
International Review on Computers and Software (I.RE.CO.S.), Vol. 9, n. 10

 Design & Develop Misconfiguration Vulnerabilities Scanner for Web

Applications

Aidmar Wainakh

Syrian Virtual University

Damascus, Syria

aidmer_33602@svuonline.org

Dr. Ahmad Wabbi

Syrian Virtual University

Damascus, Syria

t_awabbi@svuonline.org

Dr. Bassel Alkhatib

Faculty of Information Technology

Engineering- Damascus University

Damascus, Syria

t_balkhatib@svuonline.org

Abstract – Misconfiguration is one of the most critical Web vulnerabilities, still it does not receive

enough attention. Applying general security practices and general remediation proved inefficiency in

dealing with this type of vulnerabilities. In this research, we discuss and highlight several issues in

order to enhance misconfiguration detection, quantifying and fixing. Our approach detects

misconfiguration based on extended set of security-related configurations, then quantify the

vulnerabilities according to the environment characteristics, using the most recent scoring standard in

this field and recommend customized secure remediation. We implemented our approach in a tool

called MVS, and we were able to evaluate seven Apache-MySQL-PHP packages, ten open source Web

applications and seven online websites. Our experiments revealed that the tool is able to detect

misconfigurations at both the environment level and the application level, then recommend customized

and secure remediation.

Keywords: Web applications, Web security, vulnerability, misconfiguration, CCSS, customized

remediation.

I. Introduction

Nowadays there is a significant increasing dependency

on Web applications, more organizations rely on Web

applications as a primary technology. Web applications can

be personal websites, social networks, e-commerce

applications, etc. The existence of Web applications in our

life is so important that it makes them an attractive target

for malicious users.

The security obsession of Web application administrators

should be proportional to the magnitude of the assets they

protect. The Web application market is growing so fast -

According to Google, over 50 billion pages are on the Web

in 2014 [1]- and that makes the Web security ever-moving

target. 86% of all websites has at least one serious

vulnerability according to WhiteHat [2].

There are many variant vulnerabilities types differ in

exploitability, prevalence, detectability and impact. They

were classified into different categories such as

Information leakage and Server Misconfiguration.

According to Context [3] the Server Misconfiguration is

the most common vulnerability in Europe websites, as it’s

listed in the OWASP Top 10 constantly. Misconfiguration

attacks exploit configuration weaknesses found in Web

environment, as many servers come by default with

unnecessary enabled features and services, such as remote

administration functionality and content management.

These flaws frequently give attackers unauthorized access

to some system data or functionality. Occasionally, such

flaws result in a complete system compromise.

In spite of Misconfiguration‘s criticality little attention

has been paid for it. Few researches and papers concern

about it. The most recent researches in this topic tend to

find exhaustive techniques to detect misconfiguration

vulnerabilities at both the environment level and the

application level. The most of approaches use general

security recommendations to detect vulnerabilities, each

researcher collects a set of recommendations using his own

method, lacking of consensual secure configurations

standard. Moreover, many of researches depend on

experts’ estimations to quantify the severity of

vulnerabilities, instead of using modern scoring systems. In

nutshell the contributions of this research are the following:

1. We presented automated scanner of Web applications

configuration at the environment level and the application

level, detect, quantify and fix misconfiguration

vulnerabilities.

2. We put in use all the metrics of Common

Configuration Scoring System (CCSS) in order to quantify

the vulnerability severity accurately.

3. We improved the Gold Standard, which is a set of

sensitive (security-related) configuration directives with

security recommendations, for Apache-MySQL-PHP

(AMP) environment.

4. We discussed the effect of strict security

recommendations on the application performance.

5. We suggested a customized Gold Standard includes

new approach to compute recommended values, taking into

consideration CCSS score and performance issue.

6. We discussed the tuning configurations across AMP

components.

7. We implemented our approach on seven AMP

packages, ten open source Web applications and seven

online websites.

II. Misconfigurations In Web Applications

Although the number of vulnerabilities is decreasing in

general but the misconfiguration vulnerabilities are

increasing in relative to others. For example, as noted by

Context [3] the misconfiguration vulnerabilities number

within a website increased from 2.6 in 2010 to 2.9 in 2012.

According to the National Vulnerability Database (NVD)

there are 24 vulnerabilities related to misconfiguration in

2010, increased to 31 vulnerabilities in 2012. The Open

Source Vulnerability Database (OSVDB) indicates that

PHP configuration vulnerabilities increased from 26 in

January 2007 to 42 in January 2011, an increase of 32%.

Misconfiguration vulnerability is considered one of the

high level vulnerabilities since it could lead to several risks

such as gain information, denial of service, code execute

and overflow. Misconfiguration attacks exploit

configuration weaknesses found in Web environment.

Many servers come by default with unnecessary features,

sample files and modules. They may also enable

unnecessary services, such as remote administration

functionality and content management. Debugging

functions may be enabled or administrative functions may

be accessible to anonymous users. These features provide a

great opportunity for a malicious user to bypass

authentication methods and gain access to sensitive data. In

the following, we present some examples of

misconfiguration vulnerabilities in AMP environment.

