

Data Structures & Algorithms II

Course Definition

Syrian Arab Republic		الجمهورية العربية السورية
Ministry of Higher Education	SVU	وزارة التعليم العالي
Syrian Virtual University	الجامعة الإفتراضية السورية Syrian Virtual University	الجامعة الافتراضية السورية

1. Basic Information:

Course Name	Data Structures & Algorithms II
Course Code	SDA601
Number of Presentational Sessions*	24-32
Number of Synchronous Sessions**	12-16
Number of Shorter Tests***	0
Number of Exams***	1
Theoretical Sessions Work Load (hrs.)	36-48
Practical Sessions Work Load (hrs.)	18-24
Credit Hours	5

^{*}Each presentational session comprises both recorded lecture (1.5 hrs.) and interactive learning content (1.5 hrs.).

N.B.

Generally, each chapter requires two presentational sessions: one for the recorded content and one for the interactive content (unless the chapter is too long, in which case it may require more sessions (. This note applies to synchronous sessions as well, where each chapter requires one synchronous session generally.

^{**}Each synchronous session comprises the interactive lecture carried out in real time in a virtual class (1.5 hrs.).

^{***}Each shorter test is 0.5 hr. long. The final exam is 2 hrs. long.

Syrian Arab Republic		الجمهورية العربية السورية
Ministry of Higher Education	SVU	وزارة التعليم العاليي
Syrian Virtual University	الجامعة الإفتراضية السورية Syrian Virtual University	الجامعة الافتراضية السورية

2. Prerequisites courses:

Course	Code
Data Structures & Algorithms I	BDA501

3. Course Objectives:

The Data Structures and Algorithms (2) course, which is an extension of the Data Structures and Algorithms (1) course, deals with complements in binary trees, data (graphs), and some new sorting and searching algorithms. It also deals with non-binary tree data structures such as B-Trees, B + Trees, Red-Black Trees and operations on. In the Algorithms axis, it will be discussion about Greedy Algorithms and dynamic programming.

Syrian Arab Republic		الجمهورية العربية السورية
Ministry of Higher Education	SVU	وزارة التعليم العالي
Syrian Virtual University	الجامعة الإفتراضية السورية Syrian Virtual University	الجامعة الافتراضية السورية

4. Learning Outcomes (LO):

By the end of this course, the learner is expected to acquire and learn the following subjects:

- Complete operations related to binary trees
 - Balanced Trees
 - Binary Search Trees
 - AVL Trees
- Complete operations related to Graphs
 - Topological arrangement
 - Spanning Trees
- Learning about Non-Binary Trees And Operations related To:
 - o B-Trees
 - o B+Trees
 - Red-Black Trees
- Learning about new Sort and Search Algorithms:
 - Counting Sort
 - Radix Sort
 - Bucket Sort
 - Heap Sort
 - 0 ...
- Learning about Greedy Algorithms:
 - Greedy Algorithm
 - Ford-Fulkesron Algorithm
 - Dijkstra's Algorithm
 - Kruskal's Algorithm
 - o Prim's Algorithm

Syrian Arab Republic		الجمهورية العربية السورية
Ministry of Higher Education	SVU	وزارة التعليم العاليي
Syrian Virtual University	الجامعة الإفتراضية السورية Syrian Virtual University	الجامعة الافتراضية السورية

- o Huffman Coding
- O
- Learning about Dynamic Programming:
 - O Dynamic Programming
 - O Floyed Warshall Algorithm
 - O Longest Common Subsequence
 - 0

Syrian Arab Republic		الجمهورية العربية السورية
Ministry of Higher Education	SVU	وزارة التعليم العالي
Syrian Virtual University	الجامعة الإفتراضية السورية Syrian Virtual University	الجامعة الافتراضية السورية

