

Electronics Course Definition File

Syrian Arab Republic		الجمهورية العربية السورية
Ministry of Higher Education	SVU	وزارة التعليم العالسي
Syrian Virtual University	الجامعة الإفتراضية السورية Syrian Virtual University	الجامعة الافتراضية السورية

1. Basic Information:

Course Name	Electronics
Course ID	CEE202
Contact Hours (Registered Sessions)	30
Contact Hours (Synchronized Sessions)	18
Mid Term Exam	There is not
Exam	1.5
Registered Sessions Work Load	30
Synchronized Session Work Load	18
Credit Hours	5

2. Pre-Requisites:

Course	ID
Electric Circuits	CEE101

3. Course General Objectives:

This course aims to give the students ideas to understand devices and basic Circuits, includes the most fundamental and essential topics for the study of electronic circuits.

The three basic semiconductor devices will be briefly studied: the diode, the MOS transistor, and the bipolar transistor. In each case, we study the device operation, its characterization, and its basic circuit applications.

Since the purpose of electronic circuits is the processing of signals, an understanding is essential of signals, their characterization in the time and frequency domains, and their analog and digital representations. The most common signal-processing function, amplification, and the characterization of amplifiers will be studied.

Syrian Arab Republic

Ministry of Higher Education

Syrian Virtual University

الجمهورية العربية السورية

وزارة التعليم العالمي

الجامعة الافتراضية السورية

Besides diodes and transistors, the basic electronic devices, the op amp is, also, studied. Although, the op amp is not an electronic device in the most fundamental sense, the op amp is commercially available as an integrated circuit (IC) package and has well-defined terminal characteristics. Its almost-ideal terminal behavior makes it possible to treat the op amp as a circuit element and to use it in the design of powerful circuits, as we do in this course, without any knowledge of its internal construction.

Most physical systems incorporate some form of feedback. The general structure of the negative-feedback amplifier and the basic principle that underlies its operation will be studied. The advantages of negative feedback will be introduced. The appropriate feedback topology to employ with each of the four amplifier types: voltage, current, transconductance, and transresistance amplifiers will be developed.

We will study an important class of analog circuits: filters and oscillators. Both topics have in common an application or system orientation. They provide dramatic and powerful illustration of the application of both negative and positive feedback.

In the study of electronic systems, the need usually arises for signals of various waveforms—sinusoidal, triangle, square-wave, and so on. The generation of such signals will be done.

This course forms a prerequisite to introduction to communication and signal processing courses at next levels.

Syrian Arab Republic

Ministry of Higher Education

الجمهورية العربية السورية

وزارة التعليم العالمي

الجامعة الافتراضية السورية

Syrian Virtual University

4. Intended Learning Outcomes (ILO):

Code	Intended Learning Outcomes
ILO1	Comprehension of basic concepts in electronic circuits concerning electrical
	signals and signal amplification.
	Understanding The terminal characteristics of the ideal op. amp., analysing
ILO2	circuits containing op amps, resistors, and capacitors, and recognizing most
	important applications.
ILO3	Understanding the basics of semiconductors, the diode operation, its
	characterization, and its basic circuit applications.
ILO4	Understanding the MOS transistor operation, its characterization, and its
1204	basic circuit applications.
ILO5	Understanding the BJT transistor operation, its characterization, and its basic
	circuit applications.
ILO6	Understanding the general structure of the negative-feedback amplifier and
	the basic principle that underlies its operation.
	Describing filters by its transfer functions, and classifying filters into different
	types based on the relative location of their pass-band(s) and stop-band(s).
ILO7	Recognizing a filter transfer function that meets the given specifications,
	including the use of popular special functions such as the Butterworth and
	the Chebyshev.
ILO8	Using the tuned transistor amplifiers for radio-frequency (RF) applications.
ILO9	Understanding the basic principles of oscillator circuit that generates sine
	waves.