Examples 1: In PHP the directive “display_errors=On”

prints errors as part of the output. Such directive is

considered a vulnerability that leads to gain information

risk. A standard attack tactic would involve profiling a

system by feeding it improper data, and checking for

information in the returned errors.

Example 2: In Apache, the directive “Options Indexes”

enables directory browsing. That means, if there is no

index.html under a website directory, client will see all

files and sub-directories listed in the browser which is

considered a gain information risk.

Example 3: In Apache, the directive

“LimitRequestBody=0” makes no restriction on the size of

the HTTP request body sent from the client, which could

lead to overflow risk, if a malicious user sends large

requests.

III. Related Work

In this section we will present some papers and

researches relate to our topic. We will mention their

contributions and limitations in order to identify the gaps in

the existing literature. “Automated Diagnosis of Software

Configuration Errors” paper by S. Zhang and M.D. Ernst

[4], presents a technique to identify the main cause of the

configuration errors based on the behavior of the software

system. In order to link the undesired behavior to specific

configuration options, the technique uses static analysis,

dynamic profiling, and statistical analysis. It differs from

old approaches in two aspects: it is fully automated; and it

can diagnose both crashing and non-crashing errors. The

authors implemented their technique for Java software.

Unlike ours, this approach focuses on identifying and

monitoring configuration option-affected control flow

rather than the values. Moreover, the paper was concerned

about the diagnosis and did not discuss how to fix the

localized errors.

In the paper “Quantitative Evaluation of Related Web-

based Vulnerabilities” by D. Subramanian et al. [5], the

authors propose a quantitative framework that combines

degree of confidence reports pre-computed from various

scanners. The output is evaluated and mapped based on

derived metrics to appropriate remediation for the detected

vulnerabilities. The authors show the relational mapping

among a set of vulnerabilities. However, several

remediation exist for a given vulnerability, it is necessary

then to find the best possible vulnerability-remediation

match (selective remediation). They suggest a

mathematical model to select the suitable remediation for

certain vulnerability based on many parameters related to

the target system itself and that allows to select customized

remediation. Although this approach is concerned about

vulnerabilities in general, we share the same goal of

providing a selective remediation that is appropriate to a

particular system.

In the paper “Detection of configuration vulnerabilities

in distributed (Web) environments” by M.M. Casalino et

al. [6], the authors present a language-based approach to

specify and execute declarative and unambiguous security

checks for detecting vulnerabilities caused by system

misconfigurations. The proposed language is based on the

Security Content Automation Protocol (SCAP)

specification and extends the Open Vulnerability

Assessment Language (OVAL) configuration validation

standard. The language allows the definition of

configuration checks, the target software components as

well as the actual configurations by specifically separating

the checking logic from the configuration retrieval. Unlike

our research, this paper focuses on detecting system-level

configuration vulnerabilities. The approach does not clarify

the link between the vulnerability and the potential attacks

it can lead to.

In “Early Detection of Security misconfiguration

vulnerabilities in Web applications” paper by B. Eshete et

al. [7], the authors present an automated tool to detect

misconfiguration vulnerabilities in Web server

environments. They extend the checked directives list

taking into consideration the significant increase in

misconfiguration. The authors implement their tool on

eleven widely used AMP server environments across three

popular operating systems. They came to two main

conclusions. First, the default security configuration of

these environments are way too far from the recommended

security configuration settings. Second, the difference in

configuration average safety is not that significant among

the operating systems. This approach does not discuss the

configuration vulnerabilities at application level. Moreover,

the tool supposes that all security configuration directives

have equal weight and does not use any quantitative

standards.

Finally, the paper “Confeagle: Automated Analysis of

Configuration Vulnerabilities in Web Applications” by B.

Eshete et al. [4] is one of the main papers that inspired our

research. The authors in this paper present an approach that

combines hierarchical configuration scanning and

preliminary source code analysis of Web applications to

detect, quantify and fix the potential misconfiguration

vulnerabilities. The values of each configuration directive

were analyzed against a “Gold Standard” of configuration

recommendations. Unlike generic Web vulnerability

scanners, this approach proved high efficiency in detecting

potential configuration vulnerabilities at the environment

level in addition to the application level as well. In order to

quantify the degree of vulnerabilities severity, they used

CCSS base metrics. They implemented their approach in a

tool called Confeagle, on AMP environment. They

evaluated their approach on open source PHP applications,

and compared its effectiveness with popular Web

vulnerability scanners. However, they used only base

metrics of CCSS and ignored the temporal and the

environmental metrics, which leaves their quantitative

results inaccurate. In addition, they used limited resources

to combine the “Gold Standard”. Our work widens the

scope of this work and complements it by addressing the

above limitations.

IV. Methodology

The main general goal of this research is to help

administrators to avoid misconfiguration vulnerabilities as

possible. In this section we will present the main methods

we used through this research and our suggested

approaches.

