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Summary 
 

Background: Cancer immunotherapy is the development of efficient 

therapeutic cancer vaccines. Cancer vaccines are based on tumor antigens 

expressed in the context of Major Histocompatibility Complex (MHC) 

molecules able to elicit a strong tumor-specific CTL response, which may result 

in the killing of tumor cells and cancer regression. We describe here the strategy 

in the design of a polytope cancer vaccine that has many unique characteristics. 

Combining different HLA-restricted epitopes from CTAs into one polytope 

vaccine construct allows the fusion Ag to efficiently enter the ER, then be 

processed and presented to MHC class I to induce the related CTL responses 

against all epitopes simultaneously. 

Aim of the study: In this project, we aim to design a new structural model 

containing putative antigenic epitopes. Since immune stimulation is considered 

one of the most important mechanisms in tumor treatment, tumor cells can 

escape from the immune system. It may be advantageous to use T cell epitopes 

of different tumor Antigens simultaneously, the goal of using multiple antigenic 

epitopes instead of a single antigen is to avoid the specific antigen being lost or 

mutated. The use of multiple antigenic epitopes in a single structural model 

would cover a wide range of histocompatibility complex polymorphisms.  
 

Results: we designed a new chimeric construct of CTAs including HLA-

restricted epitopes of MAGEA8, SAGE1, and CTA45A2, which contained 

essential determinants to be recognized by CTLs. Immunogenic epitopes for 

MAGEA8, SAGE1, and CTA45 A2 proteins were selected along with the 

hemagglutinin (HA) epitope as a reporter tag, the ER signal peptide, and the ER 

retention signal. 

The Codon Adaptation Index (CAI) of the gene is 0.90. A CAI of 1.0 is 

considered ideal. Moreover, The GC content of the gene is 62.58%. The ideal 

percentage range of GC content is between 30% and 70%. The required 

restriction enzyme sites were added to the ends of the designated gene for future 

assays. Evaluation of model stability by Ramachandran plot showed that most 

residues of the chimeric model are in a stable zone. Protein secondary and 

tertiary structures were predicted by Ab Initio modelling and a software viewer 

was used for visualization. Epitope binding to MHC and recognition of such 
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complexes (epitope/MHC) by CTLs is a critical step in inducing a significant 

immune response. Therefore, a prediction of proteasomal cleavage sites using 

web-based software had been done. The result showed that the highest-scored 

cleavage positions are located at the fusion site of each epitope and its adjacent 

linkers. 

Conclusion: We used in silico approaches to design our chimeric polytope 

construct of immune-gene therapy applications. We used several web servers 

and applications to predict different features of the construct, including GC 

content, secondary and tertiary structure of the protein, solvent accessibility of 

the chimeric protein, proteasomal cleavage site, validation of the epitope’s 

prediction, MHC binding affinity, and post-translational modifications. Three 

epitopes with high immunogenicity scores were included in the study; 

MAGEA8, SAGE1, and CTA45A2. Both the MAGEA8 epitope and SAGE1 

epitope gave a good binding prediction. However, only the SAGE1 epitope 

showed a strong binding affinity with MCH molecules. For future studies, the 

CTA45A2 epitope could be substituted with an epitope with a better binding 

prediction and affinity in order to develop a more effective structural model for 

cancer immune-gene therapy. Taking all these findings together, this study is 

promising in the field of the development of multiepitope chimeric vaccines for 

cancers being rationally designed using immunoinformatics and employing 

different computational approaches. 
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Aim of the study: 
In this project, we aim to design a new structural model containing putative 

antigenic epitopes. Since immune stimulation is considered one of the most 

important mechanisms in tumor treatment, tumor cells can escape from the 

immune system. It may be advantageous to use T cell epitopes of different 

tumor Antigens simultaneously, the goal of using multiple antigenic epitopes 

instead of a single antigen is to avoid that the specific antigen being lost or 

mutated. The use of multiple antigenic epitopes in a single structural model 

would cover a wide range of histocompatibility complex polymorphisms. Some 

of the most interesting cancer antigens for the development of cancer vaccines 

are cancer-testis antigens (CTAs). CTAs are aberrantly expressed by different 

tumor cell types while their normal expression is restricted to a few somatic 

tissues, including the testis. 
  

Introduction: 
The incidence of lung cancer is high, with 2.1 million new cases and 1.8 million 

casualties estimated worldwide, accounting for 18.4% of all cancer cases. Lung 

cancer is the third most prevalent cancer type in women globally and the most 

common cancer type in men [1]. 

 

Two major categories are discerned—small-cell lung cancer (SCLC) and non-

small-cell lung cancer (NSCLC). The first category constitutes approximately 

15%, and the second is responsible for approximately 85% of tumors. The two 

most common entities within the NSCLC category are pulmonary 

adenocarcinoma (ADC) and pulmonary squamous cell carcinoma (SqCC), 

which represent about 90% of all NSCLC [2]. 

 

In the past, non-small cell lung carcinomas (NSCLC) were grouped without 

taking into account more specific histological typing (i.e., ADC, SqCC). This 

was accepted because there was no therapeutic implication to the separation of 

histological subtypes like ADC and SqCC [3,4]. 

