

Discrete Mathematics Course Definition Form

Syrian Arab Republic

Ministry of Higher Education

Syrian Virtual University

وزارة التعليم العالم

الجامعة الافتراضية السورية

1. Basic Information:

Course Name	Discrete Mathematics
Course ID	GMA204
Contact Hours (Registered Sessions)	36
Contact Hours (Synchronized Sessions)	18
Mid Term Exam	There is not
Exam	1.5
Registered Sessions Work Load	36
Synchronized Session Work Load	18
Credit Hours	6

2. Pre-Requisites:

Course	ID
Mathematical Algebra	GMA101
Mathematical Analysis	GMA102

3. Course General Objectives:

This course aims at introducing students to the logic involved in the study of computer science and various techniques of mathematics proof, especially reasoning. Students will be introduced to Boolean algebra and relevant theories, and its applications in the design of digital circuits using logical gates, to number theory and its applications in encryption, to relations, their representation and types, including equivalence relations and partial ordering, to the concept of the algorithm, types of algorithms and different ways to represent them and algorithm complexity calculation, to graphs, their properties and some basic algorithms as finding the shortest path, and finally to trees, types of trees including binary research trees, decision trees, Hoffman coding and some algorithms of minimum cost.

Syrian Arab Republic

Ministry of Higher Education

Syrian Virtual University

الجمهورية العربية السورية

وزارة التعليم العالم

الجامعة الافتراضية السورية

3. Intended Learning Outcomes (ILO):

Code	Intended Learning Outcomes
ILO1	Understand logic, propositional logic and its negation, direct and indirect proofs, and
	mathematical induction
ILO2	Identify Boolean algebra, Boolean function and its simplification and realization using
	digital gates
ILO3	Identify Number theory and its applications in encryption
ILO4	Identify relations, their representation and types, equivalence relations and partial
1204	ordering
ILO5	Understand the basic concept of algorithms, types and d algorithm complexity
ILU3	calculation
ILO6	Identify the basic properties of graphs, and some basic algorithms as finding the
	shortest path
ILO7	Identify trees, types of trees, binary research trees, and some algorithms of minimum
	cost

5. Course Syllabus (18 hours of total synchronized sessions)

RS: Recorded Sessions; SS: Synchronized Sessions;

ILO	Course Syllabus	RS	SS	Туре	Additional Notes
ILO1	 Logic and Proofs basic logical operations conditional statements and propositional equivalences 	4	1.5	🗴 Exercises	
ILO1	Introduction to proofs direct proof indirect proof different types of proofs 		1.5	Exercises	

Syrian Arab Republic		الجمهوريّة العربيّة السوريّة
Ministry of Higher Education	SVU	وزارة التعليم العالميي
Syrian Virtual University	الجامعة الإفتراضية السوريية Syrian Virtual University	الجامعة الافتراضية السوريّة

				1]
ILO1	 mathematical induction classical mathematical induction strong induction 	3	1.5	🗷 Exercises	
ILO2	 Boolean algebra properties of Boolean algebra Boolean functions, representation and simplification 	3	1.5	Exercises	
ILO3	 Number theory and cryptography Euclidean division and congruences GCD, LCM and prime numbers solving congruences applications of congruences classical cryptography representations of integers 	6	3.0	Exercises	
ILO4	Relations Relations, representation and types equivalence relations and partial ordering	3	1.5	Exercises	
ILO5	 Algorithms algorithm types growth of functions complexity of algorithms 	3	1.5	Exercises	
ILO6	Graphs properties, types and 	6	3.0	Exercises	

Syrian Arab Republic		الجمهورية العربية السورية
Ministry of Higher Education	SVU	وزارة التعليم العالمسمي
Syrian Virtual University	الجامعة الإفتراضية السوريية Syrian Virtual University	الجامعة الافتراضية السورية

	representation				
	connectivity				
	Euler and Hamilton paths				
	shortest path problems				
	Trees				
	• trees and applications		2		
	binary trees			🗴 Exercises	
ILO7	• binary search trees	6	3	× Exercises	
	tree traversal				
	algorithms of minimum cost				

6. Assessment Criteria (Related to ILOs)

ISC	Interactive Synchronized Collaboration			Ex	Exams		Rpt	Reports
PF2F	Presentations and Face-to-Face			PW	Practice W	orł	<	
	Assessments							

ILO	ILO	Intended Results	Assessment Type		
Code			ISC	Ex	
ILO1	Understand logic, propositional logic and its negation, direct and indirect proofs, and mathematical induction	 truth table for compound proposition equivalences of 2 propositions truth table for a quantifier, negation of a quantifier theorem proof 	Х	х	
ILO2	Identify Boolean algebra, Boolean function and its	5. proof using induction1. simplification of a Boolean function	х	X	

السوريّة	العربية	الجمهوريّة
----------	---------	------------

Syrian Arab Republic

Ministry of Higher Education

Syrian Virtual University

وزارة التعليم العالمسي

الجامعة الافتراضية السورية

	simplification and realization	2. representation of a Boolean		
	using digital gates	function		
		3. conversion between Boolean		
		function forms		
		4. realization of a Boolean		
		function using digital gates		
		1. Euclidean division		
		2. Bézout's coefficients		
ILO3	Identify number theory and its	calculation	Х	х
ILO3	applications in encryption	3. solving congruence equations	Χ	~
		4. representations of an integer in		
		base b		
	Identify relations, their	1. composition of binary relations		
ILO4	representation and types,	 2. finding equivalence classes 	Х	х
1204	equivalence relations and	 a. partial ordering 		
	partial ordering	or partial or doning		
	Understand the basic concept	1. execution of simple searching		
ILO5	of algorithms, types and d	and sorting algorithms	Х	Х
	algorithm complexity	2. algorithms complexity		
	calculation	calculation		
		1. drawing and representation of		
		graphs		
	Identify the basic properties	2. connectivity of graphs		
ILO6	of graphs, and some basic	3. Finding Euler and Hamilton	Х	Х
	algorithms as finding the	paths and circuits		
	shortest path	4. Solving the shortest path		
		problem		
		5. traveling salesman		
ILO7	Identify trees, types of trees,	1. binary trees and its properties	Х	Х

Syrian Arab Republic		الجمهورية العربية السورية
Ministry of Higher Education	SVU	وزارة التعليم العالمسمي
Syrian Virtual University	الجامعـة الإفتراضيـة السوريــة Syrian Virtual University	الجامعة الافتراضية السورية

binary research trees, and	2. building binary search trees	l	
some algorithms of minimum	3. decision trees	l	
cost	4. Huffman coding	l	
	5. Finding spanning trees	l	1

7. Practice Tools:

Tool Name	Description

8. Main References

McGraw.Hill.Discrete.Mathematics.and.lts.Applications.7th.Edition.Jun.2011 Mano_Digital.Design.5E_0, 2011

9. Additional References