IV.1. Accurate Scoring Metrics

“A Problem Well-stated is Half-solved”, Charles F.

Kettering. In order to secure Web application we need to

have good description of its security status and accurate

measurement for severity of the existing vulnerabilities.

That is the main aim of Common Configuration Scoring

System (CCSS), which provides us with a set of metrics

that measure the severity of software security configuration

issues.

The CCSS metrics are organized into three groups: base,

temporal, and environmental. Base metrics describe the

characteristics of a configuration issue that are constant

over time and across user environments. Temporal metrics

describe the characteristics of configuration issues that can

change over time but remain constant across user

environments. Environmental metrics are used to

customize the base and temporal scores based on the

characteristics of a specific user environment. In our

research we used all these groups of metrics in order to

quantify vulnerability severity accurately.

IV.2. Improved Gold Standard

Gold Standard (GS) is a set of sensitive directives

(security-related) in AMP environment. The concept of GS

was suggested by [4]. We collected the GS using a

collection of references which contains official

documentations [1], [10], [11], [12], expert opinions [13],

[14], [15] and configuration best practices [16], [17], [9],

[19], as we used online CVSS calculators [20], [21] to

generate CCSS base vectors. We extended the information

about each directive in GS to include the following fields:

<directive_name, description, potential_risk,

default_value, recommended_value, platform, component,

component_version, base_vector, temp_vector>

The GS is the backbone of this research. In fact,

collecting and analyzing the information about directives

required a lot of efforts to do, because we had to deal with

three different components with variant versions. Besides,

there was not any trusted reference gathers all the sensitive

directives in one list. So our GS comes as an attempt to

build an initial core of secure configuration standard for

AMP environment. Next, we present some examples of the

directives in GS.

- Directive: post_max_size

Description: Sets max size of post data allowed.

Potential Risk: Overflow, malicious users may attempt to

send oversized POST requests to eat the system resources.

Default Value: 8M

Recommended Value: 8M

Component: PHP

Version: Available since PHP 4.0.3.

Base Vector: AV:N/AC:M/Au:N/C:N/I:N/A:C

Temporal Vector: GEL:H/GRL:H

- Directive: ServerTokens

Description: This directive controls whether server

response header field which is sent back to clients includes

a description of the generic OS-type of the server as well as

information about compiled-in modules and their versions.

Potential Risk: Gain Information, one crucial bit of

information to hide is the version number. Hiding it keeps

unwanted users from knowing how to quickly hack the

Web server.

Default Value: Full.

Recommended Value: Prod.

Component: Apache.

Version: ALL.

Base Vector: AV:N/AC:L/Au:N/C:P/I:N/A:N.

Temporal Vector: GEL:H/GRL:ND.

- Directive: skip-grant-tables

Description: This option causes the server to start without

using the privilege system at all, which gives anyone the

access to all server databases.

Potential Risk: Bypass, enabling such option will permit to

all users to access all databases on the server bypassing all

privileges.

Default Value: FASLE.

Recommended Value: FASLE.

Component: MySQL.

Version: ALL.

Base Vector: AV:N/AC:L/Au:S/C:C/I:C/A:C.

Temporal Vector: GEL:L/GRL:L.

IV.3. Security vs. Performance

Many administrators prefer high performance over

security because the majority of administrators do not have

the required knowledge in security field. That makes them

use the default configurations in the environment since the

default configurations usually provide usability for users.

Our concern was about providing the administrator with a

solution that guarantees them secured applications without

much loss in performance.

In the following we present examples about how the secure

values of some directives could affect the performance.

- Directive: memory_limit (PHP)

This sets the maximum amount of memory -in bytes-

that a script is allowed to allocate. The default value is

128M while security experts recommend the value 32M

since high values could leave the application open to

Overflow attack. On the other hand, small values will limit

some scripts and make them use more time managing the

small allocated memory. The experts recommend the value

256M for high performance [20].

- Directive: max_input_time (PHP)

This sets the maximum time -in seconds- a script is

allowed to parse input data, like POST and GET. The

default value is -1 (means no limit) while secure value is

30. Like previous directive the potential risks for high

values is Overflow. The small value may cause to

terminate some scripts during parsing data before it’s done.

The experts recommend the value 90 for high performance

[20].

- Directive: KeepAliveTimeout (Apache)

This sets the number of seconds Apache will wait for a

subsequent request before closing the connection. The

default value is 5, and the security experts recommend the

value 3. KeepAlive provides long-lived HTTP sessions

which allow multiple requests to be sent over the same

TCP connection. In some cases this has been shown to

result in an almost 50% speedup in latency times for

HTML documents with many images [20].

Administrators need to keep high performance with

reasonable security, they do not have to trade performance

for a slight attacks mitigation. Therefore we need to

recommend values ranging between secure values and high

performance values, taking into consideration the

prevalence and the severity of the potential risks. In the

next section we will suggest a formula that determines new

recommended values taking these considerations into

account.