 

Based on different escape mechanisms of tumor cells, a variety of novel 

immunotherapeutic strategies have been designed and optimized. Presentation 

of specific tumor cell antigens inducing an effective immune response is one of 

the most important immunotherapeutic mechanisms against tumor cell immune 

evasion [5]. In vivo immune responses generally begin through unique 

functions of dendritic cells (DCs), followed by priming of naïve T cells [6]; 

therefore, to design a DC-based cancer immunotherapy, we can transfect DCs 

with nucleic acids encoding tumor specific antigens (Ags) or incubate them 

with tumor-specific molecules, such as proteins, peptides, or lysates [7]. 
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Exclusively expressed tumour Ags, which are recognized by T cells, have been 

studied in various antitumour immunotherapies [8]. These Ags as potential 

immunogens are processed to short peptides that bind to MHC class I molecules 

and present to T-cell receptors of tumor-reactive cytotoxic T lymphocytes 

(CTLs). Epitope-based vaccines powerfully stimulate immune responses against 

immunogenic epitopes of different antigens while avoiding unknown properties 

of using whole gene products [8]. The goal of immunization with these peptide 

epitopes is to achieve therapeutic benefits; however, to prevent the escape of 

tumor cells, it may be advantageous to use T cell epitopes of different tumor 

Ags simultaneously [9]. 

 

Some of the most interesting cancer antigens for development of cancer 

vaccines are CTA. CTAs are aberrantly expressed by different tumor cell types 

while their normal expression is restricted to a few somatic tissues, including 

testis. Therefore, CTAs are primary candidates for vaccination in cancer 

patients [10]. 

 

NSCLC, along with melanoma and ovarian cancer, are the most frequently 

expressed CTAs among the various cancers analyzed [11]. 

RNA sequencing (RNAseq) data from 199 patients with NSCLC [12] served as 

a basis for this analysis. 

Dataset: 
232 CTAs from the CT database were evaluated in a data set of 199 NSCLC 

cases and 32 normal tissues obtained from 141 individuals. The analysis 

revealed 96 CTAs that were expressed in NSCLC and showed exclusive 

expression in testis and placenta among normal tissues. These CTAs were 

designated as "confirmed CTAs". The information of previous studies regarding 

mRNA and protein expression for each gene in NSCLC was obtained from CT 

database, Table 1 shows confirmed CTAs in NSCLC [12,13]. 
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Table 1. Clinical characteristic of 199 NSCLC cases included in the RNAseq analysis [12] 

 

mRNA and protein expression profile analysis: 

The protein expression of reported CTAs in NSCLC. From 232 genes, 68 were 

expressed in NSCLC based on the CT database. The CT database 

(http://www.cta.lncc.br) is a systematic data repository for CTAs, currently 

including 276 genes designated as CTAs, with curated information about gene 

and protein expression in normal and cancer tissues. Of these, 24 were 

described based on mRNA and protein levels, while the remaining 44 CTAs 

were only defined based on mRNA levels (Figure 1) [12,14]. 
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Figure1. The expression of reported cancer testis antigens (CTAs) in non–small-cell lung 

cancer (NSCLC). Reported CTAs in the CTdatabase (n = 232) were analyzed in 199 NSCLC 

cases and 142 normal tissues from 32 different organs. Based on the mRNA expression for 

each CTA in NSCLC and normal tissues, these 232 genes were grouped in either confirmed 

CTAs (green shades) or not confirmed CTAs and subdivided in testis/placenta-specific genes 

without expression in NSCLC (pink) or CTAs with expression in somatic tissues (blue 

shades) [12]. 

 

Using the Human Protein Atlas (HPA) image database, we confirmed the 

protein expression of 8 CTAs in NSCLC (MAGEC2, MAGEB6, PAGE2, 

PAGE5, PAGE2B, CT45A2, SAGE1 and MAGEA8) [12]. According to the 

data collected from the HPA and RNA sequence analysis, three CTAs will be 

chosen for the polytope chimeric syntheses. MAGEA8 (melanoma-associated 

antigen 8), CT45A2 (Cancer/testis antigen family 45 member A2), and SAGE1 

(sarcoma antigen 1) [10]. 

The mRNA expression levels for the three CTAs were compared in accordance 

with the CT database. Table 2 illustrates the mRNA expression levels [13]. 
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Table 2. mRNA expression levels of the three CTAs chosen for further analysis [13] 

 

The protein expression for the three CTAs results obtained from HPA [15] are 

shown in figure 2 (for MAGEA8), figure 3 (for SAGE1), and figure 4 (for CTA 

45 A2). 

 
Figure 2. MAGEA8 protein expression in lung cancer comparing to other cancers [15]. 

 

 

 

 

 

 

GENE ID Description mRNA expression 

level NSCLC %. 

MAGEA8 Melanoma associated 

antigen 8 

74-86 

SAGE 1 Sarcoma Antigen 1 69-76 

CTA 45 A2 Cancer/testis antigen 

family 45 A2 

25-48 
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Figure 3. SAGE1 protein expression in lung cancer comparing to other cancers [15]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. CTA 45 A2 protein expression in lung cancer comparing to other cancers [15]. 