5. Assessment Results:

			Assessment Type				
Chapter Number	Chapter Title	General Objectives	Interactive Content & Recorded Sessions	Applied Activities (Synch. Sessions)	Final Exam*/ Shorter Tests	Presentat ions and Interview s	Report s
CH1	Complements in binary trees	Comprehension -Analytical Thinking -Tools and Application Hands- On	V	V	V		V
CH2	Complements in Graphs	Comprehension -Analytical Thinking -Tools and Application Hands- On	V	V	V		V
СНЗ	Non-Binary Trees Structures (B-Trees)	Comprehension -Analytical Thinking -Tools and Application Hands- On	V	V	V		V
CH4	Non-Binary Trees Structures (B+Trees)	Comprehension -Analytical Thinking -Tools and Application Hands- On	V	V	V		V
CH5	Non-Binary Trees Structures (Red-Black Trees)	Comprehension -Analytical Thinking -Tools and Application Hands- On	V	√	\checkmark		V
СН6	New Sort and Search Algorithms (Counting – Radix- Bucket and Heap Sort)	Comprehension -Analytical Thinking -Tools and Application Hands- On	V	V	V		√
СН7	Greedy Algorithms (Greedy ,Ford- Fulkesron, Dijkstra Kruskal, and Prim, Huffman coding)	Comprehension -Analytical Thinking -Tools and Application Hands- On	V	V	V		V
СН8	Dynamic Programming, Floyed Warshall, Longest Common Subsequence	Comprehension -Analytical Thinking -Tools and Application Hands- On	V	V	V		V

^{*}The final exam is two hours long and is given at the end of the course.

Syrian Arab Republic		الجمهورية العربية السورية
Ministry of Higher Education	SVU	وزارة التعليم العالي
Syrian Virtual University	الجامعــة الإفتراضيــة السوريــة Syrian Virtual University	الجامعة الافتراضية السورية

^{**}Shorter tests are about 30 minutes long and are given after three or four lectures throughout the semester during synchronous sessions.

6. Course Syllabus:

Chapter	Subject	Content	Number of Learning Objects	Number of synchron ous Learning Objects
CH1	Complements in binary trees	 Introduction Introducing balanced trees and explaining their characteristics and types. Definition of binary search trees Description of the basic operations on the binary search trees (search-create-adddelete). Studying and analysis the Operations (search-create-add-delete) in the binary search tree. Define AVL trees. Description of the basic operations on AVL trees (sub-tree rotation - left and right rotation - add - delete). Study and analyze the algorithms of (sub-tree rotation-rotate right and left-add-delete) in the AVL tree. Examples and exercises. 	1	1
CH2	Complements in Graphs	 Introduction Topological arrangement Spanning Trees and Basic Operations on. 	1	1
СНЗ	Non-Binary Trees Structures (B-Trees)	 Introduction B-Tree trees Definitions and Concepts in B-Trees 	1	1

^{***}Presentations, interviews, and reports are submitted once after each three or four lectures throughout the semester during synchronous sessions.

Syrian Arab Republic

Ministry of Higher Education

الجمهورية العربية السورية

وزارة التعليم العالي الجامعة الافتراضية السورية

Syrian Virtual University

				,
		 Characterization of the basic operations on B-Trees (search-create-add-delete) Studying and analysis (search-create-add-delete) algorithms in B-trees Examples and exercises. 		
CH4	Non-Binary Trees Structures (B+Trees)	 B + Tree Definitions and Concepts in B + Trees A comparison between B-Tree and B + Tree Characterize of the basic operations on B + Trees (find-create-add-delete) Studying and analysis of (search - create - add - delete) algorithms in the B + Tree 12. Examples and exercises. 	1	1
CH5	Non-Binary Trees Structures (Red-Black Trees)	 Introduction Definition and characteristics of Red-Black trees Operations on Red-Black trees (rotating sub-trees - rotating the red-black tree from right to left and left to right - adding an item to a Red-Black tree - removing an item from the Red-Black tree. Examples and exercises. Conclusion and Summary of Non-Binary Trees. 	1	1
СН6	New Sort and Search Algorithms (Counting – Radix-Bucket and Heap Sort)	 Introducing the Counting Sort algorithm, explaining the steps of the algorithm, and studying the time complexity. Introducing the Radix Sort algorithm, explaining the steps of the algorithm, and studying the time complexity. Introducing the Bucket Sort algorithm, explaining the steps of the algorithm, and studying the time complexity. Introducing the Heap Sort algorithm, explaining the steps of the algorithm, explaining the steps of the algorithm, and studying the time complexity. Examples and exercises. 	2	1
СН7	Greedy Algorithms (Greedy ,Ford- Fulkesron	Introduction Introducing Greedy Algorithm, explaining the steps of the algorithm, and studying	2	2

