Syrian Arab Republic Ministry of Higher Education Syrian Virtual University

الجمهورية العربية السورية
وزارة التعليم العالىي
الجامعة الافتراضية السورية

Course Syllabus

1- Basic Information:

Course Name	Digital Systems
Course ID	DG
Contact Hours (Registered Sessions)	15 Hours
Contact Hours (Synchronized	15 Hours
Sessions)	13 Hours
Mid Term Exam	_
Exam	1h15min
Registered Sessions Work Load	15 Hours
Synchronized Session Work Load	15 Hours
Credit Hours	3

$2\mbox{--}$ Pre-Requisites: No pre-requisite is needed.

3- Course Objectives:

The aim of this course is to introduce the main concepts of digital logic circuits. It explains the binary numbering system as well as main coding and numbering systems. It presents logic gates, Boolean algebra and Karnaugh Maps. It outlines procedures to analyze, simplify and design of Combinational Logic Circuits and Sequential Logic Circuits. It outlines design methods for main application of logic circuits such as counters, registers, memories, arithmetic circuits and data control circuits.

Ministry of Higher Education

الجمهورية العربية السورية

وزارة التعليم العاليي

الجامعة الافتراضية السورية

Syrian Virtual University

Intended Learning Outcomes (ILO):

Code	Intended Learning Outcomes
	Explain binary coding system and how to convert numbers between binary and
ILO1	decimal, coding negative numbers in binary system, Apply main numbering
	systems.
	Explain logic gates, Boolean algebra and Karnaugh maps. Analyze and design
ILO2	Combinational logic circuits using formal procedures.
	Explain Flip-Flops Latches. Analyze and design Sequential logic circuits using
ILO3	formal procedures.
	Analyze and design digital circuits applications such as registers, shift registers,
ILO4	counters, Arithmetic circuits, data control, memories and data buses.

4- Course content (15 hours of synchronized sessions)

Chapter Number	Chapter Title	Summary	ILO
1	Coding and numbering systems -1	Introduce Binary numbering system and how to convert between binary and decimal. Arithmetic operations in binary.	ILO1
2	Coding and numbering systems -2	Outlines how to present signed numbers in binary. It shows how subtract numbers in binary. It outlines Binary Coded Decimal BCD and	ILO1

Ministry of Higher Education

الجمهورية العربية السورية

وزارة التعليم العاليي

الجامعة الافتراضية السورية

Syrian Virtual University

		Gray codes.	
		It presents Hexadecimal numbering system.	
		This chapter introduces the basic postulates of	
		Boolean algebra and shows the correlation	
3	Logic Gates and	between Boolean expressions and their	ILO2
3	Boolean Algebra	corresponding logic diagrams. The most useful	ILO2
		logic gates used in the design of digital	
		systems are identified	
	Combinational	This chapter covers the map method and	
4	Logic Circuits	algebraic method to simplify and design	ILO2
	Logic Officials	combinational logic circuits.	
		This chapter outlines the formal procedures for	
		analyzing and designing clocked sequential	
	Sequential Logic	circuits. The gate structure of several types of	
5	Circuits	flip-flops is presented together. Specific	ILO3
	O ii daiid	examples are used to show the derivation of	
		the state table when analyzing a sequential	
		circuit.	
6	Arithmetic	This chapter outlines the design of Arithmetic	ILO4
	Circuits	circuits.	
		Medium-scale integration (MSI) circuits and	
7	MSI Logic	their most used components such as	ILO4
,	Circuits	encoders, decoders, multiplexers and DE-	
		multiplexers.	
8	The Counters	This chapter presents the design of	ILO4

Ministry of Higher Education

الجمهورية العربية السورية
وزارة التعليم العاليي
الجامعة الافتراضية السورية

Syrian Virtual University

		synchronized and unsynchronized digital	
		counters.	
9	Memories and	This chapter outlines memories types and their	
		schematic design. It presents three states	ILO4
	Data Bussing	gates and data buses.	

5- Assessment Criteria (Related to ILOs)

ILO	Intended Learning Outcomes	Home	Synchronized	Exam
codes	intended Learning Odtcomes	work	Sessions	LAAIII
	To achieve ILO the student should be			
	able to:			
	1- Convert from binary to decimal and	*	*	*
	vice versa		不	
ILO1	2- Apply arithmetic operations on binary	*	*	*
	numbers.		, ,	
	3- Convert between main numbering			
	systems such as binary, decimal,	*	*	*
	hexadecimal, BCD and Gray.			
ILO2	1- Simplify logic functions by Boolean	*	*	*
	theorems.			
	2- Simplify logic functions by Karaugh	*	*	*
	maps.			

Ministry of Higher Education

الجمهورية العربية السورية

وزارة التعليم العاليي

الجامعة الافتراضية السورية

Syrian Virtual University

LO3	1- Analyse main Flip-Flops (D, SC, J	*	*	*
	K) performance.	·		-
	2- Analyse and design some sequential	*	*	*
	circuits' applications.	·		-
ILO4	1- Design and analyse MSI circuits.	*	*	*
ILO4	2- Design and analyse Arithmetic	alyse Arithmetic		*
	circuits.			
11.04	3- Design synchronized and un		*	*
ILO4	synchronized digital counters.			
ILO4	4- Identify memories types		*	*
	performance.			

6- Practice Tools

Name	Function
Logisim	Logic circuits simulation software

Ministry of Higher Education

الجمهورية العربية السورية	
وزارة التعليم العالسي	
الجامعة الافتراضية السورية	

Syrian Virtual University

7- Main References

- All content of the course can be downloaded from Moodle course page as Pdf files and registered sessions.
- Synchronized sessions.

8- Additional References

- Elahi, Ata. *Computer Systems: Digital Design, Fundamentals of Computer Architecture and Assembly Language*. Springer, 2017.