 

Methods: 

I. Sequence analysis 

Immunogenic epitopes for MAGEA8, SAGE1, and CTA 45 A2 proteins 

were selected along with the hemagglutinin epitope (HA) as a reporter tag, 

the ER signal peptide, and the ER retention signal. The related nucleotide 
sequences were obtained from Genbank (GenBank Overview (nih.gov)) [16].  

https://www.ncbi.nlm.nih.gov/genbank/
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II. Design of the construct and gene optimization 

A chimeric immunogenic sequence having an HA tag and targeted to the ER 

was constructed. The selected epitopes were fused using hydrophobic amino 

acid linkers [8]. To optimize the multiparameter chimeric gene, the in-silico 

analysis was performed using online data bases such as Emboss translation 

online tool (EMBOSS Transeq < Sequence Translation Sites < EMBL-EBI) 

[17], To identify the epitopes from each Antigen’s protein SYFPEITHI a 

database (http://www.syfpeithi.de/), for MHC ligands and peptide motifs were 

used [18], followed by IEDB The Immune Epitope Database (IEDB.org: Free 

epitope database and prediction resource) to assist in the prediction and analysis 

of epitopes [19]. Following verification of the construct’s properties by Gen-

Script (NJ, USA) [20]. 

 

III. In silico structural analysis of chimeric recombinant protein 

The program mfold (http://www.bioinfo.rpi.edu/applications/mfold) was used to 

analyse the secondary structure of the chimeric gene mRNA [21]. The 

secondary and 3D structures of the recombinant protein were predicted online 

ab initio software Robetta a protein structure prediction 

service (https://robetta.bakerlab.org) [22]. Energy minimization is determined 

by analysis of 3D structural stability of the chimeric protein using Swiss-

PdbViewer software [23]. Solvent accessibilities of the protein residues were 

evaluated with the online program VADAR, 

(http://redpoll.pharmacy.ualberta.ca/vadar/) [24]. 

 

IV. Prediction of the cleavage site 

Cleavage site analysis on the construct protein was performed using NetChop 

server, an improved neural network training strategy (NetChop - 3.1 - Services - 

DTU Health Tech) [25]. 

This server produces neural network predictions for cleavage sites of the human 

proteasome using two different methods; C-term 3.0 and 20S 3.0 [8]. 

 

V. Validation of T-cell epitopes and MHC binding peptides affinity 

The amino acid sequence was analyzed using four web-based T-cell epitope 

prediction algorithms; 

NetCTL (http://NetCTL - 1.2 - Services - DTU Health Tech) [26], SYFPEITHI 

(http://www.syfpeithi.de/) [18], CTLPred 

(http://www.imtech.res.in/raghava/ctlpred/index.html) [27], and NetMHC 

(http://www.cbs.dtu.dk/services/NetMHC/) [28]. The NetMHC server produces 

a neural network prediction of binding affinities for MHC [29]. 

 

https://www.ebi.ac.uk/Tools/st/emboss_transeq/
http://www.syfpeithi.de/
https://www.iedb.org/
https://www.iedb.org/
http://www.bioinfo.rpi.edu/applications/mfold
https://robetta.bakerlab.org/
http://redpoll.pharmacy.ualberta.ca/vadar/
https://services.healthtech.dtu.dk/service.php?NetChop-3.1
https://services.healthtech.dtu.dk/service.php?NetChop-3.1
file:///C:/Users/Assem/Downloads/NetCTL%20-%201.2%20-%20Services%20-%20DTU%20Health%20Tech
http://www.syfpeithi.de/
http://www.imtech.res.in/raghava/ctlpred/index.html
http://www.cbs.dtu.dk/services/NetMHC/
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VI. Prediction of post-translational modifications 

To predict post-translational modifications, three web-based servers were used. 

The NetOglyc 4.0 server produced neural network predictions of mucin-type 

GalNAc O-glycosylation sites (NetOGlyc - 4.0 - Services - DTU Health Tech) 

[30]. The NetNglyc server predicted N-glycosylation sites in the construct 

protein using artificial neural networks (ANNs) that examine the sequence 

context of Asn-Xaa-Ser/Thr sequences (NetNGlyc - 1.0 - Services - DTU 

Health Tech) [31].  The NetPhos 2.0 server predicts serine, threonine, and 

tyrosine phosphorylation sites (NetPhos - 3.1 - Services - DTU Health Tech) 

[32].  

Methods steps summary: 
Figure 5 shows a flowchart that summarizes the project methods steps. 

 

Figure 5. Flowchart of the project steps. 