IV.4. Customization

“Software vendors, issue an increasing number of

security advisories, while users, on the other hand, struggle

to understand if a given vulnerability is exploitable under

their particular conditions” M.M. Casalino et al. [6]. This

quote refers to a very important point, which is the

difficulty of adjusting general security recommendations to

meet certain system requirements.

Customization means to find the best security practices

for particular system. In our case the customized secure

configurations can be achieved by creating a customized

Gold Standard that contains customized recommended

values for certain website. In this research we focused on

the directives which have numeric values only.

As we mentioned before the environmental metrics in

CCSS are used to customize the base and the temporal

scores based on the characteristics of a specific

environment. Therefore we chose the environmental score

to be one of the main parameters we use in computing the

new customized values.

Unfortunately, many administrators are not able to

generate the environmental metrics, since that requires

good knowledge in security, so we need to create an

adaptive layer between the administrator knowledge and

the environmental metrics. We suggested a set of metrics

called Admin metrics, which contains the main

characteristics of the website to play the role of that layer.

We tried to make these metrics as simple as possible. The

Figure 1 demonstrates the main components of

customization process.

Figure 1: Main Components of Customization Process

Administrator metrics consist of the following:

1. Category (CAT): the type of the website such as

personal, informational, e-commerce, etc.

CAT values: according to TABLE 1.

2. Business Size (BS): the size of the business (revenue)

that website presents.

BS values: [Low=0, Medium=0.5, High=1].

3. Sensitive Data (SD): indicates if the website contains

sensitive data or not, like credit cards or personal

information for users, etc.

SD values: [Low=0, Medium=0.5, High=1].

4. Web Oriented Business (WO): indicates if the business

depends on Web market.

WO values: [Low=0, Medium=0.5, High=1].

5. Profit (P): indicates if the website was made for profit

purpose or not.

P values: [False=0, True=1].

IV.4.1. Generate the Environmental Metrics

To generate the environmental metrics based on the

admin metrics we need to find relations between these two

sets of metrics. The environmental metrics basically

contain the following:

 Local Vulnerability Prevalence (LVP): measures the

prevalence of a vulnerability in a specific

environment. So we will estimate this metric based

on the number of repetitions for each vulnerable

directive.

 Local Remediation Level (LRL): measures the level

of protection against a vulnerability within the local

environment. To simplify our problem we used same

General Remediation in base metrics.

 Perceived Target Value (PTV): the motivation of an

attacker to perform an attack relative to other

environment. This metric relates to the category of

the website, for example attackers are more interested

in bank website than informational website. websites

contain sensitive data are more attractive for attackers

as well.

 Collateral Damage Potential (CDP): The economic

loss of productivity or revenue through damage or

theft of property or equipment. This metric relates to

category, business size, Web oriented business and

profit. For example e-commerce website for big

company would lose much more than non-profit

personal website.

 Confidentiality Requirements (CR): relates to the

existence of sensitive data.

 Integrity Requirements (IR): relates to the existence

of sensitive data and Web oriented.

 Availability Requirements (AR): relates to Web

oriented and business size.

Based on the previous discussion and the sense experience,

we suggest the following formulas to generate

environmental metrics:

PTV=round_to_closest_metric_value[(CategoryPTV/2)+S

ensitive Data+Access Complexity (AC)] (1)

Where CategoryPTV values: [Low=0, Medium=0.5,

High=1], Access Complexity is base metric,

round_to_closer_metric_value function rounds the result

of calculation to closer value of PTV metric, knowing that

PTV values are: [Low=0.8, Medium=1.0, High=1.2, Not

Defined=1.0].

CDP=round_to_closest_metric_value[CategoryCDP+Web

oriented*(Business size+ Profit)] (2)

Where CDP: [None=1.0, Low=1.25, Low-Medium=1.5,

Medium-High=1.75, High=2.0, Not Defined=1.0]

CR=round_to_closest_metric_value(CategoryCR+2*Sens

itive Data) (3)

IR=round_to_closest_metric_value(CategoryIR+Sensitive

Data+Web oriented) (4)

AR=round_to_closest_metric_value[CategoryAR+Web

oriented*(1+Business size)] (5)

Where CR, IR and AR: [Low=0.5, Medium=1.0,

High=1.51, Not Defined=1.0]

The value of category metric is changed according to the

environmental metric (CategoryPTV, CategortCDP…).

The estimated values of category are shown in TABLE 1,

where [L:Low, M:Medium, H:High].

TABLE 1: CATEGORY-ENVMETRICS TABLE

Category PTV CDP CR IR AR

Personal L L L M M

Sharing L L L L L

Writers L L L M L

Community M M H M H

Blogs L L L M L

Informational L M L H M

Business Catalog L M L M H

Directory L L L H M

E-commerce H H H M H

Example: let’s calculate AR for Basmaty.com, which is a

website belongs to the Business Catalog category, so

Admin

Knowledge

Environ

-mental

Metrics

Admin

Metrics

Customized
Security

Configuration

Customized

Gold Standard

according to TABLE 1, category metric takes the following

values:

CategoryPTV = Low, CategoryCDP = Medium,

CategoryCR = Low, CategoryIR = Medium, CategoryAR =

High.