Syrian Arab Republic

Ministry of Higher Education

الجمهورية العربية السورية

وزارة التعليم العالسي

الجامعة الافتراضية السورية

	Dijkstra	time complexity.		
	Kruskal, and Prim, Huffman Coding Algorithm)	Introducing the Ford-Fulkesron algorithm, explaining the steps of the algorithm, and studying the time complexity.		
	Algoritim)	 Introducing Dijkstra's Algorithm, explaining the steps of the algorithm, and studying time complexity. 		
		Introducing Kruskal's Algorithm, explaining the steps of the algorithm, and studying time complexity.		
		Introducing Prim's Algorithm, explaining the steps of the algorithm, and studying time complexity.		
		 Introducing Huffman Coding's Algorithm, explaining the steps of the algorithm, and studying time complexity. 		
		8. Examples and exercises.		
		1. Introduction		
		 Define dynamic programming and explain how it works. 		
	Dynamic	Comparison of dynamic programming with recursive algorithms and backtracking algorithms.		
CH8	Programming, Floyed Warshall,	Definition of Floyed Warshall's algorithm and explain how it works.	1	1
Ono	Longest Common	Introducing Longest Common Subsequence (LCS)	'	'
	Subsequence	Using dynamic programming to create LCS		
		Explanation the steps of the LCS algorithm.		
		8. Examples and exercises.		

7. Practical Activity:

• Tools and Labs:

Syrian	Arab	Republic

Ministry of Higher Education

السورية	العربية	الجمهورية
---------	---------	-----------

وزارة التعليم العاليي

الجامعة الافتراضية السورية

Tool Name	Description
C++	Programming Language

Practical Activities per Chapters:

Chapter	Activities Type	Remarks
	☑ Exercises	
	☑ Homework	
CH1	☑ Webinars	
СПІ	☑ Project	
	☐ Experiment	
	☑ Other	
	☑ Exercises	
	☑ Homework	
CH2	☑ Webinars	
CH2	☑ Project	
	☐ Experiment	
	☑ Other	
	☑ Exercises	
	☑ Homework	
CH3	☑ Webinars	
CHS	□ Project	
	☐ Experiment	
	☑ Other	
CH4	☑ Exercises	

Syrian Arab Republic Ministry of Higher Education Syrian Virtual University Syrian Virtual University Syrian Virtual University

	☑ Homework	
	☑ Webinars	
	□ Project	
	☐ Experiment	
	☑ Other	
	☑ Exercises	
	☑ Homework	
CHE	☑ Webinars	
CH5	□ Project	
	☐ Experiment	
	☑ Exercises	
	☑ Homework	
CH6	☑ Webinars	
CHO	☑ Project	
	☐ Experiment	
	☑ Exercises	
	✓ Homework	
CHZ	☑ Webinars	
CH7	☑ Project	
	☐ Experiment	
	☑ Other	
	☑ Exercises	
CH8	☑ Homework	
	□ Webinars	

Syrian Arab Republic		الجمهورية العربية السورية
Ministry of Higher Education	SVU	وزارة التعليم العالي
Syrian Virtual University	الجامعة الإفتراضية السورية Syrian Virtual University	الجامعة الافتراضية السورية
☑ Project		

☑ Project	
☐ Experiment	
□ Other	

8. References:

Introduction to Algorithm Second Edition. Thomas H. Cormen Charles E.
 Leiserson Ronald L. Rivest Clifford Stein .The MIT Press Cambridge,
 Massachusetts London, England