 

Results: 

I. Design and structure of the chimeric construct 

After searching for each of the CTA genes in Genebank, we obtained the 

sequences, and downloaded each sequence from genebank in Fasta file format 

[16]. Using Emboss to translate the genes for each of the proteins into amino 

acids sequences for epitopes prediction [17]. Using SYFPEITHI webserver tool 

which predicts epitopes according to HLA specific selection [18]. The scoring 

system evaluates every amino acid within a given peptide.  high score indicates 

a strong binder [33].  

https://services.healthtech.dtu.dk/service.php?NetOGlyc-4.0
https://services.healthtech.dtu.dk/service.php?NetNGlyc-1.0
https://services.healthtech.dtu.dk/service.php?NetNGlyc-1.0
https://services.healthtech.dtu.dk/service.php?NetPhos-3.1
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Epitope prediction for MAGEA8 protein: 

The MAGE-A8 protein sequence was screened for HLA-A2.1-binding motifs, 

six potential peptides were synthesised, and peptides binding to HLA-A2.1 were 

assured. HLA-A2.1 is the most widespread allele of HLA in the human 

population, therefore our allele of choice for the search of tumour CTL epitopes 

[34]. Nonamer had been chosen in the input of SYFPEITHI server. Getting 

multiple epitopes prediction and using IEDB for immunogenicity score, 

Epitopes containing amino acids of 115-123 of MAGEA8[18,19]. (Table 3,4) 

Epitope prediction for SAGE1 protein: 

Sarcoma antigen 1 (SAGE1) is a CTA that was first reported to have a similar 

expression pattern to the melanoma antigen gene (MAGE) family, which are 

expressed in bladder carcinoma, lung carcinoma, head and neck carcinoma, and 

germ-line cells. Subsequent reports have suggested that SAGE1 is also 

expressed in head and neck squamous cell carcinoma and esophageal squamous 

cell carcinoma. Due to its tumor-specific expression pattern, SAGE1 is a 

potential target for cancer immunotherapy [35]. Nonamer had been chosen in 

the input of SYFPEITHI server. Getting multiple epitopes prediction and using 

IEDB for immunogenicity score, Epitopes containing amino acids of 841-849 of 

SAGE1[18,19]. (Table 3,4) 

Epitope prediction for CTA 45A2 protein: 

CT45 exhibits the typical CT antigen characteristics and shows significant 

expression in lung cancer, ovarian cancer, and probably other tumor types yet to 

be tested, we believe that CT45 should remain a strong candidate for cancer 

vaccine [36]. Getting multiple epitopes prediction and using IEDB for 

immunogenicity score, Epitopes containing amino acids of 7-15 of CTA45A2 

[18,19]. (Table 3,4) 
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Table 3: Epitopes prediction scores via SYFPEITHI. 

Gene POS 1 2 3 4 5 6 7 8 9 Score 

MAGEA8 111 A L D E K V A E L 33 

45 L I M G T L E E V 29 

204 L L I I V L G M I 26 

288 K V L E H V V R V 25 

115 K V A E L V R F L 24 

179 Y I L V T C L G L 24 

240 S V Y W K L R K L 24 

SAGE1 841 N Y E R I F I L L 24 

715 L Y A T V I H D I 22 

621 Q Y A A V T H N I 21 

597 V F S T V P P A F 20 

776 L Y K P D S N E F 20 

CTA45A2 143 K I F E M L E G V 27 

129 Q L V K E L R C V 24 

7 K V A V D P E T V 19 

34 A L L A R K Q G A 19 

50 S A M S K E K K L 19 
 

Table 4: Epitopes immunogenicity scores via IEDB. 

 

Gene Immunoge

nicity class 

Allele Maske

d 

variabl

es 

Peptide Length Score 

MAGEA8 I HLA-

A0201 

[1,2,’ct

erm’] 

KVAELVRFL 9 0.25359 

KVLEHVVRV 9 0.23259 

LIMGTLEEV 9 0.14746 

LLIIVLGMI 9 0.13288 

ALDEKVAEL 9 0.0283 

SVYWKLRKL 9 -0.08107 

SAGE1 I HLA-

A2402 

[2,7,9] NYERIFILL 9 0.3179 

LYATVIHDI 9 0.2302 

QYAAVTHNI 9 0.12503 

VFSTVPPAF 9 0.03798 

LYKPDSNEF 9 -0.15679 

CTA45A2 I HLA-

A0201 

[1,2,9] KVAVDPETV 9 0.17258 

KIFEMLEGV 9 0.06161 

QLVKELRCV 9 -0.10436 

ALLARKQGA 9 -0.19479 

SAMSKEKKL 9 -0.64722 
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All the peptides are immunogenic and reported to be recognized by CTLs. 

These three peptides were used to design the chimeric construct. The epitopes 

were linked by Gly-Pro-Gly-Pro-Gly (GPGPG) repeats. These repeats are 

expected to prevent formation of junctional epitopes when the protein is cleaved 

during the presentation process in antigen presenting cells (APCs) [8]. It has 

been shown that GPGPG spacers eliminate responses against the junctional 

epitope, allowing the development of a balanced response [37]. To increase the 

accuracy and efficiency of translation in a human host, the Kozak sequence was 

added 5’ to the start codon. Efficient entrance and accumulation of the 

recombinant protein in the endoplasmic reticulum (ER) can facilitate processing 

of epitopes [38]; therefore, an ER signal sequence was added at the 5’ end of the 

construct, and the KDEL sequence was added at the 3’ end to make it resident 

in the ER [38]. The HA epitope tag (YPYDVPDYA) from the human CTL 

influenza hemagglutinin protein was used to track the gene product in 

downstream assays. The HA-tag was placed 3’ to the ER signal sequence to 

minimize any potential disruption in tertiary structure, and thus function, of the 

protein. ER signal sequence was obtained from ncbi query search [8]. The 

structure of the chimeric gene and arrangements of fragments and linker sites 

are shown in Figure 6. 