The administrator of Basmaty.com gave us the following

values for admin metrics:

Business Size = High, Sensitive Data = Low, Web Oriented

= High, Profit = True.

The Calculation as follows:

AR=round_to_closest_metric_value[CategoryAR+Web

oriented*(1+Business size)]

AR=round_to_closest_metric_value[High+High

*(1+High)]

AR=round_to_closest_metric_value[1 +1*(1+1)]=

round_to_closest_metric_value[3]

Knowing that AR values are [Low=0.5, Medium=1.0,

High=1.51, Not Defined=1.0]

⇒AR=1.51⇒AR= High, that means Basmaty.com requires

high availability.

IV.4.2. Customized Recommended Value

As we mentioned in Security vs. Performance section we

need to find a value ranging between secure and high

performance value. To simplify the problem we will

assumed that high performance value is the current value.

If the environmental score has high value, that means the

vulnerability is critical for that particular website, therefore

the customized recommended value will be closer to the

secure value. In the contrary, if the environmental score

has low value, the customized recommended value will be

closer to the current value in order to achieve high

performance. The Figure 2 demonstrates the calculation

process.

Based on previous discussion we suggest the following

formula to compute the customized recommended value:

RecValue=d-(d-s)*(EnvScore/10) (6)
Where s: secure value, d: default value, EnvScore:

environmental score.

Example: The directive memory_limit in PHP has the

current value 128M while the secure value is 32M,

knowing that the environmental score is 7.0 for a website x,

the recommended value will be:

RecValue=128-(128-32)*7/10

RecValue=60.8M

IV.5. Tuning

Apache, PHP and MySQL work together in perfect

harmony to run Web applications. That harmony is based

on data exchange between these components and the

interferences between their configurations. There are

relations between these components configurations

directives, as well as between different directives in one

component. Tuning configuration means to give directive a

suitable value respecting the relations gathering this

directive with other directives.

The tuning issue caught our attention because we work

on checking directives and suggesting new secure values,

so choosing harmonic values should be taken into

consideration. In general declaring these relations will help

administrators to avoid misconfiguration. When the

administrator configure certain option in AMP

environment, he needs to know all the directives across all

components that could affect this option. In the following

section we present examples of the relations between AMP

directives:

- expose_php (PHP) & ServerTokens (Apache)

expose_php: Exposes to the world that PHP is installed on

the server, which includes the PHP version within the

HTTP header “X-Powered-By”.

ServerTokens: controls whether “Server” HTTP header

includes a description of the generic OS-type of the server,

as well as the version of the interpreter. In case the

administrator wants to hide the PHP version, he needs to

disable both directives expose_php and ServerTokens.

- upload_max_filesize (PHP)<post_max_size (PHP)

upload_maz_filesize: sets the maximum size of an

uploaded file. post_max_size: sets the maximum size of

post data allowed. This setting also affects file upload. To

upload large files, this value must be greater than

upload_max_filesize.

- post_max_size(PHP)≤LimitRequestBody (Apache)

LimitRequestBody: restricts the total size of the HTTP

request body sent from the client. Consequently, it could

limit the size of post data post_max_size and the uploaded

file upload_max_filesize as well, so it should be greater or

equal post_max_size.

IV.6. Implementation

We implemented our tool Misconfiguration

Vulnerabilities Scanner (MVS) basically using the system

design suggested by [4] in addition to our new component

the “Customized values generator”. As shown in Figure 8

the tool workflow goes through three main phases: Parsing,

Analysis and Fixing.

IV.6.1. Parsing

In Parsing phase we parse files and detect sensitive

directives in both the environment and the application

level. This phase contains three parsers: Environment,

Runtime and PERDIR. All these parsers scan the

respective locations to detect directives information (name,

value, section), where name is the name of configuration

directive, value is its value and section is the context that

may indicate whether a directive is directory-level

configuration, or script-level configuration.The

environment parser searches for sensitive directives in

php.ini, httpd.conf and my.ini files for PHP, Apache and

Figure 2: Customized Recommended Value

MySQL respectively. The runtime parser searches for

sensitive directives in script files, knowing that PHP

configurations could be changed by the following

commands: ini_set, ini_alter, ini_restore,

session_save_path, error_reporting and

set_time_limit. While the PERDIR parser searches for

sensitive directives in .htaccess files, the detected directives

by this parser could be Apache or PHP directives as well,

since there are Apache directives that could change PHP

configuration from within .htaccess files: php_value,
php_flag, php_admin_value and php_admin_flag.

IV.6.2. Analysis

In analysis phase we analyze the values of the detected

directives against the Gold Standard (GS) recommended

values and quantify vulnerable ones based on CCSS. As

shown in Figure 3 this phase contains three components:

Analysis Engine, Score Generator and Customized Values

Generator. The analysis engine classify the directives values

as safety set or unsafety set. While the score generator

computes the CCSS scores based on the base, temporal

vectors. The customized values generator computes the

customized value of certain directive according to equation

(6). As it generates the environmental vector based on

admin metrics.

