1. Basic Information:

Course Name	Electric Circuit
Course ID	CEE101
Contact Hours (Registered Sessions)	30
Contact Hours (Synchronized Sessions)	18
Mid Term Exam	
Exam	1.5
Registered Sessions Work Load	30
Synchronized Session Work Load	18
Credit Hours	5

2. Pre-Requisites:

Course	ID
Physics	GPH101
Mathematics Algebra	GMA101

3. Course General Objectives:

This course aims to enable the student to understand the definition of the charge, current, and the relationship between them. The student will acquire knowledge of voltage, power and energy relationships, and he will be able to use them in electric circuits. It aims to enable the student to be able to combine resistors in series and in parallel, and utilize principles of voltage division and current division, and to understand the concepts of nodal and mesh analysis using Kirchhoff's current and voltage laws. It also aims to enable him to utilize the theorems used for simplifying analysis, such as superposition, Thevenin's Theorem and Norton's Theorem. The student will be able to combine capacitors and inductors in series and in parallel.

Phasor representation of circuit elements and transformers will be also comprehended.

This course forms a prerequisite to electronic circuit course at next levels.

4. Intended Learning Outcomes (ILO):

Code	Intended Learning Outcomes				
11 01	Comprehension of the main concepts and laws in electrical circuits, such as				
	charge, current, voltage, power, and energy and their relationships.				
	Understanding the Ohm and Kirchhoff's current and voltage laws and				
	principles of voltage division and current division.				
ILO3	Understanding nodes and meshes analysis methods.				
11.04	Understanding some of the major theorems of electrical circuits such as				
ILU4	superposition, Thevenin's Theorem and Norton's Theorem.				
11.05	Understanding of the concept of capacitors, and inductors and combinin				
ILU3	each of them in series and in parallel.				
	Understanding the sinusoid signal, Phasor representation of circuit elements,				
ILO6	b6 inductance, admittance, and ac circuit using Kirchhoff's current and voltage				
	laws.				
ILO7	Understanding of transformers operation principle and their laws.				

5. Course Syllabus (18 hours of total synchronized sessions)

• RS: Recorded Sessions; SS: Synchronized Sessions;

ILO	Course Syllabus	RS	SS	Туре	Additional Notes		
	Introductory concepts:			🗴 Exercises	An example of a		
	Systems of Units			🗷 Assignments	typical coverage is		
11 01	Charge and Current	6	5 3	Seminars	found in		
ILUI	Voltage	0		Projects	"Fundamentals of		
	Power and Energy			Practices	Electric Circuits":		
	Circuit Elements			□ Others	chapter 1 (see		

					references list		
					below)		
	Main Laws:				An example of a		
	Ohm's Laws			🗷 Exercises	typical coverage is		
	• Nodes, Branches, and Loops			E Assignments	found in		
ILO1	Kirchhoff's Laws	6	3	Seminars	"Fundamentals of		
ILO2	• Series Resistors and Voltage	0	5	Projects	Electric Circuits":		
	Division			Practices	chapter 2 (see		
	• Parallel Resistors and Current			Others	references list		
	Division				below)		
	Analysis Methods:				An example of a		
	Nodal Analysis			🗷 Exercises	typical coverage is		
II 01	Mesh Analysis			E Assignments	found in		
	Comparison	3	15	Seminars	"Fundamentals of		
	5 1.5	Projects	Electric Circuits":				
1205				Practices	chapter 3 (see		
				Others	references list		
					below)		
					An example of a		
				🕱 Exercises	typical coverage is		
II 01	Main Theorems:			Assignments	found in		
11 02	Superposition			□ Seminars	"Fundamentals of		
11 03	• Thevenin's Theorem	6	3	□ Projects	Electric Circuits":		
	Norton's Theorem			Practices	chapter 4 (see		
	Maximum Power Transfer			□ Others	references list		
					below)		
	Capacitors and Inductors:			Exercises	An example of a		
ILO1	Capacitors			 Assignments 	typical coverage is		
ILO5	• Series and Parallel Capacitors	6	3	Seminars	found in		
	Inductors			Projects	"Fundamentals of		
	Series and Parallel Inductors			Practices	Electric Circuits":		

				Others	chapter 6 (see
					references list
					below)
					An example of a
	AC Circuits:			Exercises	typical coverage is
11 01	Sinusoids			🗷 Assignments	found in
	Phasors	6	2	Seminars	"Fundamentals of
	Impedance and Admittance	0	3	Projects	Electric Circuits":
ILU6	• Kirchhoff's Laws in the			Practices	chapter 9 (see
	Frequency Domain			Others	references list
					below)
					An example of a
				Exercises	typical coverage is
	Transformers			Sector Assignments	found in
ILO1	Transformer Definition	2	15	Seminars	"Fundamentals of
ILO7	Linear Transformers	3	1.3	Projects	Electric Circuits":
	Ideal Transformers			Practices	chapter 13 (see
				Others	references list
					below)

6. Assessment Criteria (Related to ILOs)

ISC	Interactive Synchronized Collaboration		Ex	Exams		Rpt	Reports
PF2F	Presentations and Face-to-Face		PW	Practice W	Vor	ĸ	
	Assessments						

ILO		Intended	Assessment Type				
Code	le		ISC	PW	Ex	PF2F	Rpt
ILO1	Identify the key concepts in electrical circuits such as charge, current, voltage, power and energy		x	х	Х		
ILO2	Understanding the principals laws and rules in electric circuit and the ability to use them		х	х	Х		
ILO3	Understanding and applying electric circuit analysis methods		х	Х	Х		
ILO4	Understanding the basic theorems witch facilitate circuit analysis		Х	Х	Х		
ILO5	Understanding capacitors and inductors and combination of each one in series and in parallel		x	х	Х		
ILO6	Identifying sinusoidal signal features and p hasor concept, in addition to admittances and impedances relationships, and finally the ability to analyze AC circuits using Kirchhoff's Laws		Х	Х	Х		
ILO7	Understanding transformers concept and relationships		Х		Х		

7. Practice Tools:

Tool Name	Description

8. Main References

1. "Fundamentals of Electric Circuits" by Alexander and Sadiku, 4th edition 2007 or obove, The McGraw-Hill Companies, Inc.

9. Additional References

 "Introduction to Electric Circuits" by R. Drof, 7th edition 2006 or obove, John Wiley