 

 
 

 

 

 

 

 

 

Figure 6: Schematic model of the construct. The selected epitopes of MAGEA8, SAGE1 and 

CTA45A2 are bound together by the linkers for expression in human. These fragments were selected 

on the basis of HLA restriction of MHC class I, to be recognized by CTLs. 

 

Signal peptide prediction: 

Signal peptide was analysed for the prediction significance after constructing 

the polytope chimeric sequence. Phobius web server a combined 

transmembrane topology and signal peptide predictor was used for the signal 

peptide significance prediction and the result are shown in figure 7 with a 

significance of 0.999 for all the signal amino acids [39]. 
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Figure 7. Signal peptide prediction significance results after constructing the polytope 

chimeric sequence using Phobius web server resulting in a significance of 0.999 for all the 

signal amino acids [39]. 

 

Chimeric gene Sequence: 

“AAGCTTGCCGCCACCATGGGCATGCAGGTGCAGATCCAGAGCCTGT

TCCTGCTGCTGCTGTGGGTGCCTGGATCCCGGGGATACCCATATGAC

GTGCCTGATTACGCTGGACCAGGACCTGGGAAGGTGGCCGAGCTGG

TGAGGTTCCTGGGACCAGGACCTGGGAACTACGAGAGGATCTTCATC

CTGCTGGGACCAGGACCTGGGAAGGTGGCCGTGGACCCCGAGACCG

TGGGACCAGGACCTGGGAAAGATGAACTGTGAGAATTC” 

 

Chimeric polytope peptide sequence: 

MGMQVQIQSLFLLLLWVPGSRGYPYDVPDYAGPGPGKVAELVRFLGPG

PGNYERIFILLGPGPGKVAVDPETVGPGPGKDEL 
 

II. In silico analysis of original chimeric gene 

Human codon bias was considered to design the chimeric gene. Codon bias and 

the GC content of the chimeric gene were analyzed. Codon Adaptation Index 

(CAI) of the gene is 0.90. A CAI of 1.0 is considered ideal while a CAI of >0.8 

is rated as good for expression in the desired expression organism. The lower 

the number, the higher the chance that the gene will be expressed poorly as 

shown in figure 8 [8,20]. The GC content of the gene is 62.58%. The ideal 

percentage range of GC content is between 30% and 70%. Any peaks outside of 

this range will adversely affect transcriptional and translational efficiency as 

shown in figure 9 [8,20]. No optimization has been conducted. Finally, HindIII 
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and EcoRI restriction sites were introduced at the 5’ and 3’ ends of the 

sequence, respectively. 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. Codon Adaptation Index (CAI) of the gene. The distribution of codon usage frequency 

along the length of your CDS to be expressed in your target host organism. Possibility of high protein 

expression level is correlated to the value of CAI- a CAI of 1.0 is considered to be ideal while a CAI 

of >0.8 is rated as good for expression in the desired expression organism [20]. 

 

 

 

 

 

 

 

 

 

 

Figure 9. GC content of the gene. The ideal percentage of GC content is between 30% to 

70%. Any peaks outside of this range will adversely affect transcriptional and translational 

efficiency [20]. 
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III. mRNA structure prediction 

To verify potential folding of the chimeric mRNA, Mfold webserver for the 

prediction of peptide secondary structure of single strand nucleic acids was 

used. The objective of this web server is to provide easy access to RNA and 

DNA folding and hybridization software to the scientific community at large. 

Detailed output, in the form of structure plots [21,40]. Ss-count file obtained 

from the output results. ss-count is the propensity of a base to be single 

stranded, as measured by the number of times it is single stranded in a group of 

predicted foldings. The first line of the ss-count file contains the number of 

expected foldings. 14 folding structures are displayed on the output result page. 

The optimal structure with the lowest ΔG has been shown in figure 10 [40]. 

Figure 10: The optimal structure with the lowest ΔG [40] 

 
 

IV. Prediction of secondary and tertiary structures of chimeric protein  

Using online software, different prediction methods were compared to evaluate 

the secondary structure of the chimeric protein [8]. Using Jpred 4 for secondary 

structure prediction the results showed two beta sheets, and one alpha helix 

comprised of amino acids 18 (figure 11) [41]. Chimeric protein 3D models, 

produced by ab initio modelling using Robetta web server (figure 12) [42] and 

were uploaded to the Swiss-PdbViewer server to render the tertiary structural 

illustrations (figure 13) [43]. The final structure of the protein was predicted by 

Pymol software (figure 14) [44]. One alpha-helix and two beta sheets were 

identified, supporting the results of the secondary structure analysis. 
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Figure 11: secondary structure prediction Using Jpred 4 for secondary structure prediction 

the results showed two beta sheets, and one alpha helix comprised of amino acids 18 [41] 

. 