IV.6.3. Fixing

This phase contains one component: Fixing Engine which

changes the directives values according to GS

recommendations and generate new configuration files.

V. Experiments

We implemented our tool MVS on seven AMP packages,

ten open source Web applications and seven online

websites.

V.1. AMP Packages

First we installed the latest versions of the most common

AMP packages. XAMPP 3.1.0, WAMP 2.4, AMPPS 2.4,

UniServerZ 11.3.2, uwAMP 3.0.2 and EasyPHP 14.1. In

addition, we installed manually AMP server environment

that includes Apache 2.4.7, MySQL 5.6.20 and PHP 5.5.15.

We implemented MVS on these packages at the

environment level and we got the results as shown in

TABLE 2. We noticed that the vulnerabilities number are

greater than detected directives and that means the most of

vulnerabilities are caused by default values, because in case

MVS could not find a directive in the configurations files, it

considers the default value.

TABLE 2: VULNERABILITIES NUMBERS IN AMP PACKAGES

Package
PHP Apache MySQL

DD V DD V DD V

Manual 13 26 4 16 0 8

XAMPP 19 28 4 18 1 8

WAMP 20 25 4 16 1 8

AMPPS 19 28 12 33 0 8

UniServerZ 15 24 15 38 1 8

uwAMP 14 27 10 25 0 8

EasyPHP 0 26 5 18 2 7

Where DD: detected directives, V: vulnerabilities.

The Table 3 presents some samples of vulnerabilities in

XAMPP package with details. As we notice the expose_php

is enabled by default and that would lead to gain

information risk, 55% of websites have at least one gain

information vulnerability according to WhiteHat [2].

New

Formula

Base Metrics

Temp Metrics
Environmental

Metrics

Admin

Metrics

 Current

value

Rec

value

Secure

value

Performance

Security

Figure 3: Workflow of the proposed tool

TABLE 3: SAMPLES OF VULNERABILITIES IN XAMPP

Directive Val Rec S BS TS

expose_php On Off F 5 5

memory_limit 128M 32M F 7 5

ServerSignature Off Off T - -

TraceEnable On Off F 6 6

old_passwords 0 2 F 6 6

skip-federate T T T - -

Where Val: value, Rec: recommended value, S:safely set,

BS: base score, TS: temporal score.

The highest base score is 7.0 for the vulnerability of

directive memory_limit. This vulnerability leads to DoS and

overflow attacks. Such attacks cause a complete loss in

availability, which is a main parameter in the base score

equation. During the exploration of the packages

vulnerabilities we noticed some values relate to tuning

issue. For example: In AMPPS package, PHP component,

MVS found upload_max_filesize=32M and

post_max_size=8M, that does not meet the tuning rule:
upload_max_filesize<post_max_size.

V.2. Open Source Web Applications

We installed the latest versions of the most popular open

source Web applications. We implemented MVS on these

applications at the application level (Runtime and

PERDIR). The TABLE 4 shows the results.

In most cases the number of the detected commands are

greater than the number of vulnerabilities and that’s because

of two reasons. First, there are directives classified as safely

set. Second, there are directives that take values from PHP

variables in the script, which makes it difficult to judge

these directives, therefore we ignore them. We noticed that

the most frequent vulnerable directives are:

error_reporting, display_errors and max_execution_time

which result in gain information and DoS attacks on the

application.

TABLE 4: VULNERABILITIES NUMBERS IN OPEN SOURCE WEB

APPLICATIONS

App
PHP Apache

DC V DD V

Joomla 31 22 1 1

Drupal 2 1 2 1

Wordpress 22 6 0 0

Moodle 93 23 0 0

DVWA 1 1 0 0

phpBB 2 1 0 0

myBB 1 0 0 0

osCommerce 6 3 3 1

SugarCRM 56 41 0 0

FluxBB 3 3 0 0

Where DC: Detected Command which refers to the number

of commands that change the configuration settings in

scripts.

In order to compare our tool with other scanners we used

the comparison in Confeagle paper [4], since Confeagle is

similar to our tool. The comparison is between Confeagle,

w3af, skipfish and Websecurify. Except confeagle, the

scanners are all generic vulnerabilities scanners. We

installed the versions of the applications they used in their

experiment, and we used XAMPP package as an

environment. We implemented MVS on these applications

at the environment and the application levels and we got the

the results in Table 5. As we can see, configuration

vulnerabilities at the application level are not reported by

w3af, skipfish or websecuritfy scanners.

