpG coordinate 1580576 on chromosome 19 via UCSC Genome Browser 

 

Figure 28 Location of APOE gene on chromosome 19 

This indicates that these loci, with further proof using higher computational capabilities 

(super computers) and clinical experiments, could be beneficial in identifiying methylation in this 

area on chromosome 19, along with predicting more accurate methylated CpG loci in the vicinity 

of the APOE gene. As for KerasRegressor, which was the aim of this thesis: deep learning in 
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clinical epigenetics, it also achieved a low estimator score for the same reasons mentioned above: 

low computational and hardware capabilities. It still shows promise because deep learning has 

been recently believed to be the key for the identification of epigenetic mechanisms of the genome, 

and precisely in DNA methylation. 

It is worth noting, however, that many limitations faced this study (Figure 31): 

Since the regressor scores in both models (machine learning and deep learning) were not 

suitable, one can either hypothesize that the results may be of some truth, thereby extracting some 

information from CpG sites on chromosome 19 that show higher methylation levels than other loci 

on the genome. This is of great benefit for the newly emerging field of computational epigenetics 

from the therapeutic approach, which is recently targeting the APOE gene: APOE-targeted 

epigenome therapy [100]. The utilization of both models can show promise and be of great benefit 

in the field when used with larger data and better computational resources, time, and funding. The 

work and model completed here can also be tried with different epigenetic mechanisms, such as 
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histone modifications (acetylation, methylation, ubiquitinylation, and more), since the concept is 

quite similar in which the model targets and computationally quantifies the methylation (or any 

other chemical group) and then predicts such levels in novel loci. The concept can also work 

similarly with single nucleotide polymorphisms, since the models at hand deal with regression 

rather than classification. Such alterations can be useful in extending the benefit achieved from the 

models in this study and enable a deeper level of understanding of the effects the epigenome (DNA 

methylation, ncRNA, and histone modifications) and SNPs have on gene expression in AD. Future 

work can aim at using robust cloud computing resources, supercomputers, and better funding and 

extensive periods of time to achieve better results with deep learning models such as 

KerasRegressor, along with joining SNPs to the studied data and more epigenetic marks to 

ensure better studies of the epigenome. 

Conclusion 

In conclusion, this thesis’s main aim was to utilize deep learning in clinical epigenetics and 

discuss therapeutic approaches. Both a machine learning model and a deep learning model were 

used in this thesis to identify methylated CpG loci on chromosome 19 in Alzheimer’s disease. Due 

to computational limitations, short time, and low internet speed, only a portion of the data use in 

this thesis’s reference study were used, which resulted in low scores and inaccurate predictions. 

Even though the resulting data may be inaccurate, this still offers potential for these models to be 

used with larger data and better resources in the aim of extracting beneficial information regarding 

DNA methylation of CpG sites of the genome, paving the way for higher accuracy in terms of 

DNA-methylation-targeted therapy. Therefore, with higher computational power, better funding, 

and time, serious steps can be taken towards epigenetics-targeted drugs to help reverse the 

reversable sides of epigenetics in early stages of the disease before it is too late. 
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