 

 

Figure 12: Protein 3D structure Ab initio modelling using Robetta web server 

De novo models are built using the Rosetta de novo protocol. The procedure is fully 

automated [42]. 
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Figure 13: Secondary structure predicted by AB Initio modelling and the result was viewed 

by Swiss pdb viewer [43]. 

 

 
Figure 14: Tertiary structure predicted by AB Initio modelling and the result was viewed by 

Pymol [44]. 

 

V. Evaluation of model stability 

By minimizing the energy of a molecule, the stability of the model is confirmed. 

Energy minimization was determined by analysis of 3D structural stability of 

the chimeric protein using Swiss-PdbViewer [8]. The energy minimization 

profile performed by spdbv (Swiss-PdbViewer) and calculated to be -555.381 

KJ/mol [43]. 
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This result refers to that the recombinant protein was relatively stable. Also, the 

structural stability of the chimeric protein was confirmed based on data 

generated by a Ramachandran plot (figure 15) [24]. 

 

 

 
Figure 15: Evaluation of model stability, the structure stability was confirmed based on the 

Ramachandran plot, the dihedral angles of amino acid residues appear as crosses in the plot. 

The red and yellow regions represent the favoured and allowed regions. The red regions 

correspond to conformations where there are no steric clashes in the model. These favoured 

regions include the dihedral angles typical of the alpha-helical and beta-sheet conformations. 

The green areas correspond to conformations where atoms in the protein come closer than the 

sum of their van der Waals radii. These regions are sterically forbidden for all amino acids 

with side chains [24]. 

 

 

VI. Solvent accessibility prediction 

The analysis of the fractional accessible surface area (ASA) and fractional 

residue volume showed that all residues have fractional volumes below 1.0. 

According to VARDAR accessible surface area can be reported in square 

angstroms or as a fractional ASA (ranging from 0.00 to 1.00). Figure 16-A. 

Therefore, the protein is efficiently packed with no major packing defects. 

Stereochemical/packing quality analysis revealed that most residues have good 
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quality scores near 8 and this showed that the protein has a high-resolution 

structure. Figure 16-B. 3D profile quality analysis examined local environment, 

packing, and hydrophobic energy for the protein structure, and the results 

showed an acceptable quality index. Figure 16-C. (Typically, these threading 

quality indices range between 5-8. Values that are significantly lower (<5) 

indicate possible problems with the local structure or local fold) [8,24]. 

 

 
 

Figure 16: Solvent accessibility prediction. A) Fractional accessible surface area (ASA) 

analysis, all residues have fractional volumes below 1.0. According to VARDAR accessible 

surface area can be reported in square angstroms or as a fractional ASA (ranging from 0.00 to 

1.00) B) Stereochemical/packing quality analysis revealed that most residues have good 

quality scores near 8 and this showed that the protein has a high-resolution structure, and C) 

3D profile quality analysis of the construct protein, examined local environment, packing, 

and hydrophobic energy for the protein structure, and the results showed an acceptable 

quality index [24] 

 

VII. Prediction of cleavage sites 

NetChop is a tool to predict cleavage sites of the human proteasome. The 

NetChop algorithm uses a neural network trained on human proteasome data. 
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Cleavage sites on the construct protein were analyzed with NetChop. As 

expected, no cleavage sites were predicted inside the linkers so the production 

of junctional epitopes was prevented. Also, the cleavage sites with high 

prediction scores were located at both ends of each selected epitope. The results 

are summarized in table 5 [24]. 

 

Table 5. Prediction of cleavage sites on the constructed protein using NetChop server.  Each 

amino acid in the table is the location of cleavage while no sites are located in the linkers. 

The threshold is 0.5 [24]. 

Position Amino acid Score 

23 Y 0.866598 

31 A 0.882795 

37 K 0.551773 

45 L 0.530573 

52 Y 0.894447 

59 L 0.964388 

65 K 0.945372 

73 V 0.826600 

 

 

VIII. Validation of T-cell epitopes 

NetCTL 1.2 server predicted CTL epitopes in the chimeric protein sequence. 

The server predicted CTL epitopes restricted to 12 MHC class I supertypes 

using ANNs [45]. The scores from the individual prediction methods were 

integrated, and thresholds for the integrated scores of each peptide were 

translated into sensitivity and specificity values (Table 6) [26].  

The SYFPEITHI epitope prediction algorithm was also used. To find out the 

ligation strength to a defined HLA type for a sequence of amino acids. The 

algorithm used are based on the book "MHC Ligands and Peptide Motifs" by 

H.G.Rammensee, J.Bachmann and S.Stevanovic. The probability of being 
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processed and presented is given in order to predict T-cell epitopes. The scoring 

system of SYFPEITHI evaluated each amino acid in the peptides. The 

maximum score for HLAA*0201 peptides is 36. The scores for epitopes of the 

chimeric protein are shown in table 6 [18].  

