

Electronic Circuits Course

Course description

1. Basic Information:

Course Name	Electronic Circuits
Course Code	BEC401
Asynchronous contact hours in course	15-21
Synchronous contact hours in course	18
Quiz's time	6
Exam Time	2
Asynchronous WorkLoad in course	36
synchronous WorkLoad in course	36
Credit hours of course C	4

2. Prerequisites courses:

Course	code
Physics	BPH401

3. Course objectives:

This course aims to show basic concepts of semi-conductors and basic electronic components: The diode, the transistors, their applications, types of amplifiers, the operational amplifier, some digital gates, analog to digital convertors, and digtal to analog ones. The course enables the students to: First: knowing the basic laws of electric circuits in general (Ohm's law, Kirchoff's laws, ...).

Second: Knowing semi-conductors and how electronic components work: Diode, Bipolar Junction Transistors BJT, Metal-Oxyde-Semiconductor Field Effect Transistors MOS FET. Third: Modeling previous components in Direct Current (DC), and small signals.

Fourth: Using the previous components to design amplifiers, digital gates, interfacing circuits between analog signals and the computers (Analog to Digital convertors ADC, and Digital to Analog Convertors DAC).

4. Intended Learning Objectives:

After successfully completing the course, students should be able to:

- Solve circuits and find the currents of all the branches.
- Model electronic components in Direct Current (DC) and for small signals and in high frequencies.
- Use transistors to design amplifiers.
- Analyze the basic configurations of the amplifiers.
- Analyze some operational amplifier circuits.
- Design pseudo NMOS and CMOS digital gates.

5. Results Assessment:

	Assess				sessment Type		
Chapter No.	Chapter Title	Intended Objectives	Developed content/ Recorded Sessions	Practical Activities (Synchronized Sessions)	Quizzes and Exams	Presentations And Interviews	Reports
CH1	Electric	Comprehension					
	Circuits	-Analytical	Х	Х	Х		Х
	revision	Thinking					
CH2	Laplace	Comprehension	X	Х	Х		Х
	transform	-Analytical	~	~	~		~

					1	
	& Baud	Thinking –Tools				
	Diagrams	And Application				
		Hands- On				
CH3	Semi– conductors and PN Diodes	Comprehension –Analytical Thinking	Х	Х	Х	x
CH4	Bipolar Junction Transistor BJT	Comprehension –Analytical Thinking –	Х	Х	х	х
CH5	Metal– Oxyde– Semicondu ctor Field Effect Transistor MOS FET	Comprehension –Analytical Thinking –	Х	Х	Х	Х
CH6	Transistor' s amplifiers	Comprehension –Analytical Thinking –Tools And Application Hands– On	Х	Х	Х	Х
CH7	Operational amplifiers	Comprehension –Analytical Thinking –Tools And Application Hands– On	Х	Х	х	Х

6. Course content:

Chapter	Subject	Content	Number of theoretical teaching hours	Number of practical teaching hours
CH 1	Electric Circuits revision	 Basic concepts: Current, voltage, power, impedances, Ohm's law. Optimal and practical current sources and voltage sources. Complex impedances and their parallel and serial connections. Circuit solving: Kirchoff's laws. Superposition. Norton and Thevenin theorems. Exercises. 	3	3
CH 2	Laplace transform & Baud Diagrams	 Basic concepts: Laplace transform and its existence conditions. Laplace transform LT properties: Linearity, LT for derivative function 	2	2

		 and integral. Time shift and Laplace variable shift. 3. Special functions: Step and unit pulse (Dirac pulse) and their LT. 4. Complex impedances and transfer functions. 5. Baud diagrams. 6. Exercises. 1. Semiconductors and their 		
CH 3	Semi– conductors and PN Diodes	 Semiconductors and their chemical and quantum characteristics. Doping and semiconductors type P and N. P-N Diode and characteristic curve (I-V). Small signal diode modeling, and at high frequencies. Types of diodes. Diodes applications. Exercises 	3	3
CH 4	Bipolar Junction Transistor BJT	 BJT structure. Transistor effect. Transistor's configurations. BJT Characteristic 	4	4

		 curves. 5. BJT operating modes 6. Small signal BJT modeling (T model and π model). 7. Small signal high frequency modeling of BJT. 	
CH 5	Metal–Oxyde– Semiconductor Field Effect Transistor MOS FET	 MOS FET structure. Enhanced MOS FET. Depletion MOS FET. Small signal FET modeling (T model and π model). Small signals high frequency modeling. Digital gates using MOS transistors (pseudo NMOS and CMOS). BJT and MOSFET comparison. Exercises. 	
CH 6	Transistor's amplifiers	 Quasient point and BJT biasing: graphical and algebraic solutions. Examples of quasient (operation) point calculation. 	

		3. MOSFET quasient point
		calculation and biasing.
		4. General analysis of
		transistor amplifiers.
		5. Single stage BJT amplifier
		analysis: common emitter
		CE, common base CB,
		common collector CC.
		6. Single stage MOSFET
		amplifier analysis:
		common source CS,
		common gate CG,
		common drain CD.
		7. Multistage amplifiers.
		Examples.
		8. Amplifiers' frequency
		response and bandwidth.
		Effect of internal and
		coupling capacitors.
		9. Exercises.
		1. Operational amplifier Op
		Amp: definition, optimal
		Op Amp.
		2. Op Amp stages:
	Operational	differential amplifier,
CH 7	amplifiers	amplification, level tuning,
		power amplifier at output
		stage.
		3. Linear Op Amp
		applications: inverted

 energlification adden and	
amplification, adder and	
subtractor, integrator and	
differentiator, active	
filters.	
4. Non-linear Op Amp	
applications: comparator,	
logarithmic amplifier.	
5. Analog to Digital	
Convertors ADC and	
Digital to Analog	
Convertor DAC	
6. Exercises.	

7. Practical Section

• Tools and Labs:

Tool Name	Descriptions
Words, PowerPoint, Excel,	Available Software
internet	

• Repartition of Practical Work by chapters:

Chapter	Practical Work Type	Explanations
	🗷 Exercises	
	Seminars	
CH1	Projects	Exercises and homework
	Experiments	Exercises and nonnework
	E Homework	
	□ Others	
CH2	Exercises	Exercises and homework

	Seminars	
	Experiments	
	K Homework	
	□ Others	
	Exercises	
	Seminars	
0112	Projects	
CH3	Experiments	Homework and seminars
	K Homework	
	□ Others	
	Exercises	
	Seminars	
	Projects	
CH4	□ Experiments	Homework and seminars
	K Homework	
	□ Others	
	Exercises	
	Seminars	
	□ Projects	
CH5	 Experiments 	
	Homework	
	□ Others	
	Exercises	
	Seminars Drainate	
CH6		
	Experiments	
	K Homework	
	□ Others	

	Exercises	
	Seminars	
CH7	Projects	
	Experiments	
	E Homework	
	□ Others	

8. References:

- 1. SHAHEEN Khaled "Electric Circuits" Damascus university, IT faculty 2000.
- 2. MASRI Khaled "Semiconductor physics" Damascus university, IT faculty 2000.
- AL DAKKAK Oumayma "Electronic Circuits" Damascus university, IT faculty 2000.
- -"Microelectronic Circuits" by SEDRA & SMITH, 5th edition, 2004, Oxford University Press.
- -"Microelectronic Circuits" by SEDRA & SMITH, 7th edition, 2014, THE OXFORD SERIES IN ELECTRICAL AND COMPUTER ENGINEERING.
- 6. -"Linear Circuit Analysis" by DeCarlo, LIN, 2nd edition, 2001, Oxford University Press.