5. Course Syllabus (18 hours of total synchronized sessions)

• RS: Recorded Sessions; SS: Synchronized Sessions;

ILO	Course Syllabus	RS	SS	Туре	Additional Notes
ILO1	 Introduction to Electronics: Signals Frequency Spectrum of Signals Analogue and Digital Signals Circuit Models for Amplifiers Voltage Amplifiers and Cascading Amplifiers 	3	1.5	 Exercises Assignments Seminars Projects Practices Others 	An example of a typical coverage is found in "Microelectronic Circuits": chapter 1 (see references list below)
ILO1 ILO2	 Operational Amplifiers: The Ideal Op Amp The Inverting Configuration The Noninverting Configuration The Weighted Summer Difference Amplifiers The Inverting Integrator The Op-Amp Differentiator 	5	3	 Exercises Assignments Seminars Projects Practices Others 	An example of a typical coverage is found in "Microelectronic Circuits": chapter 2 (see references list below)
ILO1 ILO3	 Diodes and Applications: Semiconductors The Diode: Operation and Characteristics Rectifier Circuits Circuit Regulator (Zener Diode) 	3	1.5	 Exercises Assignments Seminars Projects Practices Others 	An example of a typical coverage is found in "Microelectronic Circuits": chapter 3 and chapter 4 (see references list below)

N	Syrian Arab Republic Iinistry of Higher Education Syrian Virtual University	الجامعة الإقتراضية السورية Syrian Virtual University			الجمهورية العربية السورية وزارة التعليم العالسي الجامعة الافتراضية السورية		
ILO1 ILO3 ILO4	 MOS Field-Effect Transistors: Device Structure and Physical Operation Current-Voltage Characteristics Biasing in MOS Amplifier Circuits Small-Signal Equivalent-Circuit Models Discrete-Circuit MOS Amplifiers: The Common-Source (CS) Amplifier, The Common-Gate (CG) Amplifier, and The Source Follower 	4.5	3		Exercises Assignments Seminars Projects Practices Others	An example of a typical coverage is found in "Microelectronic Circuits": chapter 5 (see references list below)	
ILO1 ILO3 ILO5	 BJT Transistors: Device Structure and Physical Operation Current–Voltage Characteristics Biasing in BJT Amplifier Circuits Small–Signal Equivalent–Circuit Models Discrete–Circuit BJT Amplifiers: The Common–Emitter (CE) Amplifier, The Common–Emitter (CB) 	4.5	3		Exercises Assignments Seminars Projects Practices Others	An example of a typical coverage is found in "Microelectronic Circuits": chapter 6 (see references list below)	

Syrian Arab Republic		الجمهورية العربية السورية
Ministry of Higher Education	SVU	وزارة التعليم العالسي
Syrian Virtual University	الجامعة الافتراضية السوريية Syrian Virtual University	الجامعة الافتراضية السورية

ILO1 ILO2 ILO6	Amplifier, and The Emitter Follower Feedback Amplifiers: The General Feedback Structure Some Properties of Negative Feedback: Gain Desensitivity, Bandwidth Extension, Interference Reduction, and Reduction in Nonlinear Distortion The Four Basic Feedback Topologies: Voltage Amplifiers, Current Amplifiers, Transconductance Amplifiers, and Transresistance Amplifiers	3	1.5	 Exercises Assignments Seminars Projects Practices Others 	An example of a typical coverage is found in "Microelectronic Circuits": chapter 10 (see references list below)
ILO1 ILO2 ILO7	 Filters: Filter Transmission, Types, and Specification The Filter Transfer Function Butterworth and Chebyshev Filters First-Order and Second-Order Filter 	3	1.5	 Exercises Assignments Seminars Projects Practices Others 	An example of a typical coverage is found in "Microelectronic Circuits": chapter 16 (see references list below)
ILO1 ILO4 ILO5	Tuned Amplifiers:The Basic PrincipleInductor Losses	2	1.5	ExercisesAssignmentsSeminars	An example of a typical coverage is found in