CTLPred, is a direct method for prediction of CTL epitopes crucial in subunit 

vaccine design. The methods are based on elegant machine learning techniques 

as Artificial Neural Network ANN and Support Vector Machine SVM [46]. The 

scores of CTLPred predicted epitopes for the chimeric protein are shown in 

table 6 [27]. The default cut-off score at which the sensitivity and specificity of 

prediction methods are highly similar was 0.51. 

 

 
 

X. MHC binding peptides affinity 

NetMHC 4 server Predicted peptide binding to a number of different HLA 

alleles using artificial neural networks (ANNs) [29]. Rank Threshold for Strong 

binding peptides is 0.500 and rank threshold for weak binding peptides is 2.000. 

The results are summarized in table 7 [28]. 

 

 

 

 

 

 

 

Table 6: Prediction of T-cell epitopes of the construct using different web-based servers. 

 

 SYFPEITHI CTLPred NetCTL* 

Peptide Score score score 

KVAELVRFL 

 

24 0.951 0.8147 

 

NYERIFILL 

 

24 0.931 1.6923 

 

KVAVDPETV 

 

19 0.610 0.7260 

 

*Score>1.25: (sensitivity=0.54, specificity= 0.993), score>1.00: (sensitivity=0.70, specificity= 

0.985), score>0.90: (sensitivity=0.74, specificity= 0.980), score>0.75: (sensitivity=0.80, 

specificity= 0.970), score>0.50: (sensitivity=0.89, specificity= 0.940) 
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Table 7: Predictions of MHC-binding peptide affinity for the construct by NetMHC 

version 4.0. server using ANNs approximation [28]. 

Peptide Log score Affinity (nM) Rank Binding level 

KVAELVRFL 

 

0.502 219.23 1.70 WB 

NYERIFILL 

 

0.488 253.59 

 

0.50 SB 

KVAVDPETV 

 

0.332 1374 5.00 

 

_ 

 

XI. Prediction of post-translational Modifications 

To predict post-translational modifications, three web-based servers were used. 

NetOglyc server Find the presence of N-Glycosylation sites in human proteins.  

Produced neural network predictions of mucin-type GalNAc O-glycosylation 

sites [30]. The NetNglyc server predicts N-Glycosylation sites in human 

proteins using artificial neural networks that examine the sequence context of 

Asn-Xaa-Ser/Thr sequences [31]. The NetPhos 3.1 server produces neural 

network predictions for serine, threonine and tyrosine phosphorylation sites 

[32]. Post-translational modifications, such as glycosylation and 

phosphorylation, are known to influence protein folding, localization and 

trafficking, solubility, antigenicity, biological activity, and half-life [47].  

The ANNs were trained on the chimeric protein sequence context to predict 

glycosylation. N-link and O-link are the two main types of glycosylation in 

mammalian cells.  

The sites with scores higher than 0.5 are predicted as glycosylated and marked 

with the string POSITIVE in the comment field. No O-linked glycosylation 

were predicted. Furthermore, based on the result of the ANN method, which 

predicts phosphorylation sites with sensitivity in the 69% to 96% range, the 

construct is potentially phosphorylated at residues Ser-10, Ser-20, and Tyr-30. 

  

Discussion: 
One of the principal goals of cancer immunotherapy is the development of 

efficient therapeutic cancer vaccines. Cancer vaccines are based on tumor 

antigens expressed in the context of Major Histocompatibility Complex (MHC) 

molecules able to elicit a strong tumor-specific CTL response, which may result 

in the killing of tumor cells and cancer regression [48]. Vital questions have 

arisen during tumor vaccine design. These include choice of the appropriate 

peptides, formulation, delivery mode, and molecular monitoring of the induced 

immune responses [49]. Depressed or loss of immunogenic epitopes by tumors 

and insufficient Ag presentation by APCs are major factors for the failure of the 
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immune system to establish effective immune responses against these tumor 

Ags; therefore, an approach that generates both Ag-specific CD4+ (Th) and 

CD8+ (CTL) responses may provide optimal immunization against tumors 

[8,50].  

Tumor escape from CTL surveillance, through down regulation of individual 

tumor Ags and MHC alleles, might be overcome by polytope vaccines, which 

simultaneously target multiple cancer Antigens [51]. This strategy has 

advantages over using individual epitopes or intact target antigens, where 

individual epitopes may be lost or mutated, or where the target antigens may be 

oncogenic [8]. Antigenic epitopes from diverse antigens can be linked together 

in a single polytope construct; such insertion of different MHC class I-restricted 

epitopes allows wide coverage of an MHC polymorphic population [52]. CTAs 

have been considered promising targets for immunotherapy approaches thanks 

to their tumor-specificity and strong immunogenicity for the absence of immune 

tolerance [51]. We describe here the strategy in the design of a polytope cancer 

vaccine that has many unique characteristics. Combining different HLA-

restricted epitopes from CTAs into one polytope vaccine construct allows the 

fusion Ag to efficiently enter the ER, then be processed and presented to MHC 

class I to induce the related CTL responses against all epitopes simultaneously 

[8]. In this study, we designed a new chimeric construct of CTAs including 

HLA-restricted epitopes of MAGEA8, SAGE1, and CTA45A2, which 

contained essential determinants to be recognized by CTLs. The DNA fragment 

encoding these putative antigenic epitopes was designed as a chimeric construct 

optimally suited for expression in human. Many factors could affect the 

expression of recombinant genes in a human host, such as mRNA stability, 

polyadenylation, splicing sites, antiviral motifs, and codon usage preferences 

[53]. 