Admin

Metrics

Runtime

Parser

P

PERDIR
Parser

P

Environment
Parser

P

Server

Environme
nt

Web

Applicatio

n

Analysis

Engine

Score

Generator

Score

Metrics
Gold

Standard

Detected

Directives
Fixing

Engine

Configuration Parsing Vulnerability Analysis Configuration Fixing

Customized Value

Generator

TABLE 5: COMPARING MVS’S VULNERABILITIES DETECTION

RESULTS WITH GENERIC VULNERABILITY SCANNERS

Applic-

ation

MVS Con W3 skip sec

E A E A E A E A E A

Joomla 28 9 28 4 2 0 3 0 1 0

Drupal 28 2 28 2 2 0 3 0 1 0

Word-

press

28 7 28 2 2 0 3 0 2 0

Moodle 28 34 28 8 2 0 3 0 2 0

Where E: environment, A: application, Con: Confeagle, W3:

w3af, skip: skipfish, sec: websecuritfy.

Although the generic scanners seem to focus on

environment configuration vulnerabilities, not much of

these vulnerabilities are reported either. While we notice

similar results between MVS and Confeagle at environment

level. But at application level, MVS detected more

vulnerabilities than Confeagle. In Joomla 2.5 Confeagle

detected display_errors vulnerability in four different files.

While MVS detected these vulnerabilities and more five

ones of error_reporting and max_execution_time directives.

Confeagle ignored error_reporting directive and did not

consider it as a vulnerability. Knowing that error_reporting

could has the value 0 which means to turn off all error

reporting and in that case the vulnerability of display_errors

directive is meaningless. Our MVS detects both

error_reporting and display_errors directives and shows

their values so the administrator can estimate the actual

severity of the combination of both directives. However,

this example goes along with the tuning issue we tackled in

a previous section.

V.3. Online websites

The websites we used in the experiments are shown in

TABLE 6.

TABLE 6. ONLINE WEBSITES USED IN EXPERIMENTS

website Category
PHP

files

htaccess

files

Usefulbooks.co.uk E-commerce 252 1

Basmaty.com Business Catalog 6288 10

Qcs-co.com Business Catalog 2730 7

Gic-me.com Business Catalog 2212 2

Doctorwainakh.com Personal 1214 1

Mambo House E-commerce 273 1

On Lib Arc Business Catalog 256 0

We performed experiments on these websites at

application level. For example, TABLE 7 shows some

vulnerabilities in usefulbooks.co.uk which has the

following admin metrics: Category = E-Commerce,

Business Size = Medium, Sensitive Data = Medium, Web

Oriented = High, Profit = True. As we notice, the

environmental scores for Usefulbooks.co.uk are high

values, since it is e-commerce website and high Web

oriented.

TABLE 7. SAMPLES OF VULNERABILITIES IN

USEFULBOOKS.CO.UK

Directive Val Rec S
B

S

T

S

E

S

error_reporting E_ALL NULL F 5 5 9

memory_limit 160M 32M F 7 5 7

max_execution_

time

30000 30 F 7 5 7

Where ES: environmental score.

Finally we used the suggested formula (6) to compute the

customized recommended value for some vulnerable

directives and got the results in TABLE 8. As we see in the

first two cases, the customized recommended values are

closer to the secure value than to the current value, since the

environmental score is high 7.0. While in the last case, the

environmental score is low 3.0, which means that this

vulnerability is not critical for gic-me website, so the

customized recommended value is closer to current value.

TABLE 8. CUSTOMIZED RECOMMENDED VALUES

Website Directive Val Sec
E

S
CR

Basmaty max_execution

_time

100 30 7 51

usefulbooks memory_limit 160 32 7 70.4

Gic-me max_execution

_time

5000 30 3 3509

Where Sec: secure value, CR: customized recommended

value.

VI. Conclusion

In this research we have investigated misconfiguration

vulnerabilities in Web applications and implemented our

approaches in AMP environment. We presented several

ideas to enhance the methods of detecting and quantifying

the vulnerabilities. A comprehensive checking was applied

at both the environment and the application level using

extended Gold Standard. We studied the conflicts between

performance and security, as we discussed the tuning

configuration issue. We used the most recent scoring system

CCSS to measure the severity of detected vulnerabilities.

We used environmental metrics to compute the customized

recommended values for vulnerable directives. The

customized recommended values are generated to be proper

for particular website according to its characteristics along

with taking into consideration the performance issue. We

implemented our tool MVS on seven AMP packages, ten

open source Web applications and seven online websites.

We can summarize the limitations of this research in four

points as follows: we customized only the directives which

have numeric values. We assumed that the current value of

directive is the high performance value. In the script

parsing, we ignored the commands which include PHP

variables. In addition, we could not evaluate the accuracy of

our approach that computes the environmental metrics using

admin metrics, since there are no similar experiences or

available data to compare with.

In future, we wish to work more on customization

concept and extend it to all directives in Gold Standard, not

just the numeric ones.

References
[1] World Wide Web Size, “The size of the World Wide

Web,” http://www.worldwideWebsize.com

[2] WhiteHat. 2013. “Website Security Statistics Report,”.

[3] J. Tudor. 2013. “Web Application Vulnerability

Statistics 2013,” Context.

