Ministry of Higher Education

الجمهورية العربية السورية	
وزارة التعليم العالسي	
الجامعة الافتراضية السورية	

Syrian Virtual University

Course Definition: Discrete Structures

1- Basic Information:

Course Name	Discrete Structures
Course ID	DSR
Contact Hours (Registered Sessions)	2 hours
Contact Hours (Synchronized Sessions)	18
Mid Term Exam	2 hours
Exam	1.15
Registered Sessions Work Load	6
Synchronized Session Work Load	36
Credit Hours	4

2- Pre-Requisites:

Course	ID
Programming 1	PRG 1

3- Course General Objectives:

The course aims to implantation the basic concepts in Discrete Structures indeveloping the student's Information Technology and mathematical abilities.

The student is able to design logical and electronic circuits depending on the logic and the Boolean Algebra and to ensure the accuracy of the output mathematically and in conformity with the design, as well as acquiring a scientific basis to develop and understand the work of compliers and mechanisms of the programming languages and text processors.

Students can design algorithms to solve various problems and make measurements on them. In general, the course builds a solid foundation for students to use theoretical knowledge in practice.

Ministry of Higher Education

الجمهورية العربية السورية	
وزارة التعليم العاليي	

الجامعة الافتراضية السورية

Syrian Virtual University

4- Intended Learning Outcomes (ILO):

Code	Intended Learning Outcomes
ILO1	Enhancing the use of mathematical logic and methods of proof for students in different fields of
ILO I	information Technology
ILO2	Designing of electronic and logic circuits and mathematical certainty of mechanism of work and results
ILO3	Development of some algorithms based on the concepts of Discrete Structures
ILO4	Understanding the mechanism of Compliers, text editors, language design and Building Automata .
ILO5	Development in the construction of advanced data structures
ILO6	The movement Form Propositional logic to Predicate logic ,the qualification to study the foggy logic and
iLOU	artificial intelligence
ILO7	Using Graph theory and Trees in designs and solutions

5- Course Syllabus (18 hours of total synchronized sessions)

- Logic & Proof
- Boolean Algebra
- Recursive & induction
- predicate logic
- Algorithms
- Graph
- Trees
- Automata & FL
- RS: Recorded Sessions; SS: Synchronized Sessions;

ILO	Course Syllabus	RS	SS	Туре	Additional Notes
ILO1	• Logic & Proof		1.0	assignments	Exercises

Ministry of Higher Education

الجمهورية العربية السورية

وزارة التعليم العاليي

الجامعة الافتراضية السورية

Syrian Virtual University

ILO2	Boolean Algebra		٣	assignments	Exercises
ILO3	Algorithms - Recursive & induction	١	٣	assignments	Exercises
ILO4	• Automata & FL		۲	assignments	Exercises
ILO5	• Graph – Trees		٣	assignments	Exercises
ILO6	Predicate Logic	١	1.0	assignments	Exercises
ILO7	• Graph – Trees		٣	assignments	Exercises

6- Assessment Criteria (Related to ILOs)

ISC	Interactive Synchronized Collaboration	Ex	Exams		Rpt	Reports
PF2F	Presentations and Face-to-Face Assessments	PW	Practice Work			

ILO		Assessment Type					
Code	ILO	Intended Results	ISC	PW	Ex	PF2F	Rpt
ILO1	Gain skill and knowledge in each of the following: Mathematical Logic Sentential (Propositional) Calculus Connectivity Tools Logical equivalence	Solve exercises and questions. And use these skills in programming and algorithms	√		✓		
	 The principle of 						

Ministry of Higher Education

SVU I الجامعة الإفتراضية السورية SYRIAN VIRTUAL UNIVERSITY

الجمهورية العربية السورية

وزارة التعليم العاليي

الجامعة الافتراضية السورية

Syrian Virtual University

	compensation for credits				
	 Methods of proof 				
ILO2	 The structure of Boolean Algebra Calculation in Boolean algebra Rules relating to Boolean standards Arrangement relations in the Boolean algebra Partial Boolean algebra Free groups of Boolean algebra Groups generated in Boolean algebra The basis for the Boolean algebra Study of Boolean with several variables designing Logical circuits 	Solving exercises and designing logical circuits and Using mathematical theories in the field of Boolean algebra in matters related to Hardware	•	✓	✓
ILO3	 Format of the Theorem or Proposition Induction Proofs Induction Proof on Recursive Procedure Recursion Recursive Trees Time complexity Algorithms design techniques 	Make the student able to compare algorithms, complexity and design methods, and Preview the recursive trees that will be used in different data structures and algorithms	✓	✓	✓

Ministry of Higher Education

SVU Ibelia Illustration Illustration SYRIAN VIRTUAL UNIVERSITY

الجمهورية العربية السورية

وزارة التعليم العاليي

الجامعة الافتراضية السورية

Syrian Virtual University

ILO4	 Automata of inevitable end Automata of Infinite Ending Automata that ending with € move Systematic expression Regular languages Applications 	The design and implementation Automata of certain conditions, the acceptance of language and system expressions, the use of automation in compliers and text processors, and the design of some hardware based on the concept of automation	√	✓	√
ILO5	 Introduction and definitions in the Graph Useage of the Graph Types of Graph Movement on the Graph Types of trees Binary trees Search trees 	The ability to use the theory of the Graph and trees in solving general issues and use them in algorithms and the development of the concepts of representation of data structures of this type in the memories and enable the algorithms of Movement and modification of the structures and	√	✓	√

Ministry of Higher Education

الجمهورية العربية السورية

وزارة التعليم العاليي

الجامعة الافتراضية السورية

Syrian Virtual University

		reading from them			
	 The movement Form Propositional logic to Predicate logic Concepts and rules in the Predicate logic 	Make the student able			
		to expanded the			
		mathematical logic to			
		Predicate logic and			
	Convert language sentences to	use the documents to			
ILO6	documents	solve the exercises,	✓	\checkmark	\checkmark
	 Allocation and generalization and inclusion Robot control example 	especially with			
		artificial intelligence			
		and to qualify the			
		student to understand			
		the foggy logic			
		Solving exercises			
		using the Graph and			
		trees in the			
		development of			
	Trees representation	advanced algorithms			
	Graph representation	and moving the			
ILO7	Operations on the Graph	problem from the	✓	\checkmark	\checkmark
	The relationship between the	case of text to the			
	Graph and the trees	mathematical design			
		of the intermittent			
		structure and finding			
		solutions to the			
		problem	_		

Ministry of Higher Education

الجمهورية العربية السورية	
وزارة التعليم العاليي	

الجامعة الافتراضية السورية

Syrian Virtual University

7- Practice Tools:

Tool Name	Description
N/A	

8- Main References

- 1- Susanna S. Epp., Discrete Mathematics with Applications. DePaul University, 2015 edition.
- 2- Daniel I.A. Cohen, "Introduction to Computer Theory", John Wiley & Sons, Inc, 2013 edition

9- Additional References

- 1- Thomas H. Cormen, "Introduction to Algorithms", The MIT Press, 2000
- 2- Sara Baase and Allen Van Gelder, "Computer Algorithms: Introduction to Design and Analysis", Pearson Education, Inc, 2002
- 3- Kenneth A. Ross and Charles R.B. Wright, Discrete Mathematics, Fifth Edition, University of Oregon 2003