The chimeric gene was designed based on codon usage of highly-expressed 

nuclear encoded genes in human. Each step of gene expression, from the 

transcription of DNA into mRNA to the folding and post-translational 

modification of proteins, is regulated by complex cellular mechanisms. A 

relationship between mRNA expression and protein solubility can now be 

predicted [54].  

In eukaryotic cell mRNAs, the consensus sequence surrounding the start codon 

(Kozak seq. 5'GCCACCATGGC) can affect the precision and efficiency of 

translation. In the chimeric gene, the 5'GCCACC sequence was inserted 5’ to 

the ATG codon. The next codon following the initial methionine ATG codon, 

GGA, encoding Gly, and the necessary G was provided [8]. Efficient entrance 

and accumulation of the recombinant protein in the endoplasmic reticulum (ER) 

can facilitate processing of epitopes. For successful CTL induction, the antigen 

peptide of interest should be efficiently delivered to the MHC class I-restricted 

presentation pathway via direct or cross-priming. Various DNA vaccination 

studies have suggested that cross-priming is more efficient than direct priming 
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while other studies indicate that direct priming is a very important process for 

CTL responses. Probably both processes occur following DNA vaccination and 

the predominant process would be determined by the experimental conditions 

used, including the type of construct or antigen, and the route of administration. 

We believe that optimization of the intracellular trafficking of expressed antigen 

peptide in DCs following direct transfection would be a useful approach for 

improving the efficacy of MHC class I-restricted presentation and subsequent 

CTL induction. It has been reported that the direct delivery of antigen peptide to 

ER improved the efficiency of CTL induction [55]. Codon Adaptation Index 

(CAI) of the gene is 0.90. A CAI of 1.0 is considered ideal. Moreover, The GC 

content of the gene is 62.58%. The ideal percentage range of GC content is 

between 30% and 70% (Figure 9). In addition, the required restriction enzyme 

sites were added to the ends of the designate gene for future assays [8]. 

Evaluation of model stability by Ramachandran plot showed that most residues 

of the chimeric model are in a stable zone. CTLs distinguish small peptides 

eight to ten amino acids long. These epitope peptides are generated by the 

proteasome system. Protease is responsible for intracellular protein degradation. 

The proteasome produces the exact C-terminus of CTL epitopes, and the N-

terminus with a possible extension [56]. CTL responses could be reduced if the 

epitopes are destroyed by proteasomes; therefore, prediction of proteasome 

cleavage sites is valuable for identification of potential immunogenic regions in 

the chimeric protein. Based on these rules we designed the chimeric protein and 

then predicted its proteasomal cleavage sites using web-based software. The 

result showed that the highest-scored cleavage positions are located at the 

fusion site of each epitope and its adjacent linkers (Table 5). The use of 

GPGPG as a hydrophobic linker restricts the production of junctional epitopes, 

and this allows efficient downstream processing of the chimeric protein. 

Furthermore, The NetCTL 1.2 server predicts CTL epitopes in protein 

sequences. The accuracy of the MHC class I peptide binding affinity is 

significantly improved compared to the earlier version. Also, the prediction of 

proteasomal cleavage has been improved and is now identical to the predictions 

obtained by the NetChop server.  

Therefore, based on the prediction results, the selected epitopes of our chimeric 

construct also showed high-affinity binding to MHC molecules and acceptable 

sensitivity and specificity to be recognized by CTLs (Tables 6 and 7, 

respectively). Epitope binding to MHC and recognition of such complexes 

(epitope/MHC) by CTLs is a critical step in inducing a significant immune 

response. 
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Conclusion: 

We used in silico approaches to design our chimeric polytope construct of 

immune-gene therapy applications. We used several web servers and 

applications to predict different features of the construct, including GC content, 

secondary and tertiary structure of the protein, solvent accessibility of the 

chimeric protein, proteasomal cleavage site, validation of the epitope’s 

prediction, MHC binding affinity, and post-translational modifications. Three 

epitopes with high immunogenicity scores were included in the study; 

MAGEA8, SAGE1, and CTA45A2. Both the MAGEA8 epitope and SAGE1 

epitope gave a good binding prediction. However, only the SAGE1 epitope 

showed a strong binding affinity with MCH molecules. For future studies, the 

CTA45A2 epitope could be substituted with an epitope with a better binding 

prediction and affinity in order to develop a more effective structural model for 

cancer immune-gene therapy. Considering all of these results together, this 

study showed potential for the rational design of multiepitope chimeric cancer 

vaccines using immunoinformatics and various computational methods. With 

the ultimate objective of developing therapeutic vaccinations for cancer 

patients, this study provides the foundation for further refinement and 

optimization of the fusion gene expression approach. 
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