M	الجامعة الافتراضية السورية Syrian Virtual University			الجمهورية العربية السورية وزارة التعليم العالسي الجامعة الافتراضية السورية		
ILO8	 Use of Transformers Amplifiers with Multiple Tuned Circuits 				Projects Practices Others	"Microelectronic Circuits": chapter 16 (see references list below)
ILO1 ILO4 ILO5 ILO9	 Oscillators: Basic Principles of Sinusoidal Oscillators Op Amp–RC Oscillator Circuits Generation of Square and Triangular Waveforms 	2	1.5	_	Exercises Assignments Seminars Projects Practices Others	An example of a typical coverage is found in "Microelectronic Circuits": chapter 17 (see references list below)

6. Assessment Criteria (Related to ILOs)

ISC	Interactive Synchronized Collaboration				Ex	Exams		Rpt	Reports
PF2F	Presentations and Face-to-Face				PW	Practice W	ork		
	Assessments								

ILO		Intended	Assessment Type					
Code	ILO	Results	ISC	PW	Ex	PF2F	Rpt	
	Identify the key concepts in electronic							
	circuits such as signal, analogue and							
ILO1	digital signals, analogue to digital		Х	Х	Х			
	conversion, amplifier and signal							
	amplifications							
	Understanding the op-amps, inverting							
ILO2	and noninverting configurations,		Х	Х	Х			
	weighted summer, difference							

Syrian Arab Republic

Ministry of Higher Education

Syrian Virtual University

الجمهورية العربية السورية

وزارة التعليم العالسي

الجامعة الافتراضية السورية

	amplifier, integrators and				
	differentiators				
	Understanding the diode operation, its				
ILO3	characterization, and its basic circuit	X	Х	Х	
	applications.				
ILO4	Understanding the MOS transistor operation, its characterization, and its basic circuit applications	x	х	х	
	Understanding the BJT transistor				
ILO5	operation, its characterization, and its	Х	х	Х	
	basic circuit applications				
ILO6	The study of general structure of the negative-feedback amplifier and the basic principle that underlies its operation. The advantages of negative feedback. The appropriate feedback topology to employ with each of the four amplifier types.	x	x	x	
ILO7	Study the filter characterization, types, specification, and implementation.	X	Х	Х	
ILO8	Using tuned transistor amplifiers for radio-frequency (RF) applications.	Х	Х	Х	
ILO9	Understanding the generation of sine wave, square and triangular waveforms.	Х	Х	Х	

Syrian Arab Republic		الجمهورية العربية السورية
Ministry of Higher Education	SVU	وزارة التعليم العالسي
Syrian Virtual University	الجامعة الإقتراضية السورية Syrian Virtual University	الجامعة الافتراضية السورية

7. Practice Tools:

Tool Name	Description	
PSpice .(optional)	A circuit to be analyzed using PSpice is described by a circuit	
	description file, which is processed by PSpice and executed as	
	a simulation. PSpice creates an output file to store the	
	simulation results, and such results are also graphically	
	displayed within the OrCAD EE interface.(optional).	

8. Main References

"Microelectronic Circuits", by Adel S. SEDRA and Kenneth C. SMITH, 6th edition 2013, Oxford University Press.

9. Additional References

"Electronic Devices and Circuit Theory", by Robert L. BOYLESTAD and Louis NASHELSKY, 11th edition 2012, Pearson-Prentice Hall.

"Microelectronic Circuit Design", by Travis N. BLALOCK and Richard C. JAEGER, 4rd edition 2011, McGraw-Hill.

"Microelectronic Circuit Analysis and Design", by Donald NEAMEN, 4rd edition 2009, McGraw-Hill.

"Introduction to Electronic Circuit Design" by Richard SPENCER and Mohammed GHAUSI, 1st edition2002, Pearson-Prentice Hall.

"Microelectronics" by Jacob MILLMAN, 1988, McGraw-Hill.6. "Microelectronics" by Jacob MILLMAN, 1988, McGraw-Hill.