[4] S. Zhang and M.D. Ernst. 2013. “Automated Diagnosis

of Software Configuration Errors,” in ICSE.IEEE.

[5] D. Subramanian, H.T. Le, P.K.K. Loh and A.B.

Premkumar. 2010. “Quantitative Evaluation of Related

Web-based Vulnerabilities,” in SSIRI-C.IEEE.

[6] M.M. Casalino, M. Mangili, H. Plate, and S. E. Ponta.

2012. “Detection of Configuration Vulnerabilities in

Distributed (Web) Environments,” CoRR, vol.

abs/1206.6757.

[7] B. Eshete, A. Villafiorita, and K. Weldemariam. 2011.

“Early Detection of Security Misconfiguration

Vulnerabilities in Web Applications,” in ARES. IEEE.

[8] B. Eshete, A. Villafiorita, K. Weldemariam, and M.

Zulkernine. 2013. “Confeagle: Automated Analysis of

Configuration Vulnerabilities in Web Applications,” in

SERE.IEEE.

[9] OWASP. 2013. “OWASP Top 10 – 2013”.

[10] PHP. 2013. “PHP Security Manual,”

http://php.net/manual/en/security.php

[11] MySQL. 2013. “MySQL Secure Installation,”

http://dev.mysql.com/doc/refman/5.0/en/mysql-secure-

installation.html

[12] MySQL, “Security-Related mysqld Options and

Variables”

http://dev.mysql.com/doc/refman/5.0/en/security-

options.html

[13] Cyberciti. 2013. “Linux: 25 PHP Security Best

Practices for Sys Admins,”

http://www.cyberciti.biz/tips/php-security-best-

practices-tutorial.html

[14] TechRepublic. 2013. “10 things you should do to

secure Apache,”

http://www.techrepublic.com/blog/10things/10-things-

you-should-do-to-secure-apache/477

[15] Tecmint, “13 Apache Web Server Security and

Hardening Tips,” http://www.tecmint.com/apache-

security-tips/

[16] OWASP, “PHP Configuration Cheat Sheet”

https://www.owasp.org/index.php/PHP_Configuration_

Cheat_Sheet

[17] Ch. Kumar. 2013. “10 Best Practices To Secure and

Harden Your Apache Web Server,”

http://chandank.com/security/10-best-practices-to-

secure-and-harden-your-apache-Web-server

[18] OWASP. 2013. “OWASP Configuration Guide,”

https://www.owasp.org/index.php/Configuration.

[19] Oracle. 2013. “Web Application Security Configuration

Guide,” http://docs.oracle.com/cd/E28595 01/Web App

Security Guide.pdf

[20] High-Tech Bridge, “Web Applications Vulnerabilities

CVSSv2 Calculator”

https://www.htbridge.com/cvss_web_calculator/

[21] NVD, “Common Vulnerability Scoring System Version

2 Calculator”

http://nvd.nist.gov/cvss.cfm?calculator&version=2

[22] S. Wieczorek. 2012. “Best Practice for Highest

Performance,” http://www.mgt-

commerce.com/blog/magento-on-steroids-best-

practice-for-highest-performance/

http://www.worldwidewebsize.com/
http://php.net/manual/en/security.php
http://dev.mysql.com/doc/refman/5.0/en/mysql-secure-installation.html
http://dev.mysql.com/doc/refman/5.0/en/mysql-secure-installation.html
http://dev.mysql.com/doc/refman/5.0/en/security-options.html
http://dev.mysql.com/doc/refman/5.0/en/security-options.html
http://www.cyberciti.biz/tips/php-security-best-practices-tutorial.html
http://www.cyberciti.biz/tips/php-security-best-practices-tutorial.html
http://www.techrepublic.com/blog/10things/10-things-you-should-do-to-secure-apache/477
http://www.techrepublic.com/blog/10things/10-things-you-should-do-to-secure-apache/477
http://www.tecmint.com/apache-security-tips/
http://www.tecmint.com/apache-security-tips/
https://www.owasp.org/index.php/PHP_Configuration_Cheat_Sheet
https://www.owasp.org/index.php/PHP_Configuration_Cheat_Sheet
http://chandank.com/security/10-best-practices-to-secure-and-harden-your-apache-web-server
http://chandank.com/security/10-best-practices-to-secure-and-harden-your-apache-web-server
https://www.owasp.org/index.php/Conﬁguration
http://docs.oracle.com/cd/E28595%2001/Web%20App%20Security%20Guide.pdf
http://docs.oracle.com/cd/E28595%2001/Web%20App%20Security%20Guide.pdf
https://www.htbridge.com/cvss_web_calculator/
http://nvd.nist.gov/cvss.cfm?calculator&version=2
http://www.mgt-commerce.com/blog/magento-on-steroids-best-practice-for-highest-performance/
http://www.mgt-commerce.com/blog/magento-on-steroids-best-practice-for-highest-performance/
http://www.mgt-commerce.com/blog/magento-on-steroids-best-practice-for-highest-performance/

